ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.80 by root, Sun Jul 27 08:43:32 2008 UTC vs.
Revision 1.185 by root, Thu Sep 3 19:48:27 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
61=head1 METHODS 80=head1 METHODS
62 81
63=over 4 82=over 4
64 83
65=item B<new (%args)> 84=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 85
67The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
68 87
69=over 4 88=over 4
70 89
71=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 91
73The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 93NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95that mode.
77 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
78=item on_eof => $cb->($handle) 114=item on_prepare => $cb->($handle)
79 115
80Set the callback to be called when an end-of-file condition is detected, 116This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 117attempted, but after the file handle has been created. It could be used to
82connection cleanly. 118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
83 121
84While not mandatory, it is I<highly> recommended to set an eof callback, 122The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 124timeout is to be used).
87 125
88If an EOF condition has been detected but no C<on_eof> callback has been 126=item on_connect => $cb->($handle, $host, $port, $retry->())
89set, then a fatal error will be raised with C<$!> set to <0>.
90 127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next conenction target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). When it is called then the read and write queues, eof status,
137tls status and similar properties of the handle are being reset.
138
139In most cases, ignoring the C<$retry> parameter is the way to go.
140
141=item on_connect_error => $cb->($handle, $message)
142
143This callback is called when the conenction could not be
144established. C<$!> will contain the relevant error code, and C<$message> a
145message describing it (usually the same as C<"$!">).
146
147If this callback isn't specified, then C<on_error> will be called with a
148fatal error instead.
149
150=back
151
91=item on_error => $cb->($handle, $fatal) 152=item on_error => $cb->($handle, $fatal, $message)
92 153
93This is the error callback, which is called when, well, some error 154This is the error callback, which is called when, well, some error
94occured, such as not being able to resolve the hostname, failure to 155occured, such as not being able to resolve the hostname, failure to
95connect or a read error. 156connect or a read error.
96 157
97Some errors are fatal (which is indicated by C<$fatal> being true). On 158Some errors are fatal (which is indicated by C<$fatal> being true). On
98fatal errors the handle object will be shut down and will not be 159fatal errors the handle object will be destroyed (by a call to C<< ->
160destroy >>) after invoking the error callback (which means you are free to
161examine the handle object). Examples of fatal errors are an EOF condition
162with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163cases where the other side can close the connection at their will it is
164often easiest to not report C<EPIPE> errors in this callback.
165
166AnyEvent::Handle tries to find an appropriate error code for you to check
167against, but in some cases (TLS errors), this does not work well. It is
168recommended to always output the C<$message> argument in human-readable
169error messages (it's usually the same as C<"$!">).
170
99usable. Non-fatal errors can be retried by simply returning, but it is 171Non-fatal errors can be retried by simply returning, but it is recommended
100recommended to simply ignore this parameter and instead abondon the handle 172to simply ignore this parameter and instead abondon the handle object
101object when this callback is invoked. 173when this callback is invoked. Examples of non-fatal errors are timeouts
174C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
102 175
103On callback entrance, the value of C<$!> contains the operating system 176On callback entrance, the value of C<$!> contains the operating system
104error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 177error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178C<EPROTO>).
105 179
106While not mandatory, it is I<highly> recommended to set this callback, as 180While not mandatory, it is I<highly> recommended to set this callback, as
107you will not be notified of errors otherwise. The default simply calls 181you will not be notified of errors otherwise. The default simply calls
108C<croak>. 182C<croak>.
109 183
113and no read request is in the queue (unlike read queue callbacks, this 187and no read request is in the queue (unlike read queue callbacks, this
114callback will only be called when at least one octet of data is in the 188callback will only be called when at least one octet of data is in the
115read buffer). 189read buffer).
116 190
117To access (and remove data from) the read buffer, use the C<< ->rbuf >> 191To access (and remove data from) the read buffer, use the C<< ->rbuf >>
118method or access the C<$handle->{rbuf}> member directly. 192method or access the C<< $handle->{rbuf} >> member directly. Note that you
193must not enlarge or modify the read buffer, you can only remove data at
194the beginning from it.
119 195
120When an EOF condition is detected then AnyEvent::Handle will first try to 196When an EOF condition is detected then AnyEvent::Handle will first try to
121feed all the remaining data to the queued callbacks and C<on_read> before 197feed all the remaining data to the queued callbacks and C<on_read> before
122calling the C<on_eof> callback. If no progress can be made, then a fatal 198calling the C<on_eof> callback. If no progress can be made, then a fatal
123error will be raised (with C<$!> set to C<EPIPE>). 199error will be raised (with C<$!> set to C<EPIPE>).
200
201Note that, unlike requests in the read queue, an C<on_read> callback
202doesn't mean you I<require> some data: if there is an EOF and there
203are outstanding read requests then an error will be flagged. With an
204C<on_read> callback, the C<on_eof> callback will be invoked.
205
206=item on_eof => $cb->($handle)
207
208Set the callback to be called when an end-of-file condition is detected,
209i.e. in the case of a socket, when the other side has closed the
210connection cleanly, and there are no outstanding read requests in the
211queue (if there are read requests, then an EOF counts as an unexpected
212connection close and will be flagged as an error).
213
214For sockets, this just means that the other side has stopped sending data,
215you can still try to write data, and, in fact, one can return from the EOF
216callback and continue writing data, as only the read part has been shut
217down.
218
219If an EOF condition has been detected but no C<on_eof> callback has been
220set, then a fatal error will be raised with C<$!> set to <0>.
124 221
125=item on_drain => $cb->($handle) 222=item on_drain => $cb->($handle)
126 223
127This sets the callback that is called when the write buffer becomes empty 224This sets the callback that is called when the write buffer becomes empty
128(or when the callback is set and the buffer is empty already). 225(or when the callback is set and the buffer is empty already).
135memory and push it into the queue, but instead only read more data from 232memory and push it into the queue, but instead only read more data from
136the file when the write queue becomes empty. 233the file when the write queue becomes empty.
137 234
138=item timeout => $fractional_seconds 235=item timeout => $fractional_seconds
139 236
237=item rtimeout => $fractional_seconds
238
239=item wtimeout => $fractional_seconds
240
140If non-zero, then this enables an "inactivity" timeout: whenever this many 241If non-zero, then these enables an "inactivity" timeout: whenever this
141seconds pass without a successful read or write on the underlying file 242many seconds pass without a successful read or write on the underlying
142handle, the C<on_timeout> callback will be invoked (and if that one is 243file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
143missing, an C<ETIMEDOUT> error will be raised). 244will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
245error will be raised).
246
247There are three variants of the timeouts that work fully independent
248of each other, for both read and write, just read, and just write:
249C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
250C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
251C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
144 252
145Note that timeout processing is also active when you currently do not have 253Note that timeout processing is also active when you currently do not have
146any outstanding read or write requests: If you plan to keep the connection 254any outstanding read or write requests: If you plan to keep the connection
147idle then you should disable the timout temporarily or ignore the timeout 255idle then you should disable the timout temporarily or ignore the timeout
148in the C<on_timeout> callback. 256in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
257restart the timeout.
149 258
150Zero (the default) disables this timeout. 259Zero (the default) disables this timeout.
151 260
152=item on_timeout => $cb->($handle) 261=item on_timeout => $cb->($handle)
153 262
157 266
158=item rbuf_max => <bytes> 267=item rbuf_max => <bytes>
159 268
160If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 269If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
161when the read buffer ever (strictly) exceeds this size. This is useful to 270when the read buffer ever (strictly) exceeds this size. This is useful to
162avoid denial-of-service attacks. 271avoid some forms of denial-of-service attacks.
163 272
164For example, a server accepting connections from untrusted sources should 273For example, a server accepting connections from untrusted sources should
165be configured to accept only so-and-so much data that it cannot act on 274be configured to accept only so-and-so much data that it cannot act on
166(for example, when expecting a line, an attacker could send an unlimited 275(for example, when expecting a line, an attacker could send an unlimited
167amount of data without a callback ever being called as long as the line 276amount of data without a callback ever being called as long as the line
168isn't finished). 277isn't finished).
169 278
170=item autocork => <boolean> 279=item autocork => <boolean>
171 280
172When disabled (the default), then C<push_write> will try to immediately 281When disabled (the default), then C<push_write> will try to immediately
173write the data to the handle if possible. This avoids having to register 282write the data to the handle, if possible. This avoids having to register
174a write watcher and wait for the next event loop iteration, but can be 283a write watcher and wait for the next event loop iteration, but can
175inefficient if you write multiple small chunks (this disadvantage is 284be inefficient if you write multiple small chunks (on the wire, this
176usually avoided by your kernel's nagle algorithm, see C<low_delay>). 285disadvantage is usually avoided by your kernel's nagle algorithm, see
286C<no_delay>, but this option can save costly syscalls).
177 287
178When enabled, then writes will always be queued till the next event loop 288When enabled, then writes will always be queued till the next event loop
179iteration. This is efficient when you do many small writes per iteration, 289iteration. This is efficient when you do many small writes per iteration,
180but less efficient when you do a single write only. 290but less efficient when you do a single write only per iteration (or when
291the write buffer often is full). It also increases write latency.
181 292
182=item no_delay => <boolean> 293=item no_delay => <boolean>
183 294
184When doing small writes on sockets, your operating system kernel might 295When doing small writes on sockets, your operating system kernel might
185wait a bit for more data before actually sending it out. This is called 296wait a bit for more data before actually sending it out. This is called
186the Nagle algorithm, and usually it is beneficial. 297the Nagle algorithm, and usually it is beneficial.
187 298
188In some situations you want as low a delay as possible, which cna be 299In some situations you want as low a delay as possible, which can be
189accomplishd by setting this option to true. 300accomplishd by setting this option to a true value.
190 301
191The default is your opertaing system's default behaviour, this option 302The default is your opertaing system's default behaviour (most likely
192explicitly enables or disables it, if possible. 303enabled), this option explicitly enables or disables it, if possible.
304
305=item keepalive => <boolean>
306
307Enables (default disable) the SO_KEEPALIVE option on the stream socket:
308normally, TCP connections have no time-out once established, so TCP
309conenctions, once established, can stay alive forever even when the other
310side has long gone. TCP keepalives are a cheap way to take down long-lived
311TCP connections whent he other side becomes unreachable. While the default
312is OS-dependent, TCP keepalives usually kick in after around two hours,
313and, if the other side doesn't reply, take down the TCP connection some 10
314to 15 minutes later.
315
316It is harmless to specify this option for file handles that do not support
317keepalives, and enabling it on connections that are potentially long-lived
318is usually a good idea.
319
320=item oobinline => <boolean>
321
322BSD majorly fucked up the implementation of TCP urgent data. The result
323is that almost no OS implements TCP according to the specs, and every OS
324implements it slightly differently.
325
326If you want to handle TCP urgent data, then setting this flag (the default
327is enabled) gives you the most portable way of getting urgent data, by
328putting it into the stream.
329
330Since BSD emulation of OOB data on top of TCP's urgent data can have
331security implications, AnyEvent::Handle sets this flag automatically
332unless explicitly specified. Note that setting this flag after
333establishing a connection I<may> be a bit too late (data loss could
334already have occured on BSD systems), but at least it will protect you
335from most attacks.
193 336
194=item read_size => <bytes> 337=item read_size => <bytes>
195 338
196The default read block size (the amount of bytes this module will try to read 339The default read block size (the amount of bytes this module will
197during each (loop iteration). Default: C<8192>. 340try to read during each loop iteration, which affects memory
341requirements). Default: C<8192>.
198 342
199=item low_water_mark => <bytes> 343=item low_water_mark => <bytes>
200 344
201Sets the amount of bytes (default: C<0>) that make up an "empty" write 345Sets the amount of bytes (default: C<0>) that make up an "empty" write
202buffer: If the write reaches this size or gets even samller it is 346buffer: If the write reaches this size or gets even samller it is
203considered empty. 347considered empty.
204 348
349Sometimes it can be beneficial (for performance reasons) to add data to
350the write buffer before it is fully drained, but this is a rare case, as
351the operating system kernel usually buffers data as well, so the default
352is good in almost all cases.
353
205=item linger => <seconds> 354=item linger => <seconds>
206 355
207If non-zero (default: C<3600>), then the destructor of the 356If non-zero (default: C<3600>), then the destructor of the
208AnyEvent::Handle object will check wether there is still outstanding write 357AnyEvent::Handle object will check whether there is still outstanding
209data and will install a watcher that will write out this data. No errors 358write data and will install a watcher that will write this data to the
210will be reported (this mostly matches how the operating system treats 359socket. No errors will be reported (this mostly matches how the operating
211outstanding data at socket close time). 360system treats outstanding data at socket close time).
212 361
213This will not work for partial TLS data that could not yet been 362This will not work for partial TLS data that could not be encoded
214encoded. This data will be lost. 363yet. This data will be lost. Calling the C<stoptls> method in time might
364help.
365
366=item peername => $string
367
368A string used to identify the remote site - usually the DNS hostname
369(I<not> IDN!) used to create the connection, rarely the IP address.
370
371Apart from being useful in error messages, this string is also used in TLS
372peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
373verification will be skipped when C<peername> is not specified or
374C<undef>.
215 375
216=item tls => "accept" | "connect" | Net::SSLeay::SSL object 376=item tls => "accept" | "connect" | Net::SSLeay::SSL object
217 377
218When this parameter is given, it enables TLS (SSL) mode, that means it 378When this parameter is given, it enables TLS (SSL) mode, that means
219will start making tls handshake and will transparently encrypt/decrypt 379AnyEvent will start a TLS handshake as soon as the conenction has been
220data. 380established and will transparently encrypt/decrypt data afterwards.
381
382All TLS protocol errors will be signalled as C<EPROTO>, with an
383appropriate error message.
221 384
222TLS mode requires Net::SSLeay to be installed (it will be loaded 385TLS mode requires Net::SSLeay to be installed (it will be loaded
223automatically when you try to create a TLS handle). 386automatically when you try to create a TLS handle): this module doesn't
387have a dependency on that module, so if your module requires it, you have
388to add the dependency yourself.
224 389
225For the TLS server side, use C<accept>, and for the TLS client side of a 390Unlike TCP, TLS has a server and client side: for the TLS server side, use
226connection, use C<connect> mode. 391C<accept>, and for the TLS client side of a connection, use C<connect>
392mode.
227 393
228You can also provide your own TLS connection object, but you have 394You can also provide your own TLS connection object, but you have
229to make sure that you call either C<Net::SSLeay::set_connect_state> 395to make sure that you call either C<Net::SSLeay::set_connect_state>
230or C<Net::SSLeay::set_accept_state> on it before you pass it to 396or C<Net::SSLeay::set_accept_state> on it before you pass it to
231AnyEvent::Handle. 397AnyEvent::Handle. Also, this module will take ownership of this connection
398object.
232 399
400At some future point, AnyEvent::Handle might switch to another TLS
401implementation, then the option to use your own session object will go
402away.
403
404B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
405passing in the wrong integer will lead to certain crash. This most often
406happens when one uses a stylish C<< tls => 1 >> and is surprised about the
407segmentation fault.
408
233See the C<starttls> method if you need to start TLS negotiation later. 409See the C<< ->starttls >> method for when need to start TLS negotiation later.
234 410
235=item tls_ctx => $ssl_ctx 411=item tls_ctx => $anyevent_tls
236 412
237Use the given Net::SSLeay::CTX object to create the new TLS connection 413Use the given C<AnyEvent::TLS> object to create the new TLS connection
238(unless a connection object was specified directly). If this parameter is 414(unless a connection object was specified directly). If this parameter is
239missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 415missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
240 416
417Instead of an object, you can also specify a hash reference with C<< key
418=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
419new TLS context object.
420
421=item on_starttls => $cb->($handle, $success[, $error_message])
422
423This callback will be invoked when the TLS/SSL handshake has finished. If
424C<$success> is true, then the TLS handshake succeeded, otherwise it failed
425(C<on_stoptls> will not be called in this case).
426
427The session in C<< $handle->{tls} >> can still be examined in this
428callback, even when the handshake was not successful.
429
430TLS handshake failures will not cause C<on_error> to be invoked when this
431callback is in effect, instead, the error message will be passed to C<on_starttls>.
432
433Without this callback, handshake failures lead to C<on_error> being
434called, as normal.
435
436Note that you cannot call C<starttls> right again in this callback. If you
437need to do that, start an zero-second timer instead whose callback can
438then call C<< ->starttls >> again.
439
440=item on_stoptls => $cb->($handle)
441
442When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
443set, then it will be invoked after freeing the TLS session. If it is not,
444then a TLS shutdown condition will be treated like a normal EOF condition
445on the handle.
446
447The session in C<< $handle->{tls} >> can still be examined in this
448callback.
449
450This callback will only be called on TLS shutdowns, not when the
451underlying handle signals EOF.
452
241=item json => JSON or JSON::XS object 453=item json => JSON or JSON::XS object
242 454
243This is the json coder object used by the C<json> read and write types. 455This is the json coder object used by the C<json> read and write types.
244 456
245If you don't supply it, then AnyEvent::Handle will create and use a 457If you don't supply it, then AnyEvent::Handle will create and use a
246suitable one, which will write and expect UTF-8 encoded JSON texts. 458suitable one (on demand), which will write and expect UTF-8 encoded JSON
459texts.
247 460
248Note that you are responsible to depend on the JSON module if you want to 461Note that you are responsible to depend on the JSON module if you want to
249use this functionality, as AnyEvent does not have a dependency itself. 462use this functionality, as AnyEvent does not have a dependency itself.
250 463
251=item filter_r => $cb
252
253=item filter_w => $cb
254
255These exist, but are undocumented at this time.
256
257=back 464=back
258 465
259=cut 466=cut
260 467
261sub new { 468sub new {
262 my $class = shift; 469 my $class = shift;
263
264 my $self = bless { @_ }, $class; 470 my $self = bless { @_ }, $class;
265 471
266 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 472 if ($self->{fh}) {
473 $self->_start;
474 return unless $self->{fh}; # could be gone by now
475
476 } elsif ($self->{connect}) {
477 require AnyEvent::Socket;
478
479 $self->{peername} = $self->{connect}[0]
480 unless exists $self->{peername};
481
482 $self->{_skip_drain_rbuf} = 1;
483
484 {
485 Scalar::Util::weaken (my $self = $self);
486
487 $self->{_connect} =
488 AnyEvent::Socket::tcp_connect (
489 $self->{connect}[0],
490 $self->{connect}[1],
491 sub {
492 my ($fh, $host, $port, $retry) = @_;
493
494 if ($fh) {
495 $self->{fh} = $fh;
496
497 delete $self->{_skip_drain_rbuf};
498 $self->_start;
499
500 $self->{on_connect}
501 and $self->{on_connect}($self, $host, $port, sub {
502 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
503 $self->{_skip_drain_rbuf} = 1;
504 &$retry;
505 });
506
507 } else {
508 if ($self->{on_connect_error}) {
509 $self->{on_connect_error}($self, "$!");
510 $self->destroy;
511 } else {
512 $self->_error ($!, 1);
513 }
514 }
515 },
516 sub {
517 local $self->{fh} = $_[0];
518
519 $self->{on_prepare}
520 ? $self->{on_prepare}->($self)
521 : ()
522 }
523 );
524 }
525
526 } else {
527 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
528 }
529
530 $self
531}
532
533sub _start {
534 my ($self) = @_;
267 535
268 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 536 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
269 537
270 if ($self->{tls}) { 538 $self->{_activity} =
271 require Net::SSLeay; 539 $self->{_ractivity} =
540 $self->{_wactivity} = AE::now;
541
542 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
543 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
544 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
545
546 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
547 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
548
549 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
550
272 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 551 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
273 } 552 if $self->{tls};
274 553
275 $self->{_activity} = AnyEvent->now;
276 $self->_timeout;
277
278 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 554 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
279 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
280 555
281 $self->start_read 556 $self->start_read
282 if $self->{on_read}; 557 if $self->{on_read} || @{ $self->{_queue} };
283 558
284 $self 559 $self->_drain_wbuf;
285}
286
287sub _shutdown {
288 my ($self) = @_;
289
290 delete $self->{_tw};
291 delete $self->{_rw};
292 delete $self->{_ww};
293 delete $self->{fh};
294
295 $self->stoptls;
296} 560}
297 561
298sub _error { 562sub _error {
299 my ($self, $errno, $fatal) = @_; 563 my ($self, $errno, $fatal, $message) = @_;
300
301 $self->_shutdown
302 if $fatal;
303 564
304 $! = $errno; 565 $! = $errno;
566 $message ||= "$!";
305 567
306 if ($self->{on_error}) { 568 if ($self->{on_error}) {
307 $self->{on_error}($self, $fatal); 569 $self->{on_error}($self, $fatal, $message);
308 } else { 570 $self->destroy if $fatal;
571 } elsif ($self->{fh}) {
572 $self->destroy;
309 Carp::croak "AnyEvent::Handle uncaught error: $!"; 573 Carp::croak "AnyEvent::Handle uncaught error: $message";
310 } 574 }
311} 575}
312 576
313=item $fh = $handle->fh 577=item $fh = $handle->fh
314 578
315This method returns the file handle of the L<AnyEvent::Handle> object. 579This method returns the file handle used to create the L<AnyEvent::Handle> object.
316 580
317=cut 581=cut
318 582
319sub fh { $_[0]{fh} } 583sub fh { $_[0]{fh} }
320 584
338 $_[0]{on_eof} = $_[1]; 602 $_[0]{on_eof} = $_[1];
339} 603}
340 604
341=item $handle->on_timeout ($cb) 605=item $handle->on_timeout ($cb)
342 606
343Replace the current C<on_timeout> callback, or disables the callback 607=item $handle->on_rtimeout ($cb)
344(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
345argument.
346 608
347=cut 609=item $handle->on_wtimeout ($cb)
348 610
349sub on_timeout { 611Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
350 $_[0]{on_timeout} = $_[1]; 612callback, or disables the callback (but not the timeout) if C<$cb> =
351} 613C<undef>. See the C<timeout> constructor argument and method.
614
615=cut
616
617# see below
352 618
353=item $handle->autocork ($boolean) 619=item $handle->autocork ($boolean)
354 620
355Enables or disables the current autocork behaviour (see C<autocork> 621Enables or disables the current autocork behaviour (see C<autocork>
356constructor argument). 622constructor argument). Changes will only take effect on the next write.
357 623
358=cut 624=cut
625
626sub autocork {
627 $_[0]{autocork} = $_[1];
628}
359 629
360=item $handle->no_delay ($boolean) 630=item $handle->no_delay ($boolean)
361 631
362Enables or disables the C<no_delay> setting (see constructor argument of 632Enables or disables the C<no_delay> setting (see constructor argument of
363the same name for details). 633the same name for details).
367sub no_delay { 637sub no_delay {
368 $_[0]{no_delay} = $_[1]; 638 $_[0]{no_delay} = $_[1];
369 639
370 eval { 640 eval {
371 local $SIG{__DIE__}; 641 local $SIG{__DIE__};
372 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 642 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
643 if $_[0]{fh};
373 }; 644 };
374} 645}
375 646
647=item $handle->keepalive ($boolean)
648
649Enables or disables the C<keepalive> setting (see constructor argument of
650the same name for details).
651
652=cut
653
654sub keepalive {
655 $_[0]{keepalive} = $_[1];
656
657 eval {
658 local $SIG{__DIE__};
659 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
660 if $_[0]{fh};
661 };
662}
663
664=item $handle->oobinline ($boolean)
665
666Enables or disables the C<oobinline> setting (see constructor argument of
667the same name for details).
668
669=cut
670
671sub oobinline {
672 $_[0]{oobinline} = $_[1];
673
674 eval {
675 local $SIG{__DIE__};
676 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
677 if $_[0]{fh};
678 };
679}
680
681=item $handle->keepalive ($boolean)
682
683Enables or disables the C<keepalive> setting (see constructor argument of
684the same name for details).
685
686=cut
687
688sub keepalive {
689 $_[0]{keepalive} = $_[1];
690
691 eval {
692 local $SIG{__DIE__};
693 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
694 if $_[0]{fh};
695 };
696}
697
698=item $handle->on_starttls ($cb)
699
700Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
701
702=cut
703
704sub on_starttls {
705 $_[0]{on_starttls} = $_[1];
706}
707
708=item $handle->on_stoptls ($cb)
709
710Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
711
712=cut
713
714sub on_starttls {
715 $_[0]{on_stoptls} = $_[1];
716}
717
718=item $handle->rbuf_max ($max_octets)
719
720Configures the C<rbuf_max> setting (C<undef> disables it).
721
722=cut
723
724sub rbuf_max {
725 $_[0]{rbuf_max} = $_[1];
726}
727
376############################################################################# 728#############################################################################
377 729
378=item $handle->timeout ($seconds) 730=item $handle->timeout ($seconds)
379 731
732=item $handle->rtimeout ($seconds)
733
734=item $handle->wtimeout ($seconds)
735
380Configures (or disables) the inactivity timeout. 736Configures (or disables) the inactivity timeout.
381 737
382=cut 738=item $handle->timeout_reset
383 739
384sub timeout { 740=item $handle->rtimeout_reset
741
742=item $handle->wtimeout_reset
743
744Reset the activity timeout, as if data was received or sent.
745
746These methods are cheap to call.
747
748=cut
749
750for my $dir ("", "r", "w") {
751 my $timeout = "${dir}timeout";
752 my $tw = "_${dir}tw";
753 my $on_timeout = "on_${dir}timeout";
754 my $activity = "_${dir}activity";
755 my $cb;
756
757 *$on_timeout = sub {
758 $_[0]{$on_timeout} = $_[1];
759 };
760
761 *$timeout = sub {
385 my ($self, $timeout) = @_; 762 my ($self, $new_value) = @_;
386 763
387 $self->{timeout} = $timeout; 764 $self->{$timeout} = $new_value;
388 $self->_timeout; 765 delete $self->{$tw}; &$cb;
389} 766 };
390 767
768 *{"${dir}timeout_reset"} = sub {
769 $_[0]{$activity} = AE::now;
770 };
771
772 # main workhorse:
391# reset the timeout watcher, as neccessary 773 # reset the timeout watcher, as neccessary
392# also check for time-outs 774 # also check for time-outs
393sub _timeout { 775 $cb = sub {
394 my ($self) = @_; 776 my ($self) = @_;
395 777
396 if ($self->{timeout}) { 778 if ($self->{$timeout} && $self->{fh}) {
397 my $NOW = AnyEvent->now; 779 my $NOW = AE::now;
398 780
399 # when would the timeout trigger? 781 # when would the timeout trigger?
400 my $after = $self->{_activity} + $self->{timeout} - $NOW; 782 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
401 783
402 # now or in the past already? 784 # now or in the past already?
403 if ($after <= 0) { 785 if ($after <= 0) {
404 $self->{_activity} = $NOW; 786 $self->{$activity} = $NOW;
405 787
406 if ($self->{on_timeout}) { 788 if ($self->{$on_timeout}) {
407 $self->{on_timeout}($self); 789 $self->{$on_timeout}($self);
408 } else { 790 } else {
409 $self->_error (&Errno::ETIMEDOUT); 791 $self->_error (Errno::ETIMEDOUT);
792 }
793
794 # callback could have changed timeout value, optimise
795 return unless $self->{$timeout};
796
797 # calculate new after
798 $after = $self->{$timeout};
410 } 799 }
411 800
412 # callback could have changed timeout value, optimise 801 Scalar::Util::weaken $self;
413 return unless $self->{timeout}; 802 return unless $self; # ->error could have destroyed $self
414 803
415 # calculate new after 804 $self->{$tw} ||= AE::timer $after, 0, sub {
416 $after = $self->{timeout}; 805 delete $self->{$tw};
806 $cb->($self);
807 };
808 } else {
809 delete $self->{$tw};
417 } 810 }
418
419 Scalar::Util::weaken $self;
420 return unless $self; # ->error could have destroyed $self
421
422 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
423 delete $self->{_tw};
424 $self->_timeout;
425 });
426 } else {
427 delete $self->{_tw};
428 } 811 }
429} 812}
430 813
431############################################################################# 814#############################################################################
432 815
456 my ($self, $cb) = @_; 839 my ($self, $cb) = @_;
457 840
458 $self->{on_drain} = $cb; 841 $self->{on_drain} = $cb;
459 842
460 $cb->($self) 843 $cb->($self)
461 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 844 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
462} 845}
463 846
464=item $handle->push_write ($data) 847=item $handle->push_write ($data)
465 848
466Queues the given scalar to be written. You can push as much data as you 849Queues the given scalar to be written. You can push as much data as you
477 Scalar::Util::weaken $self; 860 Scalar::Util::weaken $self;
478 861
479 my $cb = sub { 862 my $cb = sub {
480 my $len = syswrite $self->{fh}, $self->{wbuf}; 863 my $len = syswrite $self->{fh}, $self->{wbuf};
481 864
482 if ($len >= 0) { 865 if (defined $len) {
483 substr $self->{wbuf}, 0, $len, ""; 866 substr $self->{wbuf}, 0, $len, "";
484 867
485 $self->{_activity} = AnyEvent->now; 868 $self->{_activity} = $self->{_wactivity} = AE::now;
486 869
487 $self->{on_drain}($self) 870 $self->{on_drain}($self)
488 if $self->{low_water_mark} >= length $self->{wbuf} 871 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
489 && $self->{on_drain}; 872 && $self->{on_drain};
490 873
491 delete $self->{_ww} unless length $self->{wbuf}; 874 delete $self->{_ww} unless length $self->{wbuf};
492 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 875 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
493 $self->_error ($!, 1); 876 $self->_error ($!, 1);
496 879
497 # try to write data immediately 880 # try to write data immediately
498 $cb->() unless $self->{autocork}; 881 $cb->() unless $self->{autocork};
499 882
500 # if still data left in wbuf, we need to poll 883 # if still data left in wbuf, we need to poll
501 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 884 $self->{_ww} = AE::io $self->{fh}, 1, $cb
502 if length $self->{wbuf}; 885 if length $self->{wbuf};
503 }; 886 };
504} 887}
505 888
506our %WH; 889our %WH;
507 890
891# deprecated
508sub register_write_type($$) { 892sub register_write_type($$) {
509 $WH{$_[0]} = $_[1]; 893 $WH{$_[0]} = $_[1];
510} 894}
511 895
512sub push_write { 896sub push_write {
513 my $self = shift; 897 my $self = shift;
514 898
515 if (@_ > 1) { 899 if (@_ > 1) {
516 my $type = shift; 900 my $type = shift;
517 901
902 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
518 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 903 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
519 ->($self, @_); 904 ->($self, @_);
520 } 905 }
521 906
522 if ($self->{filter_w}) { 907 if ($self->{tls}) {
523 $self->{filter_w}($self, \$_[0]); 908 $self->{_tls_wbuf} .= $_[0];
909 &_dotls ($self) if $self->{fh};
524 } else { 910 } else {
525 $self->{wbuf} .= $_[0]; 911 $self->{wbuf} .= $_[0];
526 $self->_drain_wbuf; 912 $self->_drain_wbuf if $self->{fh};
527 } 913 }
528} 914}
529 915
530=item $handle->push_write (type => @args) 916=item $handle->push_write (type => @args)
531 917
532Instead of formatting your data yourself, you can also let this module do 918Instead of formatting your data yourself, you can also let this module
533the job by specifying a type and type-specific arguments. 919do the job by specifying a type and type-specific arguments. You
920can also specify the (fully qualified) name of a package, in which
921case AnyEvent tries to load the package and then expects to find the
922C<anyevent_read_type> function inside (see "custom write types", below).
534 923
535Predefined types are (if you have ideas for additional types, feel free to 924Predefined types are (if you have ideas for additional types, feel free to
536drop by and tell us): 925drop by and tell us):
537 926
538=over 4 927=over 4
545=cut 934=cut
546 935
547register_write_type netstring => sub { 936register_write_type netstring => sub {
548 my ($self, $string) = @_; 937 my ($self, $string) = @_;
549 938
550 sprintf "%d:%s,", (length $string), $string 939 (length $string) . ":$string,"
551}; 940};
552 941
553=item packstring => $format, $data 942=item packstring => $format, $data
554 943
555An octet string prefixed with an encoded length. The encoding C<$format> 944An octet string prefixed with an encoded length. The encoding C<$format>
595Other languages could read single lines terminated by a newline and pass 984Other languages could read single lines terminated by a newline and pass
596this line into their JSON decoder of choice. 985this line into their JSON decoder of choice.
597 986
598=cut 987=cut
599 988
989sub json_coder() {
990 eval { require JSON::XS; JSON::XS->new->utf8 }
991 || do { require JSON; JSON->new->utf8 }
992}
993
600register_write_type json => sub { 994register_write_type json => sub {
601 my ($self, $ref) = @_; 995 my ($self, $ref) = @_;
602 996
603 require JSON; 997 my $json = $self->{json} ||= json_coder;
604 998
605 $self->{json} ? $self->{json}->encode ($ref) 999 $json->encode ($ref)
606 : JSON::encode_json ($ref)
607}; 1000};
608 1001
609=item storable => $reference 1002=item storable => $reference
610 1003
611Freezes the given reference using L<Storable> and writes it to the 1004Freezes the given reference using L<Storable> and writes it to the
621 pack "w/a*", Storable::nfreeze ($ref) 1014 pack "w/a*", Storable::nfreeze ($ref)
622}; 1015};
623 1016
624=back 1017=back
625 1018
626=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1019=item $handle->push_shutdown
627 1020
628This function (not method) lets you add your own types to C<push_write>. 1021Sometimes you know you want to close the socket after writing your data
1022before it was actually written. One way to do that is to replace your
1023C<on_drain> handler by a callback that shuts down the socket (and set
1024C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1025replaces the C<on_drain> callback with:
1026
1027 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1028
1029This simply shuts down the write side and signals an EOF condition to the
1030the peer.
1031
1032You can rely on the normal read queue and C<on_eof> handling
1033afterwards. This is the cleanest way to close a connection.
1034
1035=cut
1036
1037sub push_shutdown {
1038 my ($self) = @_;
1039
1040 delete $self->{low_water_mark};
1041 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1042}
1043
1044=item custom write types - Package::anyevent_write_type $handle, @args
1045
1046Instead of one of the predefined types, you can also specify the name of
1047a package. AnyEvent will try to load the package and then expects to find
1048a function named C<anyevent_write_type> inside. If it isn't found, it
1049progressively tries to load the parent package until it either finds the
1050function (good) or runs out of packages (bad).
1051
629Whenever the given C<type> is used, C<push_write> will invoke the code 1052Whenever the given C<type> is used, C<push_write> will the function with
630reference with the handle object and the remaining arguments. 1053the handle object and the remaining arguments.
631 1054
632The code reference is supposed to return a single octet string that will 1055The function is supposed to return a single octet string that will be
633be appended to the write buffer. 1056appended to the write buffer, so you cna mentally treat this function as a
1057"arguments to on-the-wire-format" converter.
634 1058
635Note that this is a function, and all types registered this way will be 1059Example: implement a custom write type C<join> that joins the remaining
636global, so try to use unique names. 1060arguments using the first one.
1061
1062 $handle->push_write (My::Type => " ", 1,2,3);
1063
1064 # uses the following package, which can be defined in the "My::Type" or in
1065 # the "My" modules to be auto-loaded, or just about anywhere when the
1066 # My::Type::anyevent_write_type is defined before invoking it.
1067
1068 package My::Type;
1069
1070 sub anyevent_write_type {
1071 my ($handle, $delim, @args) = @_;
1072
1073 join $delim, @args
1074 }
637 1075
638=cut 1076=cut
639 1077
640############################################################################# 1078#############################################################################
641 1079
723=cut 1161=cut
724 1162
725sub _drain_rbuf { 1163sub _drain_rbuf {
726 my ($self) = @_; 1164 my ($self) = @_;
727 1165
1166 # avoid recursion
1167 return if $self->{_skip_drain_rbuf};
728 local $self->{_in_drain} = 1; 1168 local $self->{_skip_drain_rbuf} = 1;
729
730 if (
731 defined $self->{rbuf_max}
732 && $self->{rbuf_max} < length $self->{rbuf}
733 ) {
734 return $self->_error (&Errno::ENOSPC, 1);
735 }
736 1169
737 while () { 1170 while () {
1171 # we need to use a separate tls read buffer, as we must not receive data while
1172 # we are draining the buffer, and this can only happen with TLS.
1173 $self->{rbuf} .= delete $self->{_tls_rbuf}
1174 if exists $self->{_tls_rbuf};
1175
738 my $len = length $self->{rbuf}; 1176 my $len = length $self->{rbuf};
739 1177
740 if (my $cb = shift @{ $self->{_queue} }) { 1178 if (my $cb = shift @{ $self->{_queue} }) {
741 unless ($cb->($self)) { 1179 unless ($cb->($self)) {
742 if ($self->{_eof}) { 1180 # no progress can be made
743 # no progress can be made (not enough data and no data forthcoming) 1181 # (not enough data and no data forthcoming)
744 $self->_error (&Errno::EPIPE, 1), last; 1182 $self->_error (Errno::EPIPE, 1), return
745 } 1183 if $self->{_eof};
746 1184
747 unshift @{ $self->{_queue} }, $cb; 1185 unshift @{ $self->{_queue} }, $cb;
748 last; 1186 last;
749 } 1187 }
750 } elsif ($self->{on_read}) { 1188 } elsif ($self->{on_read}) {
757 && !@{ $self->{_queue} } # and the queue is still empty 1195 && !@{ $self->{_queue} } # and the queue is still empty
758 && $self->{on_read} # but we still have on_read 1196 && $self->{on_read} # but we still have on_read
759 ) { 1197 ) {
760 # no further data will arrive 1198 # no further data will arrive
761 # so no progress can be made 1199 # so no progress can be made
762 $self->_error (&Errno::EPIPE, 1), last 1200 $self->_error (Errno::EPIPE, 1), return
763 if $self->{_eof}; 1201 if $self->{_eof};
764 1202
765 last; # more data might arrive 1203 last; # more data might arrive
766 } 1204 }
767 } else { 1205 } else {
768 # read side becomes idle 1206 # read side becomes idle
769 delete $self->{_rw}; 1207 delete $self->{_rw} unless $self->{tls};
770 last; 1208 last;
771 } 1209 }
772 } 1210 }
773 1211
774 if ($self->{_eof}) { 1212 if ($self->{_eof}) {
775 if ($self->{on_eof}) { 1213 $self->{on_eof}
776 $self->{on_eof}($self) 1214 ? $self->{on_eof}($self)
777 } else { 1215 : $self->_error (0, 1, "Unexpected end-of-file");
778 $self->_error (0, 1); 1216
779 } 1217 return;
1218 }
1219
1220 if (
1221 defined $self->{rbuf_max}
1222 && $self->{rbuf_max} < length $self->{rbuf}
1223 ) {
1224 $self->_error (Errno::ENOSPC, 1), return;
780 } 1225 }
781 1226
782 # may need to restart read watcher 1227 # may need to restart read watcher
783 unless ($self->{_rw}) { 1228 unless ($self->{_rw}) {
784 $self->start_read 1229 $self->start_read
796 1241
797sub on_read { 1242sub on_read {
798 my ($self, $cb) = @_; 1243 my ($self, $cb) = @_;
799 1244
800 $self->{on_read} = $cb; 1245 $self->{on_read} = $cb;
801 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1246 $self->_drain_rbuf if $cb;
802} 1247}
803 1248
804=item $handle->rbuf 1249=item $handle->rbuf
805 1250
806Returns the read buffer (as a modifiable lvalue). 1251Returns the read buffer (as a modifiable lvalue).
807 1252
808You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1253You can access the read buffer directly as the C<< ->{rbuf} >>
809you want. 1254member, if you want. However, the only operation allowed on the
1255read buffer (apart from looking at it) is removing data from its
1256beginning. Otherwise modifying or appending to it is not allowed and will
1257lead to hard-to-track-down bugs.
810 1258
811NOTE: The read buffer should only be used or modified if the C<on_read>, 1259NOTE: The read buffer should only be used or modified if the C<on_read>,
812C<push_read> or C<unshift_read> methods are used. The other read methods 1260C<push_read> or C<unshift_read> methods are used. The other read methods
813automatically manage the read buffer. 1261automatically manage the read buffer.
814 1262
850 my $cb = pop; 1298 my $cb = pop;
851 1299
852 if (@_) { 1300 if (@_) {
853 my $type = shift; 1301 my $type = shift;
854 1302
1303 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
855 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1304 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
856 ->($self, $cb, @_); 1305 ->($self, $cb, @_);
857 } 1306 }
858 1307
859 push @{ $self->{_queue} }, $cb; 1308 push @{ $self->{_queue} }, $cb;
860 $self->_drain_rbuf unless $self->{_in_drain}; 1309 $self->_drain_rbuf;
861} 1310}
862 1311
863sub unshift_read { 1312sub unshift_read {
864 my $self = shift; 1313 my $self = shift;
865 my $cb = pop; 1314 my $cb = pop;
869 1318
870 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1319 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
871 ->($self, $cb, @_); 1320 ->($self, $cb, @_);
872 } 1321 }
873 1322
874
875 unshift @{ $self->{_queue} }, $cb; 1323 unshift @{ $self->{_queue} }, $cb;
876 $self->_drain_rbuf unless $self->{_in_drain}; 1324 $self->_drain_rbuf;
877} 1325}
878 1326
879=item $handle->push_read (type => @args, $cb) 1327=item $handle->push_read (type => @args, $cb)
880 1328
881=item $handle->unshift_read (type => @args, $cb) 1329=item $handle->unshift_read (type => @args, $cb)
882 1330
883Instead of providing a callback that parses the data itself you can chose 1331Instead of providing a callback that parses the data itself you can chose
884between a number of predefined parsing formats, for chunks of data, lines 1332between a number of predefined parsing formats, for chunks of data, lines
885etc. 1333etc. You can also specify the (fully qualified) name of a package, in
1334which case AnyEvent tries to load the package and then expects to find the
1335C<anyevent_read_type> function inside (see "custom read types", below).
886 1336
887Predefined types are (if you have ideas for additional types, feel free to 1337Predefined types are (if you have ideas for additional types, feel free to
888drop by and tell us): 1338drop by and tell us):
889 1339
890=over 4 1340=over 4
1014 return 1; 1464 return 1;
1015 } 1465 }
1016 1466
1017 # reject 1467 # reject
1018 if ($reject && $$rbuf =~ $reject) { 1468 if ($reject && $$rbuf =~ $reject) {
1019 $self->_error (&Errno::EBADMSG); 1469 $self->_error (Errno::EBADMSG);
1020 } 1470 }
1021 1471
1022 # skip 1472 # skip
1023 if ($skip && $$rbuf =~ $skip) { 1473 if ($skip && $$rbuf =~ $skip) {
1024 $data .= substr $$rbuf, 0, $+[0], ""; 1474 $data .= substr $$rbuf, 0, $+[0], "";
1040 my ($self, $cb) = @_; 1490 my ($self, $cb) = @_;
1041 1491
1042 sub { 1492 sub {
1043 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1493 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1044 if ($_[0]{rbuf} =~ /[^0-9]/) { 1494 if ($_[0]{rbuf} =~ /[^0-9]/) {
1045 $self->_error (&Errno::EBADMSG); 1495 $self->_error (Errno::EBADMSG);
1046 } 1496 }
1047 return; 1497 return;
1048 } 1498 }
1049 1499
1050 my $len = $1; 1500 my $len = $1;
1053 my $string = $_[1]; 1503 my $string = $_[1];
1054 $_[0]->unshift_read (chunk => 1, sub { 1504 $_[0]->unshift_read (chunk => 1, sub {
1055 if ($_[1] eq ",") { 1505 if ($_[1] eq ",") {
1056 $cb->($_[0], $string); 1506 $cb->($_[0], $string);
1057 } else { 1507 } else {
1058 $self->_error (&Errno::EBADMSG); 1508 $self->_error (Errno::EBADMSG);
1059 } 1509 }
1060 }); 1510 });
1061 }); 1511 });
1062 1512
1063 1 1513 1
1069An octet string prefixed with an encoded length. The encoding C<$format> 1519An octet string prefixed with an encoded length. The encoding C<$format>
1070uses the same format as a Perl C<pack> format, but must specify a single 1520uses the same format as a Perl C<pack> format, but must specify a single
1071integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1521integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1072optional C<!>, C<< < >> or C<< > >> modifier). 1522optional C<!>, C<< < >> or C<< > >> modifier).
1073 1523
1074DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1524For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1525EPP uses a prefix of C<N> (4 octtes).
1075 1526
1076Example: read a block of data prefixed by its length in BER-encoded 1527Example: read a block of data prefixed by its length in BER-encoded
1077format (very efficient). 1528format (very efficient).
1078 1529
1079 $handle->push_read (packstring => "w", sub { 1530 $handle->push_read (packstring => "w", sub {
1109 } 1560 }
1110}; 1561};
1111 1562
1112=item json => $cb->($handle, $hash_or_arrayref) 1563=item json => $cb->($handle, $hash_or_arrayref)
1113 1564
1114Reads a JSON object or array, decodes it and passes it to the callback. 1565Reads a JSON object or array, decodes it and passes it to the
1566callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1115 1567
1116If a C<json> object was passed to the constructor, then that will be used 1568If a C<json> object was passed to the constructor, then that will be used
1117for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1569for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1118 1570
1119This read type uses the incremental parser available with JSON version 1571This read type uses the incremental parser available with JSON version
1128=cut 1580=cut
1129 1581
1130register_read_type json => sub { 1582register_read_type json => sub {
1131 my ($self, $cb) = @_; 1583 my ($self, $cb) = @_;
1132 1584
1133 require JSON; 1585 my $json = $self->{json} ||= json_coder;
1134 1586
1135 my $data; 1587 my $data;
1136 my $rbuf = \$self->{rbuf}; 1588 my $rbuf = \$self->{rbuf};
1137 1589
1138 my $json = $self->{json} ||= JSON->new->utf8;
1139
1140 sub { 1590 sub {
1141 my $ref = $json->incr_parse ($self->{rbuf}); 1591 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1142 1592
1143 if ($ref) { 1593 if ($ref) {
1144 $self->{rbuf} = $json->incr_text; 1594 $self->{rbuf} = $json->incr_text;
1145 $json->incr_text = ""; 1595 $json->incr_text = "";
1146 $cb->($self, $ref); 1596 $cb->($self, $ref);
1147 1597
1148 1 1598 1
1599 } elsif ($@) {
1600 # error case
1601 $json->incr_skip;
1602
1603 $self->{rbuf} = $json->incr_text;
1604 $json->incr_text = "";
1605
1606 $self->_error (Errno::EBADMSG);
1607
1608 ()
1149 } else { 1609 } else {
1150 $self->{rbuf} = ""; 1610 $self->{rbuf} = "";
1611
1151 () 1612 ()
1152 } 1613 }
1153 } 1614 }
1154}; 1615};
1155 1616
1187 # read remaining chunk 1648 # read remaining chunk
1188 $_[0]->unshift_read (chunk => $len, sub { 1649 $_[0]->unshift_read (chunk => $len, sub {
1189 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1650 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1190 $cb->($_[0], $ref); 1651 $cb->($_[0], $ref);
1191 } else { 1652 } else {
1192 $self->_error (&Errno::EBADMSG); 1653 $self->_error (Errno::EBADMSG);
1193 } 1654 }
1194 }); 1655 });
1195 } 1656 }
1196 1657
1197 1 1658 1
1198 } 1659 }
1199}; 1660};
1200 1661
1201=back 1662=back
1202 1663
1203=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1664=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1204 1665
1205This function (not method) lets you add your own types to C<push_read>. 1666Instead of one of the predefined types, you can also specify the name
1667of a package. AnyEvent will try to load the package and then expects to
1668find a function named C<anyevent_read_type> inside. If it isn't found, it
1669progressively tries to load the parent package until it either finds the
1670function (good) or runs out of packages (bad).
1206 1671
1207Whenever the given C<type> is used, C<push_read> will invoke the code 1672Whenever this type is used, C<push_read> will invoke the function with the
1208reference with the handle object, the callback and the remaining 1673handle object, the original callback and the remaining arguments.
1209arguments.
1210 1674
1211The code reference is supposed to return a callback (usually a closure) 1675The function is supposed to return a callback (usually a closure) that
1212that works as a plain read callback (see C<< ->push_read ($cb) >>). 1676works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1677mentally treat the function as a "configurable read type to read callback"
1678converter.
1213 1679
1214It should invoke the passed callback when it is done reading (remember to 1680It should invoke the original callback when it is done reading (remember
1215pass C<$handle> as first argument as all other callbacks do that). 1681to pass C<$handle> as first argument as all other callbacks do that,
1682although there is no strict requirement on this).
1216 1683
1217Note that this is a function, and all types registered this way will be
1218global, so try to use unique names.
1219
1220For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1684For examples, see the source of this module (F<perldoc -m
1221search for C<register_read_type>)). 1685AnyEvent::Handle>, search for C<register_read_type>)).
1222 1686
1223=item $handle->stop_read 1687=item $handle->stop_read
1224 1688
1225=item $handle->start_read 1689=item $handle->start_read
1226 1690
1232Note that AnyEvent::Handle will automatically C<start_read> for you when 1696Note that AnyEvent::Handle will automatically C<start_read> for you when
1233you change the C<on_read> callback or push/unshift a read callback, and it 1697you change the C<on_read> callback or push/unshift a read callback, and it
1234will automatically C<stop_read> for you when neither C<on_read> is set nor 1698will automatically C<stop_read> for you when neither C<on_read> is set nor
1235there are any read requests in the queue. 1699there are any read requests in the queue.
1236 1700
1701These methods will have no effect when in TLS mode (as TLS doesn't support
1702half-duplex connections).
1703
1237=cut 1704=cut
1238 1705
1239sub stop_read { 1706sub stop_read {
1240 my ($self) = @_; 1707 my ($self) = @_;
1241 1708
1242 delete $self->{_rw}; 1709 delete $self->{_rw} unless $self->{tls};
1243} 1710}
1244 1711
1245sub start_read { 1712sub start_read {
1246 my ($self) = @_; 1713 my ($self) = @_;
1247 1714
1248 unless ($self->{_rw} || $self->{_eof}) { 1715 unless ($self->{_rw} || $self->{_eof}) {
1249 Scalar::Util::weaken $self; 1716 Scalar::Util::weaken $self;
1250 1717
1251 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1718 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1252 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1719 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1253 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1720 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1254 1721
1255 if ($len > 0) { 1722 if ($len > 0) {
1256 $self->{_activity} = AnyEvent->now; 1723 $self->{_activity} = $self->{_ractivity} = AE::now;
1257 1724
1258 $self->{filter_r} 1725 if ($self->{tls}) {
1259 ? $self->{filter_r}($self, $rbuf) 1726 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1260 : $self->{_in_drain} || $self->_drain_rbuf; 1727
1728 &_dotls ($self);
1729 } else {
1730 $self->_drain_rbuf;
1731 }
1261 1732
1262 } elsif (defined $len) { 1733 } elsif (defined $len) {
1263 delete $self->{_rw}; 1734 delete $self->{_rw};
1264 $self->{_eof} = 1; 1735 $self->{_eof} = 1;
1265 $self->_drain_rbuf unless $self->{_in_drain}; 1736 $self->_drain_rbuf;
1266 1737
1267 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1738 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1268 return $self->_error ($!, 1); 1739 return $self->_error ($!, 1);
1269 } 1740 }
1270 }); 1741 };
1271 } 1742 }
1272} 1743}
1273 1744
1745our $ERROR_SYSCALL;
1746our $ERROR_WANT_READ;
1747
1748sub _tls_error {
1749 my ($self, $err) = @_;
1750
1751 return $self->_error ($!, 1)
1752 if $err == Net::SSLeay::ERROR_SYSCALL ();
1753
1754 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1755
1756 # reduce error string to look less scary
1757 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1758
1759 if ($self->{_on_starttls}) {
1760 (delete $self->{_on_starttls})->($self, undef, $err);
1761 &_freetls;
1762 } else {
1763 &_freetls;
1764 $self->_error (Errno::EPROTO, 1, $err);
1765 }
1766}
1767
1768# poll the write BIO and send the data if applicable
1769# also decode read data if possible
1770# this is basiclaly our TLS state machine
1771# more efficient implementations are possible with openssl,
1772# but not with the buggy and incomplete Net::SSLeay.
1274sub _dotls { 1773sub _dotls {
1275 my ($self) = @_; 1774 my ($self) = @_;
1276 1775
1277 my $buf; 1776 my $tmp;
1278 1777
1279 if (length $self->{_tls_wbuf}) { 1778 if (length $self->{_tls_wbuf}) {
1280 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1779 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1281 substr $self->{_tls_wbuf}, 0, $len, ""; 1780 substr $self->{_tls_wbuf}, 0, $tmp, "";
1282 } 1781 }
1283 }
1284 1782
1783 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1784 return $self->_tls_error ($tmp)
1785 if $tmp != $ERROR_WANT_READ
1786 && ($tmp != $ERROR_SYSCALL || $!);
1787 }
1788
1789 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1790 unless (length $tmp) {
1791 $self->{_on_starttls}
1792 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1793 &_freetls;
1794
1795 if ($self->{on_stoptls}) {
1796 $self->{on_stoptls}($self);
1797 return;
1798 } else {
1799 # let's treat SSL-eof as we treat normal EOF
1800 delete $self->{_rw};
1801 $self->{_eof} = 1;
1802 }
1803 }
1804
1805 $self->{_tls_rbuf} .= $tmp;
1806 $self->_drain_rbuf;
1807 $self->{tls} or return; # tls session might have gone away in callback
1808 }
1809
1810 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1811 return $self->_tls_error ($tmp)
1812 if $tmp != $ERROR_WANT_READ
1813 && ($tmp != $ERROR_SYSCALL || $!);
1814
1285 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1815 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1286 $self->{wbuf} .= $buf; 1816 $self->{wbuf} .= $tmp;
1287 $self->_drain_wbuf; 1817 $self->_drain_wbuf;
1288 } 1818 }
1289 1819
1290 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1820 $self->{_on_starttls}
1291 if (length $buf) { 1821 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1292 $self->{rbuf} .= $buf; 1822 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1293 $self->_drain_rbuf unless $self->{_in_drain};
1294 } else {
1295 # let's treat SSL-eof as we treat normal EOF
1296 $self->{_eof} = 1;
1297 $self->_shutdown;
1298 return;
1299 }
1300 }
1301
1302 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1303
1304 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1305 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1306 return $self->_error ($!, 1);
1307 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1308 return $self->_error (&Errno::EIO, 1);
1309 }
1310
1311 # all others are fine for our purposes
1312 }
1313} 1823}
1314 1824
1315=item $handle->starttls ($tls[, $tls_ctx]) 1825=item $handle->starttls ($tls[, $tls_ctx])
1316 1826
1317Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1827Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1318object is created, you can also do that at a later time by calling 1828object is created, you can also do that at a later time by calling
1319C<starttls>. 1829C<starttls>.
1320 1830
1831Starting TLS is currently an asynchronous operation - when you push some
1832write data and then call C<< ->starttls >> then TLS negotiation will start
1833immediately, after which the queued write data is then sent.
1834
1321The first argument is the same as the C<tls> constructor argument (either 1835The first argument is the same as the C<tls> constructor argument (either
1322C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1836C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1323 1837
1324The second argument is the optional C<Net::SSLeay::CTX> object that is 1838The second argument is the optional C<AnyEvent::TLS> object that is used
1325used when AnyEvent::Handle has to create its own TLS connection object. 1839when AnyEvent::Handle has to create its own TLS connection object, or
1840a hash reference with C<< key => value >> pairs that will be used to
1841construct a new context.
1326 1842
1327The TLS connection object will end up in C<< $handle->{tls} >> after this 1843The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1328call and can be used or changed to your liking. Note that the handshake 1844context in C<< $handle->{tls_ctx} >> after this call and can be used or
1329might have already started when this function returns. 1845changed to your liking. Note that the handshake might have already started
1846when this function returns.
1330 1847
1848Due to bugs in OpenSSL, it might or might not be possible to do multiple
1849handshakes on the same stream. Best do not attempt to use the stream after
1850stopping TLS.
1851
1331=cut 1852=cut
1853
1854our %TLS_CACHE; #TODO not yet documented, should we?
1332 1855
1333sub starttls { 1856sub starttls {
1334 my ($self, $ssl, $ctx) = @_; 1857 my ($self, $tls, $ctx) = @_;
1335 1858
1336 $self->stoptls; 1859 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1860 if $self->{tls};
1337 1861
1338 if ($ssl eq "accept") { 1862 $self->{tls} = $tls;
1339 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1863 $self->{tls_ctx} = $ctx if @_ > 2;
1340 Net::SSLeay::set_accept_state ($ssl); 1864
1341 } elsif ($ssl eq "connect") { 1865 return unless $self->{fh};
1342 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1866
1343 Net::SSLeay::set_connect_state ($ssl); 1867 require Net::SSLeay;
1868
1869 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1870 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1871
1872 $tls = delete $self->{tls};
1873 $ctx = $self->{tls_ctx};
1874
1875 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1876
1877 if ("HASH" eq ref $ctx) {
1878 require AnyEvent::TLS;
1879
1880 if ($ctx->{cache}) {
1881 my $key = $ctx+0;
1882 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1883 } else {
1884 $ctx = new AnyEvent::TLS %$ctx;
1885 }
1886 }
1344 } 1887
1345 1888 $self->{tls_ctx} = $ctx || TLS_CTX ();
1346 $self->{tls} = $ssl; 1889 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1347 1890
1348 # basically, this is deep magic (because SSL_read should have the same issues) 1891 # basically, this is deep magic (because SSL_read should have the same issues)
1349 # but the openssl maintainers basically said: "trust us, it just works". 1892 # but the openssl maintainers basically said: "trust us, it just works".
1350 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1893 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1351 # and mismaintained ssleay-module doesn't even offer them). 1894 # and mismaintained ssleay-module doesn't even offer them).
1352 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1895 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1896 #
1897 # in short: this is a mess.
1898 #
1899 # note that we do not try to keep the length constant between writes as we are required to do.
1900 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1901 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1902 # have identity issues in that area.
1353 Net::SSLeay::CTX_set_mode ($self->{tls}, 1903# Net::SSLeay::CTX_set_mode ($ssl,
1354 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1904# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1355 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1905# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1906 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1356 1907
1357 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1908 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1358 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1909 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1359 1910
1911 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1912
1360 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1913 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1361 1914
1362 $self->{filter_w} = sub { 1915 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1363 $_[0]{_tls_wbuf} .= ${$_[1]}; 1916 if $self->{on_starttls};
1364 &_dotls; 1917
1365 }; 1918 &_dotls; # need to trigger the initial handshake
1366 $self->{filter_r} = sub { 1919 $self->start_read; # make sure we actually do read
1367 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1368 &_dotls;
1369 };
1370} 1920}
1371 1921
1372=item $handle->stoptls 1922=item $handle->stoptls
1373 1923
1374Destroys the SSL connection, if any. Partial read or write data will be 1924Shuts down the SSL connection - this makes a proper EOF handshake by
1375lost. 1925sending a close notify to the other side, but since OpenSSL doesn't
1926support non-blocking shut downs, it is not guarenteed that you can re-use
1927the stream afterwards.
1376 1928
1377=cut 1929=cut
1378 1930
1379sub stoptls { 1931sub stoptls {
1380 my ($self) = @_; 1932 my ($self) = @_;
1381 1933
1382 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1934 if ($self->{tls}) {
1935 Net::SSLeay::shutdown ($self->{tls});
1383 1936
1384 delete $self->{_rbio}; 1937 &_dotls;
1385 delete $self->{_wbio}; 1938
1386 delete $self->{_tls_wbuf}; 1939# # we don't give a shit. no, we do, but we can't. no...#d#
1387 delete $self->{filter_r}; 1940# # we, we... have to use openssl :/#d#
1388 delete $self->{filter_w}; 1941# &_freetls;#d#
1942 }
1943}
1944
1945sub _freetls {
1946 my ($self) = @_;
1947
1948 return unless $self->{tls};
1949
1950 $self->{tls_ctx}->_put_session (delete $self->{tls})
1951 if $self->{tls} > 0;
1952
1953 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1389} 1954}
1390 1955
1391sub DESTROY { 1956sub DESTROY {
1392 my $self = shift; 1957 my ($self) = @_;
1393 1958
1394 $self->stoptls; 1959 &_freetls;
1395 1960
1396 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1961 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1397 1962
1398 if ($linger && length $self->{wbuf}) { 1963 if ($linger && length $self->{wbuf} && $self->{fh}) {
1399 my $fh = delete $self->{fh}; 1964 my $fh = delete $self->{fh};
1400 my $wbuf = delete $self->{wbuf}; 1965 my $wbuf = delete $self->{wbuf};
1401 1966
1402 my @linger; 1967 my @linger;
1403 1968
1404 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1969 push @linger, AE::io $fh, 1, sub {
1405 my $len = syswrite $fh, $wbuf, length $wbuf; 1970 my $len = syswrite $fh, $wbuf, length $wbuf;
1406 1971
1407 if ($len > 0) { 1972 if ($len > 0) {
1408 substr $wbuf, 0, $len, ""; 1973 substr $wbuf, 0, $len, "";
1409 } else { 1974 } else {
1410 @linger = (); # end 1975 @linger = (); # end
1411 } 1976 }
1412 }); 1977 };
1413 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1978 push @linger, AE::timer $linger, 0, sub {
1414 @linger = (); 1979 @linger = ();
1415 }); 1980 };
1416 } 1981 }
1982}
1983
1984=item $handle->destroy
1985
1986Shuts down the handle object as much as possible - this call ensures that
1987no further callbacks will be invoked and as many resources as possible
1988will be freed. Any method you will call on the handle object after
1989destroying it in this way will be silently ignored (and it will return the
1990empty list).
1991
1992Normally, you can just "forget" any references to an AnyEvent::Handle
1993object and it will simply shut down. This works in fatal error and EOF
1994callbacks, as well as code outside. It does I<NOT> work in a read or write
1995callback, so when you want to destroy the AnyEvent::Handle object from
1996within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1997that case.
1998
1999Destroying the handle object in this way has the advantage that callbacks
2000will be removed as well, so if those are the only reference holders (as
2001is common), then one doesn't need to do anything special to break any
2002reference cycles.
2003
2004The handle might still linger in the background and write out remaining
2005data, as specified by the C<linger> option, however.
2006
2007=cut
2008
2009sub destroy {
2010 my ($self) = @_;
2011
2012 $self->DESTROY;
2013 %$self = ();
2014 bless $self, "AnyEvent::Handle::destroyed";
2015}
2016
2017sub AnyEvent::Handle::destroyed::AUTOLOAD {
2018 #nop
1417} 2019}
1418 2020
1419=item AnyEvent::Handle::TLS_CTX 2021=item AnyEvent::Handle::TLS_CTX
1420 2022
1421This function creates and returns the Net::SSLeay::CTX object used by 2023This function creates and returns the AnyEvent::TLS object used by default
1422default for TLS mode. 2024for TLS mode.
1423 2025
1424The context is created like this: 2026The context is created by calling L<AnyEvent::TLS> without any arguments.
1425
1426 Net::SSLeay::load_error_strings;
1427 Net::SSLeay::SSLeay_add_ssl_algorithms;
1428 Net::SSLeay::randomize;
1429
1430 my $CTX = Net::SSLeay::CTX_new;
1431
1432 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1433 2027
1434=cut 2028=cut
1435 2029
1436our $TLS_CTX; 2030our $TLS_CTX;
1437 2031
1438sub TLS_CTX() { 2032sub TLS_CTX() {
1439 $TLS_CTX || do { 2033 $TLS_CTX ||= do {
1440 require Net::SSLeay; 2034 require AnyEvent::TLS;
1441 2035
1442 Net::SSLeay::load_error_strings (); 2036 new AnyEvent::TLS
1443 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1444 Net::SSLeay::randomize ();
1445
1446 $TLS_CTX = Net::SSLeay::CTX_new ();
1447
1448 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1449
1450 $TLS_CTX
1451 } 2037 }
1452} 2038}
1453 2039
1454=back 2040=back
2041
2042
2043=head1 NONFREQUENTLY ASKED QUESTIONS
2044
2045=over 4
2046
2047=item I C<undef> the AnyEvent::Handle reference inside my callback and
2048still get further invocations!
2049
2050That's because AnyEvent::Handle keeps a reference to itself when handling
2051read or write callbacks.
2052
2053It is only safe to "forget" the reference inside EOF or error callbacks,
2054from within all other callbacks, you need to explicitly call the C<<
2055->destroy >> method.
2056
2057=item I get different callback invocations in TLS mode/Why can't I pause
2058reading?
2059
2060Unlike, say, TCP, TLS connections do not consist of two independent
2061communication channels, one for each direction. Or put differently. The
2062read and write directions are not independent of each other: you cannot
2063write data unless you are also prepared to read, and vice versa.
2064
2065This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2066callback invocations when you are not expecting any read data - the reason
2067is that AnyEvent::Handle always reads in TLS mode.
2068
2069During the connection, you have to make sure that you always have a
2070non-empty read-queue, or an C<on_read> watcher. At the end of the
2071connection (or when you no longer want to use it) you can call the
2072C<destroy> method.
2073
2074=item How do I read data until the other side closes the connection?
2075
2076If you just want to read your data into a perl scalar, the easiest way
2077to achieve this is by setting an C<on_read> callback that does nothing,
2078clearing the C<on_eof> callback and in the C<on_error> callback, the data
2079will be in C<$_[0]{rbuf}>:
2080
2081 $handle->on_read (sub { });
2082 $handle->on_eof (undef);
2083 $handle->on_error (sub {
2084 my $data = delete $_[0]{rbuf};
2085 });
2086
2087The reason to use C<on_error> is that TCP connections, due to latencies
2088and packets loss, might get closed quite violently with an error, when in
2089fact, all data has been received.
2090
2091It is usually better to use acknowledgements when transferring data,
2092to make sure the other side hasn't just died and you got the data
2093intact. This is also one reason why so many internet protocols have an
2094explicit QUIT command.
2095
2096=item I don't want to destroy the handle too early - how do I wait until
2097all data has been written?
2098
2099After writing your last bits of data, set the C<on_drain> callback
2100and destroy the handle in there - with the default setting of
2101C<low_water_mark> this will be called precisely when all data has been
2102written to the socket:
2103
2104 $handle->push_write (...);
2105 $handle->on_drain (sub {
2106 warn "all data submitted to the kernel\n";
2107 undef $handle;
2108 });
2109
2110If you just want to queue some data and then signal EOF to the other side,
2111consider using C<< ->push_shutdown >> instead.
2112
2113=item I want to contact a TLS/SSL server, I don't care about security.
2114
2115If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2116simply connect to it and then create the AnyEvent::Handle with the C<tls>
2117parameter:
2118
2119 tcp_connect $host, $port, sub {
2120 my ($fh) = @_;
2121
2122 my $handle = new AnyEvent::Handle
2123 fh => $fh,
2124 tls => "connect",
2125 on_error => sub { ... };
2126
2127 $handle->push_write (...);
2128 };
2129
2130=item I want to contact a TLS/SSL server, I do care about security.
2131
2132Then you should additionally enable certificate verification, including
2133peername verification, if the protocol you use supports it (see
2134L<AnyEvent::TLS>, C<verify_peername>).
2135
2136E.g. for HTTPS:
2137
2138 tcp_connect $host, $port, sub {
2139 my ($fh) = @_;
2140
2141 my $handle = new AnyEvent::Handle
2142 fh => $fh,
2143 peername => $host,
2144 tls => "connect",
2145 tls_ctx => { verify => 1, verify_peername => "https" },
2146 ...
2147
2148Note that you must specify the hostname you connected to (or whatever
2149"peername" the protocol needs) as the C<peername> argument, otherwise no
2150peername verification will be done.
2151
2152The above will use the system-dependent default set of trusted CA
2153certificates. If you want to check against a specific CA, add the
2154C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2155
2156 tls_ctx => {
2157 verify => 1,
2158 verify_peername => "https",
2159 ca_file => "my-ca-cert.pem",
2160 },
2161
2162=item I want to create a TLS/SSL server, how do I do that?
2163
2164Well, you first need to get a server certificate and key. You have
2165three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2166self-signed certificate (cheap. check the search engine of your choice,
2167there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2168nice program for that purpose).
2169
2170Then create a file with your private key (in PEM format, see
2171L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2172file should then look like this:
2173
2174 -----BEGIN RSA PRIVATE KEY-----
2175 ...header data
2176 ... lots of base64'y-stuff
2177 -----END RSA PRIVATE KEY-----
2178
2179 -----BEGIN CERTIFICATE-----
2180 ... lots of base64'y-stuff
2181 -----END CERTIFICATE-----
2182
2183The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2184specify this file as C<cert_file>:
2185
2186 tcp_server undef, $port, sub {
2187 my ($fh) = @_;
2188
2189 my $handle = new AnyEvent::Handle
2190 fh => $fh,
2191 tls => "accept",
2192 tls_ctx => { cert_file => "my-server-keycert.pem" },
2193 ...
2194
2195When you have intermediate CA certificates that your clients might not
2196know about, just append them to the C<cert_file>.
2197
2198=back
2199
1455 2200
1456=head1 SUBCLASSING AnyEvent::Handle 2201=head1 SUBCLASSING AnyEvent::Handle
1457 2202
1458In many cases, you might want to subclass AnyEvent::Handle. 2203In many cases, you might want to subclass AnyEvent::Handle.
1459 2204

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines