ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.231 by root, Tue Mar 27 23:47:57 2012 UTC vs.
Revision 1.255 by root, Wed Jul 29 13:02:48 2020 UTC

11 11
12 my $hdl; $hdl = new AnyEvent::Handle 12 my $hdl; $hdl = new AnyEvent::Handle
13 fh => \*STDIN, 13 fh => \*STDIN,
14 on_error => sub { 14 on_error => sub {
15 my ($hdl, $fatal, $msg) = @_; 15 my ($hdl, $fatal, $msg) = @_;
16 AE::log error => "Got error $msg!"; 16 AE::log error => $msg;
17 $hdl->destroy; 17 $hdl->destroy;
18 $cv->send; 18 $cv->send;
19 }; 19 };
20 20
21 # send some request line 21 # send some request line
30 30
31 $cv->recv; 31 $cv->recv;
32 32
33=head1 DESCRIPTION 33=head1 DESCRIPTION
34 34
35This is a helper module to make it easier to do event-based I/O on 35This is a helper module to make it easier to do event-based I/O
36stream-based filehandles (sockets, pipes, and other stream things). 36on stream-based filehandles (sockets, pipes, and other stream
37things). Specifically, it doesn't work as expected on files, packet-based
38sockets or similar things.
37 39
38The L<AnyEvent::Intro> tutorial contains some well-documented 40The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples. 41AnyEvent::Handle examples.
40 42
41In the following, where the documentation refers to "bytes", it means 43In the following, where the documentation refers to "bytes", it means
53package AnyEvent::Handle; 55package AnyEvent::Handle;
54 56
55use Scalar::Util (); 57use Scalar::Util ();
56use List::Util (); 58use List::Util ();
57use Carp (); 59use Carp ();
58use Errno qw(EAGAIN EINTR); 60use Errno qw(EAGAIN EWOULDBLOCK EINTR);
59 61
60use AnyEvent (); BEGIN { AnyEvent::common_sense } 62use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK); 63use AnyEvent::Util qw(WSAEWOULDBLOCK);
62 64
63our $VERSION = $AnyEvent::VERSION; 65our $VERSION = $AnyEvent::VERSION;
91 93
92=item fh => $filehandle [C<fh> or C<connect> MANDATORY] 94=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 95
94The filehandle this L<AnyEvent::Handle> object will operate on. 96The filehandle this L<AnyEvent::Handle> object will operate on.
95NOTE: The filehandle will be set to non-blocking mode (using 97NOTE: The filehandle will be set to non-blocking mode (using
96C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 98C<AnyEvent::fh_unblock>) by the constructor and needs to stay in
97that mode. 99that mode.
98 100
99=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY] 101=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100 102
101Try to connect to the specified host and service (port), using 103Try to connect to the specified host and service (port), using
131 133
132The peer's numeric host and port (the socket peername) are passed as 134The peer's numeric host and port (the socket peername) are passed as
133parameters, together with a retry callback. At the time it is called the 135parameters, together with a retry callback. At the time it is called the
134read and write queues, EOF status, TLS status and similar properties of 136read and write queues, EOF status, TLS status and similar properties of
135the handle will have been reset. 137the handle will have been reset.
136
137It is not allowed to use the read or write queues while the handle object
138is connecting.
139 138
140If, for some reason, the handle is not acceptable, calling C<$retry> will 139If, for some reason, the handle is not acceptable, calling C<$retry> will
141continue with the next connection target (in case of multi-homed hosts or 140continue with the next connection target (in case of multi-homed hosts or
142SRV records there can be multiple connection endpoints). The C<$retry> 141SRV records there can be multiple connection endpoints). The C<$retry>
143callback can be invoked after the connect callback returns, i.e. one can 142callback can be invoked after the connect callback returns, i.e. one can
170with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In 169with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
171cases where the other side can close the connection at will, it is 170cases where the other side can close the connection at will, it is
172often easiest to not report C<EPIPE> errors in this callback. 171often easiest to not report C<EPIPE> errors in this callback.
173 172
174AnyEvent::Handle tries to find an appropriate error code for you to check 173AnyEvent::Handle tries to find an appropriate error code for you to check
175against, but in some cases (TLS errors), this does not work well. It is 174against, but in some cases (TLS errors), this does not work well.
176recommended to always output the C<$message> argument in human-readable 175
177error messages (it's usually the same as C<"$!">). 176If you report the error to the user, it is recommended to always output
177the C<$message> argument in human-readable error messages (you don't need
178to report C<"$!"> if you report C<$message>).
179
180If you want to react programmatically to the error, then looking at C<$!>
181and comparing it against some of the documented C<Errno> values is usually
182better than looking at the C<$message>.
178 183
179Non-fatal errors can be retried by returning, but it is recommended 184Non-fatal errors can be retried by returning, but it is recommended
180to simply ignore this parameter and instead abondon the handle object 185to simply ignore this parameter and instead abondon the handle object
181when this callback is invoked. Examples of non-fatal errors are timeouts 186when this callback is invoked. Examples of non-fatal errors are timeouts
182C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 187C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
423appropriate error message. 428appropriate error message.
424 429
425TLS mode requires Net::SSLeay to be installed (it will be loaded 430TLS mode requires Net::SSLeay to be installed (it will be loaded
426automatically when you try to create a TLS handle): this module doesn't 431automatically when you try to create a TLS handle): this module doesn't
427have a dependency on that module, so if your module requires it, you have 432have a dependency on that module, so if your module requires it, you have
428to add the dependency yourself. 433to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
434old, you get an C<EPROTO> error.
429 435
430Unlike TCP, TLS has a server and client side: for the TLS server side, use 436Unlike TCP, TLS has a server and client side: for the TLS server side, use
431C<accept>, and for the TLS client side of a connection, use C<connect> 437C<accept>, and for the TLS client side of a connection, use C<connect>
432mode. 438mode.
433 439
489callback. 495callback.
490 496
491This callback will only be called on TLS shutdowns, not when the 497This callback will only be called on TLS shutdowns, not when the
492underlying handle signals EOF. 498underlying handle signals EOF.
493 499
494=item json => JSON or JSON::XS object 500=item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
495 501
496This is the json coder object used by the C<json> read and write types. 502This is the json coder object used by the C<json> read and write types.
497 503
498If you don't supply it, then AnyEvent::Handle will create and use a 504If you don't supply it, then AnyEvent::Handle will create and use a
499suitable one (on demand), which will write and expect UTF-8 encoded JSON 505suitable one (on demand), which will write and expect UTF-8 encoded
506JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
507guaranteed not to contain any newline character.
508
509For security reasons, this encoder will likely I<not> handle numbers and
510strings, only arrays and objects/hashes. The reason is that originally
511JSON was self-delimited, but Dougles Crockford thought it was a splendid
512idea to redefine JSON incompatibly, so this is no longer true.
513
514For protocols that used back-to-back JSON texts, this might lead to
515run-ins, where two or more JSON texts will be interpreted as one JSON
500texts. 516text.
501 517
518For this reason, if the default encoder uses L<JSON::XS>, it will default
519to not allowing anything but arrays and objects/hashes, at least for the
520forseeable future (it will change at some point). This might or might not
521be true for the L<JSON> module, so this might cause a security issue.
522
523If you depend on either behaviour, you should create your own json object
524and pass it in explicitly.
525
526=item cbor => L<CBOR::XS> object
527
528This is the cbor coder object used by the C<cbor> read and write types.
529
530If you don't supply it, then AnyEvent::Handle will create and use a
531suitable one (on demand), which will write CBOR without using extensions,
532if possible.
533
502Note that you are responsible to depend on the JSON module if you want to 534Note that you are responsible to depend on the L<CBOR::XS> module if you
503use this functionality, as AnyEvent does not have a dependency itself. 535want to use this functionality, as AnyEvent does not have a dependency on
536it itself.
504 537
505=back 538=back
506 539
507=cut 540=cut
508 541
550 } else { 583 } else {
551 if ($self->{on_connect_error}) { 584 if ($self->{on_connect_error}) {
552 $self->{on_connect_error}($self, "$!"); 585 $self->{on_connect_error}($self, "$!");
553 $self->destroy if $self; 586 $self->destroy if $self;
554 } else { 587 } else {
555 $self->_error ($!, 1); 588 $self->error ($!, 1);
556 } 589 }
557 } 590 }
558 }, 591 },
559 sub { 592 sub {
560 local $self->{fh} = $_[0]; 593 local $self->{fh} = $_[0];
580 # with AnyEvent::Handle, do them a favour. 613 # with AnyEvent::Handle, do them a favour.
581 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE (); 614 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
582 Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!" 615 Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
583 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type; 616 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
584 617
585 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 618 AnyEvent::fh_unblock $self->{fh};
586 619
587 $self->{_activity} = 620 $self->{_activity} =
588 $self->{_ractivity} = 621 $self->{_ractivity} =
589 $self->{_wactivity} = AE::now; 622 $self->{_wactivity} = AE::now;
590 623
610 if $self->{on_read} || @{ $self->{_queue} }; 643 if $self->{on_read} || @{ $self->{_queue} };
611 644
612 $self->_drain_wbuf; 645 $self->_drain_wbuf;
613} 646}
614 647
648=item $handle->error ($errno[, $fatal[, $message]])
649
650Generates an error event, just like AnyEvent::Handle itself would do, i.e.
651calls the C<on_error> callback.
652
653Te only rerquired parameter is C<$errno>, which sets C<$!>. C<$fatal>
654defaults to false and C<$message> defaults to the stringified version
655of C<$1>.
656
657Example: generate C<EIO> when you read unexpected data.
658
659 $handle->push_read (line => sub {
660 $_[1] eq "hello"
661 or return $handle->error (Errno::EIO);
662 });
663
664=cut
665
615sub _error { 666sub error {
616 my ($self, $errno, $fatal, $message) = @_; 667 my ($self, $errno, $fatal, $message) = @_;
617 668
618 $! = $errno; 669 $! = $errno;
619 $message ||= "$!"; 670 $message ||= "$!";
620 671
726 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1] 777 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
727 if $_[0]{fh}; 778 if $_[0]{fh};
728 }; 779 };
729} 780}
730 781
731=item $handle->keepalive ($boolean)
732
733Enables or disables the C<keepalive> setting (see constructor argument of
734the same name for details).
735
736=cut
737
738sub keepalive {
739 $_[0]{keepalive} = $_[1];
740
741 eval {
742 local $SIG{__DIE__};
743 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
744 if $_[0]{fh};
745 };
746}
747
748=item $handle->on_starttls ($cb) 782=item $handle->on_starttls ($cb)
749 783
750Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument). 784Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
751 785
752=cut 786=cut
850 $self->{$activity} = $NOW; 884 $self->{$activity} = $NOW;
851 885
852 if ($self->{$on_timeout}) { 886 if ($self->{$on_timeout}) {
853 $self->{$on_timeout}($self); 887 $self->{$on_timeout}($self);
854 } else { 888 } else {
855 $self->_error (Errno::ETIMEDOUT); 889 $self->error (Errno::ETIMEDOUT);
856 } 890 }
857 891
858 # callback could have changed timeout value, optimise 892 # callback could have changed timeout value, optimise
859 return unless $self->{$timeout}; 893 return unless $self->{$timeout};
860 894
940 $self->{on_drain}($self) 974 $self->{on_drain}($self)
941 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 975 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
942 && $self->{on_drain}; 976 && $self->{on_drain};
943 977
944 delete $self->{_ww} unless length $self->{wbuf}; 978 delete $self->{_ww} unless length $self->{wbuf};
945 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 979 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
946 $self->_error ($!, 1); 980 $self->error ($!, 1);
947 } 981 }
948 }; 982 };
949 983
950 # try to write data immediately 984 # try to write data immediately
951 $cb->() unless $self->{autocork}; 985 $cb->() unless $self->{autocork};
956 990
957 if ( 991 if (
958 defined $self->{wbuf_max} 992 defined $self->{wbuf_max}
959 && $self->{wbuf_max} < length $self->{wbuf} 993 && $self->{wbuf_max} < length $self->{wbuf}
960 ) { 994 ) {
961 $self->_error (Errno::ENOSPC, 1), return; 995 $self->error (Errno::ENOSPC, 1), return;
962 } 996 }
963 }; 997 };
964} 998}
965 999
966our %WH; 1000our %WH;
1038 1072
1039Encodes the given hash or array reference into a JSON object. Unless you 1073Encodes the given hash or array reference into a JSON object. Unless you
1040provide your own JSON object, this means it will be encoded to JSON text 1074provide your own JSON object, this means it will be encoded to JSON text
1041in UTF-8. 1075in UTF-8.
1042 1076
1077The default encoder might or might not handle every type of JSON value -
1078it might be limited to arrays and objects for security reasons. See the
1079C<json> constructor attribute for more details.
1080
1043JSON objects (and arrays) are self-delimiting, so you can write JSON at 1081JSON objects (and arrays) are self-delimiting, so if you only use arrays
1044one end of a handle and read them at the other end without using any 1082and hashes, you can write JSON at one end of a handle and read them at the
1045additional framing. 1083other end without using any additional framing.
1046 1084
1047The generated JSON text is guaranteed not to contain any newlines: While 1085The JSON text generated by the default encoder is guaranteed not to
1048this module doesn't need delimiters after or between JSON texts to be 1086contain any newlines: While this module doesn't need delimiters after or
1049able to read them, many other languages depend on that. 1087between JSON texts to be able to read them, many other languages depend on
1088them.
1050 1089
1051A simple RPC protocol that interoperates easily with others is to send 1090A simple RPC protocol that interoperates easily with other languages is
1052JSON arrays (or objects, although arrays are usually the better choice as 1091to send JSON arrays (or objects, although arrays are usually the better
1053they mimic how function argument passing works) and a newline after each 1092choice as they mimic how function argument passing works) and a newline
1054JSON text: 1093after each JSON text:
1055 1094
1056 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever 1095 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1057 $handle->push_write ("\012"); 1096 $handle->push_write ("\012");
1058 1097
1059An AnyEvent::Handle receiver would simply use the C<json> read type and 1098An AnyEvent::Handle receiver would simply use the C<json> read type and
1062 $handle->push_read (json => sub { my $array = $_[1]; ... }); 1101 $handle->push_read (json => sub { my $array = $_[1]; ... });
1063 1102
1064Other languages could read single lines terminated by a newline and pass 1103Other languages could read single lines terminated by a newline and pass
1065this line into their JSON decoder of choice. 1104this line into their JSON decoder of choice.
1066 1105
1106=item cbor => $perl_scalar
1107
1108Encodes the given scalar into a CBOR value. Unless you provide your own
1109L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1110using any extensions, if possible.
1111
1112CBOR values are self-delimiting, so you can write CBOR at one end of
1113a handle and read them at the other end without using any additional
1114framing.
1115
1116A simple nd very very fast RPC protocol that interoperates with
1117other languages is to send CBOR and receive CBOR values (arrays are
1118recommended):
1119
1120 $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1121
1122An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1123
1124 $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1125
1067=cut 1126=cut
1068 1127
1069sub json_coder() { 1128sub json_coder() {
1070 eval { require JSON::XS; JSON::XS->new->utf8 } 1129 eval { require JSON::XS; JSON::XS->new->utf8 }
1071 || do { require JSON; JSON->new->utf8 } 1130 || do { require JSON::PP; JSON::PP->new->utf8 }
1072} 1131}
1073 1132
1074register_write_type json => sub { 1133register_write_type json => sub {
1075 my ($self, $ref) = @_; 1134 my ($self, $ref) = @_;
1076 1135
1077 my $json = $self->{json} ||= json_coder; 1136 ($self->{json} ||= json_coder)
1078
1079 $json->encode ($ref) 1137 ->encode ($ref)
1138};
1139
1140sub cbor_coder() {
1141 require CBOR::XS;
1142 CBOR::XS->new
1143}
1144
1145register_write_type cbor => sub {
1146 my ($self, $scalar) = @_;
1147
1148 ($self->{cbor} ||= cbor_coder)
1149 ->encode ($scalar)
1080}; 1150};
1081 1151
1082=item storable => $reference 1152=item storable => $reference
1083 1153
1084Freezes the given reference using L<Storable> and writes it to the 1154Freezes the given reference using L<Storable> and writes it to the
1261 1331
1262 if (my $cb = shift @{ $self->{_queue} }) { 1332 if (my $cb = shift @{ $self->{_queue} }) {
1263 unless ($cb->($self)) { 1333 unless ($cb->($self)) {
1264 # no progress can be made 1334 # no progress can be made
1265 # (not enough data and no data forthcoming) 1335 # (not enough data and no data forthcoming)
1266 $self->_error (Errno::EPIPE, 1), return 1336 $self->error (Errno::EPIPE, 1), return
1267 if $self->{_eof}; 1337 if $self->{_eof};
1268 1338
1269 unshift @{ $self->{_queue} }, $cb; 1339 unshift @{ $self->{_queue} }, $cb;
1270 last; 1340 last;
1271 } 1341 }
1279 && !@{ $self->{_queue} } # and the queue is still empty 1349 && !@{ $self->{_queue} } # and the queue is still empty
1280 && $self->{on_read} # but we still have on_read 1350 && $self->{on_read} # but we still have on_read
1281 ) { 1351 ) {
1282 # no further data will arrive 1352 # no further data will arrive
1283 # so no progress can be made 1353 # so no progress can be made
1284 $self->_error (Errno::EPIPE, 1), return 1354 $self->error (Errno::EPIPE, 1), return
1285 if $self->{_eof}; 1355 if $self->{_eof};
1286 1356
1287 last; # more data might arrive 1357 last; # more data might arrive
1288 } 1358 }
1289 } else { 1359 } else {
1294 } 1364 }
1295 1365
1296 if ($self->{_eof}) { 1366 if ($self->{_eof}) {
1297 $self->{on_eof} 1367 $self->{on_eof}
1298 ? $self->{on_eof}($self) 1368 ? $self->{on_eof}($self)
1299 : $self->_error (0, 1, "Unexpected end-of-file"); 1369 : $self->error (0, 1, "Unexpected end-of-file");
1300 1370
1301 return; 1371 return;
1302 } 1372 }
1303 1373
1304 if ( 1374 if (
1305 defined $self->{rbuf_max} 1375 defined $self->{rbuf_max}
1306 && $self->{rbuf_max} < length $self->{rbuf} 1376 && $self->{rbuf_max} < length $self->{rbuf}
1307 ) { 1377 ) {
1308 $self->_error (Errno::ENOSPC, 1), return; 1378 $self->error (Errno::ENOSPC, 1), return;
1309 } 1379 }
1310 1380
1311 # may need to restart read watcher 1381 # may need to restart read watcher
1312 unless ($self->{_rw}) { 1382 unless ($self->{_rw}) {
1313 $self->start_read 1383 $self->start_read
1478 1548
1479register_read_type line => sub { 1549register_read_type line => sub {
1480 my ($self, $cb, $eol) = @_; 1550 my ($self, $cb, $eol) = @_;
1481 1551
1482 if (@_ < 3) { 1552 if (@_ < 3) {
1483 # this is more than twice as fast as the generic code below 1553 # this is faster then the generic code below
1484 sub { 1554 sub {
1485 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return; 1555 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1556 or return;
1486 1557
1558 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1487 $cb->($_[0], "$1", "$2"); 1559 $cb->($_[0], $str, "$1");
1488 1 1560 1
1489 } 1561 }
1490 } else { 1562 } else {
1491 $eol = quotemeta $eol unless ref $eol; 1563 $eol = quotemeta $eol unless ref $eol;
1492 $eol = qr|^(.*?)($eol)|s; 1564 $eol = qr|^(.*?)($eol)|s;
1501}; 1573};
1502 1574
1503=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1575=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1504 1576
1505Makes a regex match against the regex object C<$accept> and returns 1577Makes a regex match against the regex object C<$accept> and returns
1506everything up to and including the match. 1578everything up to and including the match. All the usual regex variables
1579($1, %+ etc.) from the regex match are available in the callback.
1507 1580
1508Example: read a single line terminated by '\n'. 1581Example: read a single line terminated by '\n'.
1509 1582
1510 $handle->push_read (regex => qr<\n>, sub { ... }); 1583 $handle->push_read (regex => qr<\n>, sub { ... });
1511 1584
1556 return 1; 1629 return 1;
1557 } 1630 }
1558 1631
1559 # reject 1632 # reject
1560 if ($reject && $$rbuf =~ $reject) { 1633 if ($reject && $$rbuf =~ $reject) {
1561 $_[0]->_error (Errno::EBADMSG); 1634 $_[0]->error (Errno::EBADMSG);
1562 } 1635 }
1563 1636
1564 # skip 1637 # skip
1565 if ($skip && $$rbuf =~ $skip) { 1638 if ($skip && $$rbuf =~ $skip) {
1566 $data .= substr $$rbuf, 0, $+[0], ""; 1639 $data .= substr $$rbuf, 0, $+[0], "";
1582 my ($self, $cb) = @_; 1655 my ($self, $cb) = @_;
1583 1656
1584 sub { 1657 sub {
1585 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1658 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1586 if ($_[0]{rbuf} =~ /[^0-9]/) { 1659 if ($_[0]{rbuf} =~ /[^0-9]/) {
1587 $_[0]->_error (Errno::EBADMSG); 1660 $_[0]->error (Errno::EBADMSG);
1588 } 1661 }
1589 return; 1662 return;
1590 } 1663 }
1591 1664
1592 my $len = $1; 1665 my $len = $1;
1595 my $string = $_[1]; 1668 my $string = $_[1];
1596 $_[0]->unshift_read (chunk => 1, sub { 1669 $_[0]->unshift_read (chunk => 1, sub {
1597 if ($_[1] eq ",") { 1670 if ($_[1] eq ",") {
1598 $cb->($_[0], $string); 1671 $cb->($_[0], $string);
1599 } else { 1672 } else {
1600 $_[0]->_error (Errno::EBADMSG); 1673 $_[0]->error (Errno::EBADMSG);
1601 } 1674 }
1602 }); 1675 });
1603 }); 1676 });
1604 1677
1605 1 1678 1
1655=item json => $cb->($handle, $hash_or_arrayref) 1728=item json => $cb->($handle, $hash_or_arrayref)
1656 1729
1657Reads a JSON object or array, decodes it and passes it to the 1730Reads a JSON object or array, decodes it and passes it to the
1658callback. When a parse error occurs, an C<EBADMSG> error will be raised. 1731callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1659 1732
1660If a C<json> object was passed to the constructor, then that will be used 1733If a C<json> object was passed to the constructor, then that will be
1661for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1734used for the final decode, otherwise it will create a L<JSON::XS> or
1735L<JSON::PP> coder object expecting UTF-8.
1662 1736
1663This read type uses the incremental parser available with JSON version 1737This read type uses the incremental parser available with JSON version
16642.09 (and JSON::XS version 2.2) and above. You have to provide a 17382.09 (and JSON::XS version 2.2) and above.
1665dependency on your own: this module will load the JSON module, but
1666AnyEvent does not depend on it itself.
1667 1739
1668Since JSON texts are fully self-delimiting, the C<json> read and write 1740Since JSON texts are fully self-delimiting, the C<json> read and write
1669types are an ideal simple RPC protocol: just exchange JSON datagrams. See 1741types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1670the C<json> write type description, above, for an actual example. 1742the C<json> write type description, above, for an actual example.
1671 1743
1675 my ($self, $cb) = @_; 1747 my ($self, $cb) = @_;
1676 1748
1677 my $json = $self->{json} ||= json_coder; 1749 my $json = $self->{json} ||= json_coder;
1678 1750
1679 my $data; 1751 my $data;
1680 my $rbuf = \$self->{rbuf};
1681 1752
1682 sub { 1753 sub {
1683 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) }; 1754 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1684 1755
1685 if ($ref) { 1756 if ($ref) {
1693 $json->incr_skip; 1764 $json->incr_skip;
1694 1765
1695 $_[0]{rbuf} = $json->incr_text; 1766 $_[0]{rbuf} = $json->incr_text;
1696 $json->incr_text = ""; 1767 $json->incr_text = "";
1697 1768
1698 $_[0]->_error (Errno::EBADMSG); 1769 $_[0]->error (Errno::EBADMSG);
1699 1770
1700 () 1771 ()
1701 } else { 1772 } else {
1702 $_[0]{rbuf} = ""; 1773 $_[0]{rbuf} = "";
1703 1774
1775 ()
1776 }
1777 }
1778};
1779
1780=item cbor => $cb->($handle, $scalar)
1781
1782Reads a CBOR value, decodes it and passes it to the callback. When a parse
1783error occurs, an C<EBADMSG> error will be raised.
1784
1785If a L<CBOR::XS> object was passed to the constructor, then that will be
1786used for the final decode, otherwise it will create a CBOR coder without
1787enabling any options.
1788
1789You have to provide a dependency to L<CBOR::XS> on your own: this module
1790will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1791itself.
1792
1793Since CBOR values are fully self-delimiting, the C<cbor> read and write
1794types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1795the C<cbor> write type description, above, for an actual example.
1796
1797=cut
1798
1799register_read_type cbor => sub {
1800 my ($self, $cb) = @_;
1801
1802 my $cbor = $self->{cbor} ||= cbor_coder;
1803
1804 my $data;
1805
1806 sub {
1807 my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1808
1809 if (@value) {
1810 $cb->($_[0], @value);
1811
1812 1
1813 } elsif ($@) {
1814 # error case
1815 $cbor->incr_reset;
1816
1817 $_[0]->error (Errno::EBADMSG);
1818
1819 ()
1820 } else {
1704 () 1821 ()
1705 } 1822 }
1706 } 1823 }
1707}; 1824};
1708 1825
1730 1847
1731 # bypass unshift if we already have the remaining chunk 1848 # bypass unshift if we already have the remaining chunk
1732 if ($format + $len <= length $_[0]{rbuf}) { 1849 if ($format + $len <= length $_[0]{rbuf}) {
1733 my $data = substr $_[0]{rbuf}, $format, $len; 1850 my $data = substr $_[0]{rbuf}, $format, $len;
1734 substr $_[0]{rbuf}, 0, $format + $len, ""; 1851 substr $_[0]{rbuf}, 0, $format + $len, "";
1852
1735 $cb->($_[0], Storable::thaw ($data)); 1853 eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1854 or return $_[0]->error (Errno::EBADMSG);
1736 } else { 1855 } else {
1737 # remove prefix 1856 # remove prefix
1738 substr $_[0]{rbuf}, 0, $format, ""; 1857 substr $_[0]{rbuf}, 0, $format, "";
1739 1858
1740 # read remaining chunk 1859 # read remaining chunk
1741 $_[0]->unshift_read (chunk => $len, sub { 1860 $_[0]->unshift_read (chunk => $len, sub {
1742 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1861 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1743 $cb->($_[0], $ref);
1744 } else {
1745 $_[0]->_error (Errno::EBADMSG); 1862 or $_[0]->error (Errno::EBADMSG);
1746 }
1747 }); 1863 });
1748 } 1864 }
1749 1865
1750 1 1866 1
1751 } 1867 }
1868};
1869
1870=item tls_detect => $cb->($handle, $detect, $major, $minor)
1871
1872Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1873record without consuming anything. Only SSL version 3 or higher
1874is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1875SSL2-compatible framing is supported).
1876
1877If it detects that the input data is likely TLS, it calls the callback
1878with a true value for C<$detect> and the (on-wire) TLS version as second
1879and third argument (C<$major> is C<3>, and C<$minor> is 0..4 for SSL
18803.0, TLS 1.0, 1.1, 1.2 and 1.3, respectively). If it detects the input
1881to be definitely not TLS, it calls the callback with a false value for
1882C<$detect>.
1883
1884The callback could use this information to decide whether or not to start
1885TLS negotiation.
1886
1887In all cases the data read so far is passed to the following read
1888handlers.
1889
1890Usually you want to use the C<tls_autostart> read type instead.
1891
1892If you want to design a protocol that works in the presence of TLS
1893dtection, make sure that any non-TLS data doesn't start with the octet 22
1894(ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1895read type does are a bit more strict, but might losen in the future to
1896accomodate protocol changes.
1897
1898This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1899L<Net::SSLeay>).
1900
1901=item tls_autostart => [$tls_ctx, ]$tls
1902
1903Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1904to start tls by calling C<starttls> with the given arguments.
1905
1906In practice, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1907been configured to accept, as servers do not normally send a handshake on
1908their own and ths cannot be detected in this way.
1909
1910See C<tls_detect> above for more details.
1911
1912Example: give the client a chance to start TLS before accepting a text
1913line.
1914
1915 $hdl->push_read (tls_autostart => "accept");
1916 $hdl->push_read (line => sub {
1917 print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1918 });
1919
1920=cut
1921
1922register_read_type tls_detect => sub {
1923 my ($self, $cb) = @_;
1924
1925 sub {
1926 # this regex matches a full or partial tls record
1927 if (
1928 # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1929 $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1930 # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1931 or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1932 ) {
1933 return if 3 != length $1; # partial match, can't decide yet
1934
1935 # full match, valid TLS record
1936 my ($major, $minor) = unpack "CC", $1;
1937 $cb->($self, "accept", $major, $minor);
1938 } else {
1939 # mismatch == guaranteed not TLS
1940 $cb->($self, undef);
1941 }
1942
1943 1
1944 }
1945};
1946
1947register_read_type tls_autostart => sub {
1948 my ($self, @tls) = @_;
1949
1950 $RH{tls_detect}($self, sub {
1951 return unless $_[1];
1952 $_[0]->starttls (@tls);
1953 })
1752}; 1954};
1753 1955
1754=back 1956=back
1755 1957
1756=item custom read types - Package::anyevent_read_type $handle, $cb, @args 1958=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1840 } elsif (defined $len) { 2042 } elsif (defined $len) {
1841 delete $self->{_rw}; 2043 delete $self->{_rw};
1842 $self->{_eof} = 1; 2044 $self->{_eof} = 1;
1843 $self->_drain_rbuf; 2045 $self->_drain_rbuf;
1844 2046
1845 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 2047 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
1846 return $self->_error ($!, 1); 2048 return $self->error ($!, 1);
1847 } 2049 }
1848 }; 2050 };
1849 } 2051 }
1850} 2052}
1851 2053
1853our $ERROR_WANT_READ; 2055our $ERROR_WANT_READ;
1854 2056
1855sub _tls_error { 2057sub _tls_error {
1856 my ($self, $err) = @_; 2058 my ($self, $err) = @_;
1857 2059
1858 return $self->_error ($!, 1) 2060 return $self->error ($!, 1)
1859 if $err == Net::SSLeay::ERROR_SYSCALL (); 2061 if $err == Net::SSLeay::ERROR_SYSCALL ();
1860 2062
1861 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ()); 2063 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1862 2064
1863 # reduce error string to look less scary 2065 # reduce error string to look less scary
1864 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /; 2066 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1865 2067
1866 if ($self->{_on_starttls}) { 2068 if ($self->{_on_starttls}) {
1867 (delete $self->{_on_starttls})->($self, undef, $err); 2069 (delete $self->{_on_starttls})->($self, undef, $err);
1868 &_freetls; 2070 &_freetls;
1869 } else { 2071 } else {
1870 &_freetls; 2072 &_freetls;
1871 $self->_error (Errno::EPROTO, 1, $err); 2073 $self->error (Errno::EPROTO, 1, $err);
1872 } 2074 }
1873} 2075}
1874 2076
1875# poll the write BIO and send the data if applicable 2077# poll the write BIO and send the data if applicable
1876# also decode read data if possible 2078# also decode read data if possible
1877# this is basiclaly our TLS state machine 2079# this is basically our TLS state machine
1878# more efficient implementations are possible with openssl, 2080# more efficient implementations are possible with openssl,
1879# but not with the buggy and incomplete Net::SSLeay. 2081# but not with the buggy and incomplete Net::SSLeay.
1880sub _dotls { 2082sub _dotls {
1881 my ($self) = @_; 2083 my ($self) = @_;
1882 2084
1883 my $tmp; 2085 my $tmp;
1884 2086
1885 if (length $self->{_tls_wbuf}) { 2087 while (length $self->{_tls_wbuf}) {
1886 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 2088 if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
1887 substr $self->{_tls_wbuf}, 0, $tmp, ""; 2089 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2090
2091 return $self->_tls_error ($tmp)
2092 if $tmp != $ERROR_WANT_READ
2093 && ($tmp != $ERROR_SYSCALL || $!);
2094
2095 last;
1888 } 2096 }
1889 2097
1890 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp); 2098 substr $self->{_tls_wbuf}, 0, $tmp, "";
1891 return $self->_tls_error ($tmp)
1892 if $tmp != $ERROR_WANT_READ
1893 && ($tmp != $ERROR_SYSCALL || $!);
1894 } 2099 }
1895 2100
1896 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 2101 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1897 unless (length $tmp) { 2102 unless (length $tmp) {
1898 $self->{_on_starttls} 2103 $self->{_on_starttls}
1912 $self->{_tls_rbuf} .= $tmp; 2117 $self->{_tls_rbuf} .= $tmp;
1913 $self->_drain_rbuf; 2118 $self->_drain_rbuf;
1914 $self->{tls} or return; # tls session might have gone away in callback 2119 $self->{tls} or return; # tls session might have gone away in callback
1915 } 2120 }
1916 2121
1917 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 2122 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
1918 return $self->_tls_error ($tmp) 2123 return $self->_tls_error ($tmp)
1919 if $tmp != $ERROR_WANT_READ 2124 if $tmp != $ERROR_WANT_READ
1920 && ($tmp != $ERROR_SYSCALL || $!); 2125 && ($tmp != $ERROR_SYSCALL || $!);
1921 2126
1922 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 2127 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1932 2137
1933=item $handle->starttls ($tls[, $tls_ctx]) 2138=item $handle->starttls ($tls[, $tls_ctx])
1934 2139
1935Instead of starting TLS negotiation immediately when the AnyEvent::Handle 2140Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1936object is created, you can also do that at a later time by calling 2141object is created, you can also do that at a later time by calling
1937C<starttls>. 2142C<starttls>. See the C<tls> constructor argument for general info.
1938 2143
1939Starting TLS is currently an asynchronous operation - when you push some 2144Starting TLS is currently an asynchronous operation - when you push some
1940write data and then call C<< ->starttls >> then TLS negotiation will start 2145write data and then call C<< ->starttls >> then TLS negotiation will start
1941immediately, after which the queued write data is then sent. 2146immediately, after which the queued write data is then sent. This might
2147change in future versions, so best make sure you have no outstanding write
2148data when calling this method.
1942 2149
1943The first argument is the same as the C<tls> constructor argument (either 2150The first argument is the same as the C<tls> constructor argument (either
1944C<"connect">, C<"accept"> or an existing Net::SSLeay object). 2151C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1945 2152
1946The second argument is the optional C<AnyEvent::TLS> object that is used 2153The second argument is the optional C<AnyEvent::TLS> object that is used
1968 my ($self, $tls, $ctx) = @_; 2175 my ($self, $tls, $ctx) = @_;
1969 2176
1970 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught" 2177 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1971 if $self->{tls}; 2178 if $self->{tls};
1972 2179
2180 unless (defined $AnyEvent::TLS::VERSION) {
2181 eval {
2182 require Net::SSLeay;
2183 require AnyEvent::TLS;
2184 1
2185 } or return $self->error (Errno::EPROTO, 1, "TLS support not available on this system");
2186 }
2187
1973 $self->{tls} = $tls; 2188 $self->{tls} = $tls;
1974 $self->{tls_ctx} = $ctx if @_ > 2; 2189 $self->{tls_ctx} = $ctx if @_ > 2;
1975 2190
1976 return unless $self->{fh}; 2191 return unless $self->{fh};
1977 2192
1978 require Net::SSLeay;
1979
1980 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL (); 2193 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1981 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ (); 2194 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1982 2195
1983 $tls = delete $self->{tls}; 2196 $tls = delete $self->{tls};
1984 $ctx = $self->{tls_ctx}; 2197 $ctx = $self->{tls_ctx};
1985 2198
1986 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session 2199 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1987 2200
1988 if ("HASH" eq ref $ctx) { 2201 if ("HASH" eq ref $ctx) {
1989 require AnyEvent::TLS;
1990
1991 if ($ctx->{cache}) { 2202 if ($ctx->{cache}) {
1992 my $key = $ctx+0; 2203 my $key = $ctx+0;
1993 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx; 2204 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1994 } else { 2205 } else {
1995 $ctx = new AnyEvent::TLS %$ctx; 2206 $ctx = new AnyEvent::TLS %$ctx;
2000 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername}); 2211 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2001 2212
2002 # basically, this is deep magic (because SSL_read should have the same issues) 2213 # basically, this is deep magic (because SSL_read should have the same issues)
2003 # but the openssl maintainers basically said: "trust us, it just works". 2214 # but the openssl maintainers basically said: "trust us, it just works".
2004 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 2215 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2005 # and mismaintained ssleay-module doesn't even offer them). 2216 # and mismaintained ssleay-module didn't offer them for a decade or so).
2006 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 2217 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2007 # 2218 #
2008 # in short: this is a mess. 2219 # in short: this is a mess.
2009 # 2220 #
2010 # note that we do not try to keep the length constant between writes as we are required to do. 2221 # note that we do not try to keep the length constant between writes as we are required to do.
2011 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 2222 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2012 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 2223 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2013 # have identity issues in that area. 2224 # have identity issues in that area.
2014# Net::SSLeay::CTX_set_mode ($ssl, 2225# Net::SSLeay::set_mode ($ssl,
2015# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 2226# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2016# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 2227# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2017 Net::SSLeay::CTX_set_mode ($tls, 1|2); 2228 Net::SSLeay::set_mode ($tls, 1|2);
2018 2229
2019 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 2230 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2020 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 2231 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2021 2232
2022 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf}); 2233 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2062 2273
2063 return unless $self->{tls}; 2274 return unless $self->{tls};
2064 2275
2065 $self->{tls_ctx}->_put_session (delete $self->{tls}) 2276 $self->{tls_ctx}->_put_session (delete $self->{tls})
2066 if $self->{tls} > 0; 2277 if $self->{tls} > 0;
2067 2278
2068 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)}; 2279 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2069} 2280}
2070 2281
2071=item $handle->resettls 2282=item $handle->resettls
2072 2283
2097 push @linger, AE::io $fh, 1, sub { 2308 push @linger, AE::io $fh, 1, sub {
2098 my $len = syswrite $fh, $wbuf, length $wbuf; 2309 my $len = syswrite $fh, $wbuf, length $wbuf;
2099 2310
2100 if ($len > 0) { 2311 if ($len > 0) {
2101 substr $wbuf, 0, $len, ""; 2312 substr $wbuf, 0, $len, "";
2102 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) { 2313 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2103 @linger = (); # end 2314 @linger = (); # end
2104 } 2315 }
2105 }; 2316 };
2106 push @linger, AE::timer $linger, 0, sub { 2317 push @linger, AE::timer $linger, 0, sub {
2107 @linger = (); 2318 @linger = ();
2228handles requests until the server gets some QUIT command, causing it to 2439handles requests until the server gets some QUIT command, causing it to
2229close the connection first (highly desirable for a busy TCP server). A 2440close the connection first (highly desirable for a busy TCP server). A
2230client dropping the connection is an error, which means this variant can 2441client dropping the connection is an error, which means this variant can
2231detect an unexpected detection close. 2442detect an unexpected detection close.
2232 2443
2233To handle this case, always make sure you have a on-empty read queue, by 2444To handle this case, always make sure you have a non-empty read queue, by
2234pushing the "read request start" handler on it: 2445pushing the "read request start" handler on it:
2235 2446
2236 # we assume a request starts with a single line 2447 # we assume a request starts with a single line
2237 my @start_request; @start_request = (line => sub { 2448 my @start_request; @start_request = (line => sub {
2238 my ($hdl, $line) = @_; 2449 my ($hdl, $line) = @_;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines