ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.20 by elmex, Sat May 24 08:16:50 2008 UTC vs.
Revision 1.92 by root, Wed Oct 1 08:52:06 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.3;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
58argument. 62argument.
59 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
60=head1 METHODS 72=head1 METHODS
61 73
62=over 4 74=over 4
63 75
64=item B<new (%args)> 76=item B<new (%args)>
69 81
70=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
71 83
72The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
73 85
74NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
76 89
77=item on_eof => $cb->($self) 90=item on_eof => $cb->($handle)
78 91
79Set the callback to be called on EOF. 92Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the
94connection cleanly.
80 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
81While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
83waiting for data. 103waiting for data.
84 104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
107
85=item on_error => $cb->($self) 108=item on_error => $cb->($handle, $fatal)
86 109
87This is the fatal error callback, that is called when, well, a fatal error 110This is the error callback, which is called when, well, some error
88occurs, such as not being able to resolve the hostname, failure to connect 111occured, such as not being able to resolve the hostname, failure to
89or a read error. 112connect or a read error.
90 113
91The object will not be in a usable state when this callback has been 114Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
120Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 124
94On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 127
97While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 129you will not be notified of errors otherwise. The default simply calls
99die. 130C<croak>.
100 131
101=item on_read => $cb->($self) 132=item on_read => $cb->($handle)
102 133
103This sets the default read callback, which is called when data arrives 134This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 135and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the
137read buffer).
105 138
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 139To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or access the C<$self->{rbuf}> member directly. 140method or access the C<$handle->{rbuf}> member directly.
108 141
109When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
113 146
114=item on_drain => $cb->() 147=item on_drain => $cb->($handle)
115 148
116This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
118 151
119To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
120 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
160=item timeout => $fractional_seconds
161
162If non-zero, then this enables an "inactivity" timeout: whenever this many
163seconds pass without a successful read or write on the underlying file
164handle, the C<on_timeout> callback will be invoked (and if that one is
165missing, a non-fatal C<ETIMEDOUT> error will be raised).
166
167Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
172
173Zero (the default) disables this timeout.
174
175=item on_timeout => $cb->($handle)
176
177Called whenever the inactivity timeout passes. If you return from this
178callback, then the timeout will be reset as if some activity had happened,
179so this condition is not fatal in any way.
180
121=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
122 182
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
125avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
126 186
127For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
128be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
131isn't finished). 191isn't finished).
132 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
133=item read_size => <bytes> 219=item read_size => <bytes>
134 220
135The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
136on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
137 224
138=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
139 226
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
142considered empty. 229considered empty.
143 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost.
246
144=item tls => "accept" | "connect" | Net::SSLeay::SSL object 247=item tls => "accept" | "connect" | Net::SSLeay::SSL object
145 248
146When this parameter is given, it enables TLS (SSL) mode, that means it 249When this parameter is given, it enables TLS (SSL) mode, that means
147will start making tls handshake and will transparently encrypt/decrypt 250AnyEvent will start a TLS handshake as soon as the conenction has been
148data. 251established and will transparently encrypt/decrypt data afterwards.
149 252
150For the TLS server side, use C<accept>, and for the TLS client side of a 253TLS mode requires Net::SSLeay to be installed (it will be loaded
151connection, use C<connect> mode. 254automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself.
257
258Unlike TCP, TLS has a server and client side: for the TLS server side, use
259C<accept>, and for the TLS client side of a connection, use C<connect>
260mode.
152 261
153You can also provide your own TLS connection object, but you have 262You can also provide your own TLS connection object, but you have
154to make sure that you call either C<Net::SSLeay::set_connect_state> 263to make sure that you call either C<Net::SSLeay::set_connect_state>
155or C<Net::SSLeay::set_accept_state> on it before you pass it to 264or C<Net::SSLeay::set_accept_state> on it before you pass it to
156AnyEvent::Handle. 265AnyEvent::Handle.
157 266
267See the C<< ->starttls >> method for when need to start TLS negotiation later.
268
158=item tls_ctx => $ssl_ctx 269=item tls_ctx => $ssl_ctx
159 270
160Use the given Net::SSLeay::CTX object to create the new TLS connection 271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
161(unless a connection object was specified directly). If this parameter is 272(unless a connection object was specified directly). If this parameter is
162missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274
275=item json => JSON or JSON::XS object
276
277This is the json coder object used by the C<json> read and write types.
278
279If you don't supply it, then AnyEvent::Handle will create and use a
280suitable one (on demand), which will write and expect UTF-8 encoded JSON
281texts.
282
283Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself.
285
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
163 292
164=back 293=back
165 294
166=cut 295=cut
167 296
177 if ($self->{tls}) { 306 if ($self->{tls}) {
178 require Net::SSLeay; 307 require Net::SSLeay;
179 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
180 } 309 }
181 310
182 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 311 $self->{_activity} = AnyEvent->now;
183 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 312 $self->_timeout;
313
184 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
185 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
186 316
187 $self->start_read; 317 $self->start_read
318 if $self->{on_read};
188 319
189 $self 320 $self
190} 321}
191 322
192sub _shutdown { 323sub _shutdown {
193 my ($self) = @_; 324 my ($self) = @_;
194 325
326 delete $self->{_tw};
195 delete $self->{rw}; 327 delete $self->{_rw};
196 delete $self->{ww}; 328 delete $self->{_ww};
197 delete $self->{fh}; 329 delete $self->{fh};
198}
199 330
331 &_freetls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336
200sub error { 337sub _error {
201 my ($self) = @_; 338 my ($self, $errno, $fatal) = @_;
202 339
203 {
204 local $!;
205 $self->_shutdown; 340 $self->_shutdown
206 } 341 if $fatal;
342
343 $! = $errno;
207 344
208 if ($self->{on_error}) { 345 if ($self->{on_error}) {
209 $self->{on_error}($self); 346 $self->{on_error}($self, $fatal);
210 } else { 347 } else {
211 die "AnyEvent::Handle uncaught fatal error: $!"; 348 Carp::croak "AnyEvent::Handle uncaught error: $!";
212 } 349 }
213} 350}
214 351
215=item $fh = $handle->fh 352=item $fh = $handle->fh
216 353
217This method returns the filehandle of the L<AnyEvent::Handle> object. 354This method returns the file handle used to create the L<AnyEvent::Handle> object.
218 355
219=cut 356=cut
220 357
221sub fh { $_[0]->{fh} } 358sub fh { $_[0]{fh} }
222 359
223=item $handle->on_error ($cb) 360=item $handle->on_error ($cb)
224 361
225Replace the current C<on_error> callback (see the C<on_error> constructor argument). 362Replace the current C<on_error> callback (see the C<on_error> constructor argument).
226 363
236 373
237=cut 374=cut
238 375
239sub on_eof { 376sub on_eof {
240 $_[0]{on_eof} = $_[1]; 377 $_[0]{on_eof} = $_[1];
378}
379
380=item $handle->on_timeout ($cb)
381
382Replace the current C<on_timeout> callback, or disables the callback (but
383not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
384argument and method.
385
386=cut
387
388sub on_timeout {
389 $_[0]{on_timeout} = $_[1];
390}
391
392=item $handle->autocork ($boolean)
393
394Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument).
396
397=cut
398
399=item $handle->no_delay ($boolean)
400
401Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details).
403
404=cut
405
406sub no_delay {
407 $_[0]{no_delay} = $_[1];
408
409 eval {
410 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
412 };
413}
414
415#############################################################################
416
417=item $handle->timeout ($seconds)
418
419Configures (or disables) the inactivity timeout.
420
421=cut
422
423sub timeout {
424 my ($self, $timeout) = @_;
425
426 $self->{timeout} = $timeout;
427 $self->_timeout;
428}
429
430# reset the timeout watcher, as neccessary
431# also check for time-outs
432sub _timeout {
433 my ($self) = @_;
434
435 if ($self->{timeout}) {
436 my $NOW = AnyEvent->now;
437
438 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440
441 # now or in the past already?
442 if ($after <= 0) {
443 $self->{_activity} = $NOW;
444
445 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self);
447 } else {
448 $self->_error (&Errno::ETIMEDOUT);
449 }
450
451 # callback could have changed timeout value, optimise
452 return unless $self->{timeout};
453
454 # calculate new after
455 $after = $self->{timeout};
456 }
457
458 Scalar::Util::weaken $self;
459 return unless $self; # ->error could have destroyed $self
460
461 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
462 delete $self->{_tw};
463 $self->_timeout;
464 });
465 } else {
466 delete $self->{_tw};
467 }
241} 468}
242 469
243############################################################################# 470#############################################################################
244 471
245=back 472=back
282=cut 509=cut
283 510
284sub _drain_wbuf { 511sub _drain_wbuf {
285 my ($self) = @_; 512 my ($self) = @_;
286 513
287 unless ($self->{ww}) { 514 if (!$self->{_ww} && length $self->{wbuf}) {
515
288 Scalar::Util::weaken $self; 516 Scalar::Util::weaken $self;
517
289 my $cb = sub { 518 my $cb = sub {
290 my $len = syswrite $self->{fh}, $self->{wbuf}; 519 my $len = syswrite $self->{fh}, $self->{wbuf};
291 520
292 if ($len > 0) { 521 if ($len >= 0) {
293 substr $self->{wbuf}, 0, $len, ""; 522 substr $self->{wbuf}, 0, $len, "";
523
524 $self->{_activity} = AnyEvent->now;
294 525
295 $self->{on_drain}($self) 526 $self->{on_drain}($self)
296 if $self->{low_water_mark} >= length $self->{wbuf} 527 if $self->{low_water_mark} >= length $self->{wbuf}
297 && $self->{on_drain}; 528 && $self->{on_drain};
298 529
299 delete $self->{ww} unless length $self->{wbuf}; 530 delete $self->{_ww} unless length $self->{wbuf};
300 } elsif ($! != EAGAIN && $! != EINTR) { 531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
301 $self->error; 532 $self->_error ($!, 1);
302 } 533 }
303 }; 534 };
304 535
536 # try to write data immediately
537 $cb->() unless $self->{autocork};
538
539 # if still data left in wbuf, we need to poll
305 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 540 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
306 541 if length $self->{wbuf};
307 $cb->($self);
308 }; 542 };
543}
544
545our %WH;
546
547sub register_write_type($$) {
548 $WH{$_[0]} = $_[1];
309} 549}
310 550
311sub push_write { 551sub push_write {
312 my $self = shift; 552 my $self = shift;
313 553
554 if (@_ > 1) {
555 my $type = shift;
556
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_);
559 }
560
314 if ($self->{filter_w}) { 561 if ($self->{filter_w}) {
315 $self->{filter_w}->($self, \$_[0]); 562 $self->{filter_w}($self, \$_[0]);
316 } else { 563 } else {
317 $self->{wbuf} .= $_[0]; 564 $self->{wbuf} .= $_[0];
318 $self->_drain_wbuf; 565 $self->_drain_wbuf;
319 } 566 }
320} 567}
321 568
569=item $handle->push_write (type => @args)
570
571Instead of formatting your data yourself, you can also let this module do
572the job by specifying a type and type-specific arguments.
573
574Predefined types are (if you have ideas for additional types, feel free to
575drop by and tell us):
576
577=over 4
578
579=item netstring => $string
580
581Formats the given value as netstring
582(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
583
584=cut
585
586register_write_type netstring => sub {
587 my ($self, $string) = @_;
588
589 sprintf "%d:%s,", (length $string), $string
590};
591
592=item packstring => $format, $data
593
594An octet string prefixed with an encoded length. The encoding C<$format>
595uses the same format as a Perl C<pack> format, but must specify a single
596integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
597optional C<!>, C<< < >> or C<< > >> modifier).
598
599=cut
600
601register_write_type packstring => sub {
602 my ($self, $format, $string) = @_;
603
604 pack "$format/a*", $string
605};
606
607=item json => $array_or_hashref
608
609Encodes the given hash or array reference into a JSON object. Unless you
610provide your own JSON object, this means it will be encoded to JSON text
611in UTF-8.
612
613JSON objects (and arrays) are self-delimiting, so you can write JSON at
614one end of a handle and read them at the other end without using any
615additional framing.
616
617The generated JSON text is guaranteed not to contain any newlines: While
618this module doesn't need delimiters after or between JSON texts to be
619able to read them, many other languages depend on that.
620
621A simple RPC protocol that interoperates easily with others is to send
622JSON arrays (or objects, although arrays are usually the better choice as
623they mimic how function argument passing works) and a newline after each
624JSON text:
625
626 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
627 $handle->push_write ("\012");
628
629An AnyEvent::Handle receiver would simply use the C<json> read type and
630rely on the fact that the newline will be skipped as leading whitespace:
631
632 $handle->push_read (json => sub { my $array = $_[1]; ... });
633
634Other languages could read single lines terminated by a newline and pass
635this line into their JSON decoder of choice.
636
637=cut
638
639register_write_type json => sub {
640 my ($self, $ref) = @_;
641
642 require JSON;
643
644 $self->{json} ? $self->{json}->encode ($ref)
645 : JSON::encode_json ($ref)
646};
647
648=item storable => $reference
649
650Freezes the given reference using L<Storable> and writes it to the
651handle. Uses the C<nfreeze> format.
652
653=cut
654
655register_write_type storable => sub {
656 my ($self, $ref) = @_;
657
658 require Storable;
659
660 pack "w/a*", Storable::nfreeze ($ref)
661};
662
663=back
664
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666
667This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code
669reference with the handle object and the remaining arguments.
670
671The code reference is supposed to return a single octet string that will
672be appended to the write buffer.
673
674Note that this is a function, and all types registered this way will be
675global, so try to use unique names.
676
677=cut
678
322############################################################################# 679#############################################################################
323 680
324=back 681=back
325 682
326=head2 READ QUEUE 683=head2 READ QUEUE
332ways, the "simple" way, using only C<on_read> and the "complex" way, using 689ways, the "simple" way, using only C<on_read> and the "complex" way, using
333a queue. 690a queue.
334 691
335In the simple case, you just install an C<on_read> callback and whenever 692In the simple case, you just install an C<on_read> callback and whenever
336new data arrives, it will be called. You can then remove some data (if 693new data arrives, it will be called. You can then remove some data (if
337enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 694enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
338or not. 695leave the data there if you want to accumulate more (e.g. when only a
696partial message has been received so far).
339 697
340In the more complex case, you want to queue multiple callbacks. In this 698In the more complex case, you want to queue multiple callbacks. In this
341case, AnyEvent::Handle will call the first queued callback each time new 699case, AnyEvent::Handle will call the first queued callback each time new
342data arrives and removes it when it has done its job (see C<push_read>, 700data arrives (also the first time it is queued) and removes it when it has
343below). 701done its job (see C<push_read>, below).
344 702
345This way you can, for example, push three line-reads, followed by reading 703This way you can, for example, push three line-reads, followed by reading
346a chunk of data, and AnyEvent::Handle will execute them in order. 704a chunk of data, and AnyEvent::Handle will execute them in order.
347 705
348Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 706Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
349the specified number of bytes which give an XML datagram. 707the specified number of bytes which give an XML datagram.
350 708
351 # in the default state, expect some header bytes 709 # in the default state, expect some header bytes
352 $handle->on_read (sub { 710 $handle->on_read (sub {
353 # some data is here, now queue the length-header-read (4 octets) 711 # some data is here, now queue the length-header-read (4 octets)
354 shift->unshift_read_chunk (4, sub { 712 shift->unshift_read (chunk => 4, sub {
355 # header arrived, decode 713 # header arrived, decode
356 my $len = unpack "N", $_[1]; 714 my $len = unpack "N", $_[1];
357 715
358 # now read the payload 716 # now read the payload
359 shift->unshift_read_chunk ($len, sub { 717 shift->unshift_read (chunk => $len, sub {
360 my $xml = $_[1]; 718 my $xml = $_[1];
361 # handle xml 719 # handle xml
362 }); 720 });
363 }); 721 });
364 }); 722 });
365 723
366Example 2: Implement a client for a protocol that replies either with 724Example 2: Implement a client for a protocol that replies either with "OK"
367"OK" and another line or "ERROR" for one request, and 64 bytes for the 725and another line or "ERROR" for the first request that is sent, and 64
368second request. Due tot he availability of a full queue, we can just 726bytes for the second request. Due to the availability of a queue, we can
369pipeline sending both requests and manipulate the queue as necessary in 727just pipeline sending both requests and manipulate the queue as necessary
370the callbacks: 728in the callbacks.
371 729
372 # request one 730When the first callback is called and sees an "OK" response, it will
731C<unshift> another line-read. This line-read will be queued I<before> the
73264-byte chunk callback.
733
734 # request one, returns either "OK + extra line" or "ERROR"
373 $handle->push_write ("request 1\015\012"); 735 $handle->push_write ("request 1\015\012");
374 736
375 # we expect "ERROR" or "OK" as response, so push a line read 737 # we expect "ERROR" or "OK" as response, so push a line read
376 $handle->push_read_line (sub { 738 $handle->push_read (line => sub {
377 # if we got an "OK", we have to _prepend_ another line, 739 # if we got an "OK", we have to _prepend_ another line,
378 # so it will be read before the second request reads its 64 bytes 740 # so it will be read before the second request reads its 64 bytes
379 # which are already in the queue when this callback is called 741 # which are already in the queue when this callback is called
380 # we don't do this in case we got an error 742 # we don't do this in case we got an error
381 if ($_[1] eq "OK") { 743 if ($_[1] eq "OK") {
382 $_[0]->unshift_read_line (sub { 744 $_[0]->unshift_read (line => sub {
383 my $response = $_[1]; 745 my $response = $_[1];
384 ... 746 ...
385 }); 747 });
386 } 748 }
387 }); 749 });
388 750
389 # request two 751 # request two, simply returns 64 octets
390 $handle->push_write ("request 2\015\012"); 752 $handle->push_write ("request 2\015\012");
391 753
392 # simply read 64 bytes, always 754 # simply read 64 bytes, always
393 $handle->push_read_chunk (64, sub { 755 $handle->push_read (chunk => 64, sub {
394 my $response = $_[1]; 756 my $response = $_[1];
395 ... 757 ...
396 }); 758 });
397 759
398=over 4 760=over 4
399 761
400=cut 762=cut
401 763
402sub _drain_rbuf { 764sub _drain_rbuf {
403 my ($self) = @_; 765 my ($self) = @_;
766
767 local $self->{_in_drain} = 1;
404 768
405 if ( 769 if (
406 defined $self->{rbuf_max} 770 defined $self->{rbuf_max}
407 && $self->{rbuf_max} < length $self->{rbuf} 771 && $self->{rbuf_max} < length $self->{rbuf}
408 ) { 772 ) {
409 $! = &Errno::ENOSPC; return $self->error; 773 $self->_error (&Errno::ENOSPC, 1), return;
410 } 774 }
411 775
412 return if $self->{in_drain}; 776 while () {
413 local $self->{in_drain} = 1;
414
415 while (my $len = length $self->{rbuf}) { 777 my $len = length $self->{rbuf};
416 no strict 'refs'; 778
417 if (my $cb = shift @{ $self->{queue} }) { 779 if (my $cb = shift @{ $self->{_queue} }) {
418 if (!$cb->($self)) { 780 unless ($cb->($self)) {
419 if ($self->{eof}) { 781 if ($self->{_eof}) {
420 # no progress can be made (not enough data and no data forthcoming) 782 # no progress can be made (not enough data and no data forthcoming)
421 $! = &Errno::EPIPE; return $self->error; 783 $self->_error (&Errno::EPIPE, 1), return;
422 } 784 }
423 785
424 unshift @{ $self->{queue} }, $cb; 786 unshift @{ $self->{_queue} }, $cb;
425 return; 787 last;
426 } 788 }
427 } elsif ($self->{on_read}) { 789 } elsif ($self->{on_read}) {
790 last unless $len;
791
428 $self->{on_read}($self); 792 $self->{on_read}($self);
429 793
430 if ( 794 if (
431 $self->{eof} # if no further data will arrive
432 && $len == length $self->{rbuf} # and no data has been consumed 795 $len == length $self->{rbuf} # if no data has been consumed
433 && !@{ $self->{queue} } # and the queue is still empty 796 && !@{ $self->{_queue} } # and the queue is still empty
434 && $self->{on_read} # and we still want to read data 797 && $self->{on_read} # but we still have on_read
435 ) { 798 ) {
799 # no further data will arrive
436 # then no progress can be made 800 # so no progress can be made
437 $! = &Errno::EPIPE; return $self->error; 801 $self->_error (&Errno::EPIPE, 1), return
802 if $self->{_eof};
803
804 last; # more data might arrive
438 } 805 }
439 } else { 806 } else {
440 # read side becomes idle 807 # read side becomes idle
441 delete $self->{rw}; 808 delete $self->{_rw};
442 return; 809 last;
443 } 810 }
444 } 811 }
445 812
446 if ($self->{eof}) { 813 if ($self->{_eof}) {
447 $self->_shutdown; 814 if ($self->{on_eof}) {
448 $self->{on_eof}($self) 815 $self->{on_eof}($self)
449 if $self->{on_eof}; 816 } else {
817 $self->_error (0, 1);
818 }
819 }
820
821 # may need to restart read watcher
822 unless ($self->{_rw}) {
823 $self->start_read
824 if $self->{on_read} || @{ $self->{_queue} };
450 } 825 }
451} 826}
452 827
453=item $handle->on_read ($cb) 828=item $handle->on_read ($cb)
454 829
460 835
461sub on_read { 836sub on_read {
462 my ($self, $cb) = @_; 837 my ($self, $cb) = @_;
463 838
464 $self->{on_read} = $cb; 839 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain};
465} 841}
466 842
467=item $handle->rbuf 843=item $handle->rbuf
468 844
469Returns the read buffer (as a modifiable lvalue). 845Returns the read buffer (as a modifiable lvalue).
500interested in (which can be none at all) and return a true value. After returning 876interested in (which can be none at all) and return a true value. After returning
501true, it will be removed from the queue. 877true, it will be removed from the queue.
502 878
503=cut 879=cut
504 880
881our %RH;
882
883sub register_read_type($$) {
884 $RH{$_[0]} = $_[1];
885}
886
505sub push_read { 887sub push_read {
506 my ($self, $cb) = @_; 888 my $self = shift;
889 my $cb = pop;
507 890
891 if (@_) {
892 my $type = shift;
893
894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895 ->($self, $cb, @_);
896 }
897
508 push @{ $self->{queue} }, $cb; 898 push @{ $self->{_queue} }, $cb;
509 $self->_drain_rbuf; 899 $self->_drain_rbuf unless $self->{_in_drain};
510} 900}
511 901
512sub unshift_read { 902sub unshift_read {
513 my ($self, $cb) = @_; 903 my $self = shift;
904 my $cb = pop;
514 905
906 if (@_) {
907 my $type = shift;
908
909 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
910 ->($self, $cb, @_);
911 }
912
913
515 push @{ $self->{queue} }, $cb; 914 unshift @{ $self->{_queue} }, $cb;
516 $self->_drain_rbuf; 915 $self->_drain_rbuf unless $self->{_in_drain};
517} 916}
518 917
519=item $handle->push_read_chunk ($len, $cb->($self, $data)) 918=item $handle->push_read (type => @args, $cb)
520 919
521=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 920=item $handle->unshift_read (type => @args, $cb)
522 921
523Append the given callback to the end of the queue (C<push_read_chunk>) or 922Instead of providing a callback that parses the data itself you can chose
524prepend it (C<unshift_read_chunk>). 923between a number of predefined parsing formats, for chunks of data, lines
924etc.
525 925
526The callback will be called only once C<$len> bytes have been read, and 926Predefined types are (if you have ideas for additional types, feel free to
527these C<$len> bytes will be passed to the callback. 927drop by and tell us):
528 928
529=cut 929=over 4
530 930
531sub _read_chunk($$) { 931=item chunk => $octets, $cb->($handle, $data)
932
933Invoke the callback only once C<$octets> bytes have been read. Pass the
934data read to the callback. The callback will never be called with less
935data.
936
937Example: read 2 bytes.
938
939 $handle->push_read (chunk => 2, sub {
940 warn "yay ", unpack "H*", $_[1];
941 });
942
943=cut
944
945register_read_type chunk => sub {
532 my ($self, $len, $cb) = @_; 946 my ($self, $cb, $len) = @_;
533 947
534 sub { 948 sub {
535 $len <= length $_[0]{rbuf} or return; 949 $len <= length $_[0]{rbuf} or return;
536 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 950 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
537 1 951 1
538 } 952 }
539} 953};
540 954
541sub push_read_chunk { 955=item line => [$eol, ]$cb->($handle, $line, $eol)
542 $_[0]->push_read (&_read_chunk);
543}
544
545
546sub unshift_read_chunk {
547 $_[0]->unshift_read (&_read_chunk);
548}
549
550=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
551
552=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
553
554Append the given callback to the end of the queue (C<push_read_line>) or
555prepend it (C<unshift_read_line>).
556 956
557The callback will be called only once a full line (including the end of 957The callback will be called only once a full line (including the end of
558line marker, C<$eol>) has been read. This line (excluding the end of line 958line marker, C<$eol>) has been read. This line (excluding the end of line
559marker) will be passed to the callback as second argument (C<$line>), and 959marker) will be passed to the callback as second argument (C<$line>), and
560the end of line marker as the third argument (C<$eol>). 960the end of line marker as the third argument (C<$eol>).
571Partial lines at the end of the stream will never be returned, as they are 971Partial lines at the end of the stream will never be returned, as they are
572not marked by the end of line marker. 972not marked by the end of line marker.
573 973
574=cut 974=cut
575 975
576sub _read_line($$) { 976register_read_type line => sub {
577 my $self = shift; 977 my ($self, $cb, $eol) = @_;
578 my $cb = pop;
579 my $eol = @_ ? shift : qr|(\015?\012)|;
580 my $pos;
581 978
979 if (@_ < 3) {
980 # this is more than twice as fast as the generic code below
981 sub {
982 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
983
984 $cb->($_[0], $1, $2);
985 1
986 }
987 } else {
582 $eol = quotemeta $eol unless ref $eol; 988 $eol = quotemeta $eol unless ref $eol;
583 $eol = qr|^(.*?)($eol)|s; 989 $eol = qr|^(.*?)($eol)|s;
990
991 sub {
992 $_[0]{rbuf} =~ s/$eol// or return;
993
994 $cb->($_[0], $1, $2);
995 1
996 }
997 }
998};
999
1000=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1001
1002Makes a regex match against the regex object C<$accept> and returns
1003everything up to and including the match.
1004
1005Example: read a single line terminated by '\n'.
1006
1007 $handle->push_read (regex => qr<\n>, sub { ... });
1008
1009If C<$reject> is given and not undef, then it determines when the data is
1010to be rejected: it is matched against the data when the C<$accept> regex
1011does not match and generates an C<EBADMSG> error when it matches. This is
1012useful to quickly reject wrong data (to avoid waiting for a timeout or a
1013receive buffer overflow).
1014
1015Example: expect a single decimal number followed by whitespace, reject
1016anything else (not the use of an anchor).
1017
1018 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1019
1020If C<$skip> is given and not C<undef>, then it will be matched against
1021the receive buffer when neither C<$accept> nor C<$reject> match,
1022and everything preceding and including the match will be accepted
1023unconditionally. This is useful to skip large amounts of data that you
1024know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1025have to start matching from the beginning. This is purely an optimisation
1026and is usually worth only when you expect more than a few kilobytes.
1027
1028Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1029expect the header to be very large (it isn't in practise, but...), we use
1030a skip regex to skip initial portions. The skip regex is tricky in that
1031it only accepts something not ending in either \015 or \012, as these are
1032required for the accept regex.
1033
1034 $handle->push_read (regex =>
1035 qr<\015\012\015\012>,
1036 undef, # no reject
1037 qr<^.*[^\015\012]>,
1038 sub { ... });
1039
1040=cut
1041
1042register_read_type regex => sub {
1043 my ($self, $cb, $accept, $reject, $skip) = @_;
1044
1045 my $data;
1046 my $rbuf = \$self->{rbuf};
584 1047
585 sub { 1048 sub {
586 $_[0]{rbuf} =~ s/$eol// or return; 1049 # accept
1050 if ($$rbuf =~ $accept) {
1051 $data .= substr $$rbuf, 0, $+[0], "";
1052 $cb->($self, $data);
1053 return 1;
1054 }
1055
1056 # reject
1057 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG);
1059 }
587 1060
588 $cb->($_[0], $1, $2); 1061 # skip
1062 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], "";
1064 }
1065
1066 ()
1067 }
1068};
1069
1070=item netstring => $cb->($handle, $string)
1071
1072A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1073
1074Throws an error with C<$!> set to EBADMSG on format violations.
1075
1076=cut
1077
1078register_read_type netstring => sub {
1079 my ($self, $cb) = @_;
1080
1081 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG);
1085 }
1086 return;
1087 }
1088
1089 my $len = $1;
1090
1091 $self->unshift_read (chunk => $len, sub {
1092 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") {
1095 $cb->($_[0], $string);
1096 } else {
1097 $self->_error (&Errno::EBADMSG);
1098 }
1099 });
1100 });
1101
589 1 1102 1
590 } 1103 }
591} 1104};
592 1105
593sub push_read_line { 1106=item packstring => $format, $cb->($handle, $string)
594 $_[0]->push_read (&_read_line);
595}
596 1107
597sub unshift_read_line { 1108An octet string prefixed with an encoded length. The encoding C<$format>
598 $_[0]->unshift_read (&_read_line); 1109uses the same format as a Perl C<pack> format, but must specify a single
599} 1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier).
1112
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1114
1115Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient).
1117
1118 $handle->push_read (packstring => "w", sub {
1119 my ($handle, $data) = @_;
1120 });
1121
1122=cut
1123
1124register_read_type packstring => sub {
1125 my ($self, $cb, $format) = @_;
1126
1127 sub {
1128 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1129 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1130 or return;
1131
1132 $format = length pack $format, $len;
1133
1134 # bypass unshift if we already have the remaining chunk
1135 if ($format + $len <= length $_[0]{rbuf}) {
1136 my $data = substr $_[0]{rbuf}, $format, $len;
1137 substr $_[0]{rbuf}, 0, $format + $len, "";
1138 $cb->($_[0], $data);
1139 } else {
1140 # remove prefix
1141 substr $_[0]{rbuf}, 0, $format, "";
1142
1143 # read remaining chunk
1144 $_[0]->unshift_read (chunk => $len, $cb);
1145 }
1146
1147 1
1148 }
1149};
1150
1151=item json => $cb->($handle, $hash_or_arrayref)
1152
1153Reads a JSON object or array, decodes it and passes it to the callback.
1154
1155If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157
1158This read type uses the incremental parser available with JSON version
11592.09 (and JSON::XS version 2.2) and above. You have to provide a
1160dependency on your own: this module will load the JSON module, but
1161AnyEvent does not depend on it itself.
1162
1163Since JSON texts are fully self-delimiting, the C<json> read and write
1164types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1165the C<json> write type description, above, for an actual example.
1166
1167=cut
1168
1169register_read_type json => sub {
1170 my ($self, $cb) = @_;
1171
1172 require JSON;
1173
1174 my $data;
1175 my $rbuf = \$self->{rbuf};
1176
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf});
1181
1182 if ($ref) {
1183 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = "";
1185 $cb->($self, $ref);
1186
1187 1
1188 } else {
1189 $self->{rbuf} = "";
1190 ()
1191 }
1192 }
1193};
1194
1195=item storable => $cb->($handle, $ref)
1196
1197Deserialises a L<Storable> frozen representation as written by the
1198C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1199data).
1200
1201Raises C<EBADMSG> error if the data could not be decoded.
1202
1203=cut
1204
1205register_read_type storable => sub {
1206 my ($self, $cb) = @_;
1207
1208 require Storable;
1209
1210 sub {
1211 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1212 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1213 or return;
1214
1215 my $format = length pack "w", $len;
1216
1217 # bypass unshift if we already have the remaining chunk
1218 if ($format + $len <= length $_[0]{rbuf}) {
1219 my $data = substr $_[0]{rbuf}, $format, $len;
1220 substr $_[0]{rbuf}, 0, $format + $len, "";
1221 $cb->($_[0], Storable::thaw ($data));
1222 } else {
1223 # remove prefix
1224 substr $_[0]{rbuf}, 0, $format, "";
1225
1226 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref);
1230 } else {
1231 $self->_error (&Errno::EBADMSG);
1232 }
1233 });
1234 }
1235
1236 1
1237 }
1238};
1239
1240=back
1241
1242=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1243
1244This function (not method) lets you add your own types to C<push_read>.
1245
1246Whenever the given C<type> is used, C<push_read> will invoke the code
1247reference with the handle object, the callback and the remaining
1248arguments.
1249
1250The code reference is supposed to return a callback (usually a closure)
1251that works as a plain read callback (see C<< ->push_read ($cb) >>).
1252
1253It should invoke the passed callback when it is done reading (remember to
1254pass C<$handle> as first argument as all other callbacks do that).
1255
1256Note that this is a function, and all types registered this way will be
1257global, so try to use unique names.
1258
1259For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1260search for C<register_read_type>)).
600 1261
601=item $handle->stop_read 1262=item $handle->stop_read
602 1263
603=item $handle->start_read 1264=item $handle->start_read
604 1265
605In rare cases you actually do not want to read anything from the 1266In rare cases you actually do not want to read anything from the
606socket. In this case you can call C<stop_read>. Neither C<on_read> no 1267socket. In this case you can call C<stop_read>. Neither C<on_read> nor
607any queued callbacks will be executed then. To start readign again, call 1268any queued callbacks will be executed then. To start reading again, call
608C<start_read>. 1269C<start_read>.
1270
1271Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue.
609 1275
610=cut 1276=cut
611 1277
612sub stop_read { 1278sub stop_read {
613 my ($self) = @_; 1279 my ($self) = @_;
614 1280
615 delete $self->{rw}; 1281 delete $self->{_rw};
616} 1282}
617 1283
618sub start_read { 1284sub start_read {
619 my ($self) = @_; 1285 my ($self) = @_;
620 1286
621 unless ($self->{rw} || $self->{eof}) { 1287 unless ($self->{_rw} || $self->{_eof}) {
622 Scalar::Util::weaken $self; 1288 Scalar::Util::weaken $self;
623 1289
624 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
625 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
626 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
627 1293
628 if ($len > 0) { 1294 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now;
1296
629 $self->{filter_r} 1297 $self->{filter_r}
630 ? $self->{filter_r}->($self, $rbuf) 1298 ? $self->{filter_r}($self, $rbuf)
631 : $self->_drain_rbuf; 1299 : $self->{_in_drain} || $self->_drain_rbuf;
632 1300
633 } elsif (defined $len) { 1301 } elsif (defined $len) {
634 delete $self->{rw}; 1302 delete $self->{_rw};
635 $self->{eof} = 1; 1303 $self->{_eof} = 1;
636 $self->_drain_rbuf; 1304 $self->_drain_rbuf unless $self->{_in_drain};
637 1305
638 } elsif ($! != EAGAIN && $! != EINTR) { 1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
639 return $self->error; 1307 return $self->_error ($!, 1);
640 } 1308 }
641 }); 1309 });
642 } 1310 }
643} 1311}
644 1312
645sub _dotls { 1313sub _dotls {
646 my ($self) = @_; 1314 my ($self) = @_;
647 1315
1316 my $buf;
1317
648 if (length $self->{tls_wbuf}) { 1318 if (length $self->{_tls_wbuf}) {
649 my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf}); 1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
650 substr $self->{tls_wbuf}, 0, $len, "" if $len > 0; 1320 substr $self->{_tls_wbuf}, 0, $len, "";
1321 }
651 } 1322 }
652 1323
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) {
1326 # let's treat SSL-eof as we treat normal EOF
1327 delete $self->{_rw};
1328 $self->{_eof} = 1;
1329 &_freetls;
1330 }
1331
1332 $self->{rbuf} .= $buf;
1333 $self->_drain_rbuf unless $self->{_in_drain};
1334 $self->{tls} or return; # tls session might have gone away in callback
1335 }
1336
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1);
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1343 return $self->_error (&Errno::EIO, 1);
1344 }
1345
1346 # all others are fine for our purposes
1347 }
1348
653 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1349 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
654 $self->{wbuf} .= $buf; 1350 $self->{wbuf} .= $buf;
655 $self->_drain_wbuf; 1351 $self->_drain_wbuf;
656 } 1352 }
657
658 if (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
659 $self->{rbuf} .= $buf;
660 $self->_drain_rbuf;
661 } elsif (
662 (my $err = Net::SSLeay::get_error ($self->{tls}, -1))
663 != Net::SSLeay::ERROR_WANT_READ ()
664 ) {
665 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
666 $self->error;
667 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
668 $! = &Errno::EIO;
669 $self->error;
670 }
671
672 # all others are fine for our purposes
673 }
674} 1353}
675 1354
676# TODO: maybe document... 1355=item $handle->starttls ($tls[, $tls_ctx])
1356
1357Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358object is created, you can also do that at a later time by calling
1359C<starttls>.
1360
1361The first argument is the same as the C<tls> constructor argument (either
1362C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363
1364The second argument is the optional C<Net::SSLeay::CTX> object that is
1365used when AnyEvent::Handle has to create its own TLS connection object.
1366
1367The TLS connection object will end up in C<< $handle->{tls} >> after this
1368call and can be used or changed to your liking. Note that the handshake
1369might have already started when this function returns.
1370
1371If it an error to start a TLS handshake more than once per
1372AnyEvent::Handle object (this is due to bugs in OpenSSL).
1373
1374=cut
1375
677sub starttls { 1376sub starttls {
678 my ($self, $ssl, $ctx) = @_; 1377 my ($self, $ssl, $ctx) = @_;
679 1378
1379 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1380 if $self->{tls};
1381
680 if ($ssl eq "accept") { 1382 if ($ssl eq "accept") {
681 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
682 Net::SSLeay::set_accept_state ($ssl); 1384 Net::SSLeay::set_accept_state ($ssl);
683 } elsif ($ssl eq "connect") { 1385 } elsif ($ssl eq "connect") {
684 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1386 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
685 Net::SSLeay::set_connect_state ($ssl); 1387 Net::SSLeay::set_connect_state ($ssl);
686 } 1388 }
687 1389
688 $self->{tls} = $ssl; 1390 $self->{tls} = $ssl;
689 1391
1392 # basically, this is deep magic (because SSL_read should have the same issues)
1393 # but the openssl maintainers basically said: "trust us, it just works".
1394 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1395 # and mismaintained ssleay-module doesn't even offer them).
1396 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1397 #
1398 # in short: this is a mess.
1399 #
1400 # note that we do not try to kepe the length constant between writes as we are required to do.
1401 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1402 # and we drive openssl fully in blocking mode here.
1403 Net::SSLeay::CTX_set_mode ($self->{tls},
1404 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1405 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1406
690 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1407 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
691 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1408 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
692 1409
693 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1410 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
694 1411
695 $self->{filter_w} = sub { 1412 $self->{filter_w} = sub {
696 $_[0]{tls_wbuf} .= ${$_[1]}; 1413 $_[0]{_tls_wbuf} .= ${$_[1]};
697 &_dotls; 1414 &_dotls;
698 }; 1415 };
699 $self->{filter_r} = sub { 1416 $self->{filter_r} = sub {
700 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]}); 1417 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
701 &_dotls; 1418 &_dotls;
702 }; 1419 };
1420
1421 &_dotls; # need to trigger the initial negotiation exchange
1422}
1423
1424=item $handle->stoptls
1425
1426Shuts down the SSL connection - this makes a proper EOF handshake by
1427sending a close notify to the other side, but since OpenSSL doesn't
1428support non-blocking shut downs, it is not possible to re-use the stream
1429afterwards.
1430
1431=cut
1432
1433sub stoptls {
1434 my ($self) = @_;
1435
1436 if ($self->{tls}) {
1437 Net::SSLeay::shutdown $self->{tls};
1438
1439 &_dotls;
1440
1441 # we don't give a shit. no, we do, but we can't. no...
1442 # we, we... have to use openssl :/
1443 &_freetls;
1444 }
1445}
1446
1447sub _freetls {
1448 my ($self) = @_;
1449
1450 return unless $self->{tls};
1451
1452 Net::SSLeay::free (delete $self->{tls});
1453
1454 delete @$self{qw(_rbio filter_w _wbio filter_r)};
703} 1455}
704 1456
705sub DESTROY { 1457sub DESTROY {
706 my $self = shift; 1458 my $self = shift;
707 1459
708 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1460 &_freetls;
1461
1462 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1463
1464 if ($linger && length $self->{wbuf}) {
1465 my $fh = delete $self->{fh};
1466 my $wbuf = delete $self->{wbuf};
1467
1468 my @linger;
1469
1470 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1471 my $len = syswrite $fh, $wbuf, length $wbuf;
1472
1473 if ($len > 0) {
1474 substr $wbuf, 0, $len, "";
1475 } else {
1476 @linger = (); # end
1477 }
1478 });
1479 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1480 @linger = ();
1481 });
1482 }
709} 1483}
710 1484
711=item AnyEvent::Handle::TLS_CTX 1485=item AnyEvent::Handle::TLS_CTX
712 1486
713This function creates and returns the Net::SSLeay::CTX object used by 1487This function creates and returns the Net::SSLeay::CTX object used by
743 } 1517 }
744} 1518}
745 1519
746=back 1520=back
747 1521
1522=head1 SUBCLASSING AnyEvent::Handle
1523
1524In many cases, you might want to subclass AnyEvent::Handle.
1525
1526To make this easier, a given version of AnyEvent::Handle uses these
1527conventions:
1528
1529=over 4
1530
1531=item * all constructor arguments become object members.
1532
1533At least initially, when you pass a C<tls>-argument to the constructor it
1534will end up in C<< $handle->{tls} >>. Those members might be changed or
1535mutated later on (for example C<tls> will hold the TLS connection object).
1536
1537=item * other object member names are prefixed with an C<_>.
1538
1539All object members not explicitly documented (internal use) are prefixed
1540with an underscore character, so the remaining non-C<_>-namespace is free
1541for use for subclasses.
1542
1543=item * all members not documented here and not prefixed with an underscore
1544are free to use in subclasses.
1545
1546Of course, new versions of AnyEvent::Handle may introduce more "public"
1547member variables, but thats just life, at least it is documented.
1548
1549=back
1550
748=head1 AUTHOR 1551=head1 AUTHOR
749 1552
750Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1553Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
751 1554
752=cut 1555=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines