ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.32 by root, Sun May 25 01:10:54 2008 UTC vs.
Revision 1.87 by root, Thu Aug 21 20:52:39 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEAGAIN); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.232;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($self) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
81 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
82While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
83otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
84waiting for data. 95waiting for data.
85 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
86=item on_error => $cb->($self) 100=item on_error => $cb->($handle, $fatal)
87 101
88This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
90or a read error. 104connect or a read error.
91 105
92The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 116
95On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 119
98While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
99you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
100die. 122C<croak>.
101 123
102=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
103 125
104This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
105and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
106 130
107To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
108method or access the C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
109 133
110When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
111feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
112calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
113error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
114 138
115=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
116 140
117This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
118(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
119 143
120To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
121 171
122=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
123 173
124If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
125when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
129be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
130(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
131amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
132isn't finished). 182isn't finished).
133 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
134=item read_size => <bytes> 208=item read_size => <bytes>
135 209
136The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
137on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
138 212
139=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
140 214
141Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
142buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
143considered empty. 217considered empty.
144 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
145=item tls => "accept" | "connect" | Net::SSLeay::SSL object 230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
146 231
147When this parameter is given, it enables TLS (SSL) mode, that means it 232When this parameter is given, it enables TLS (SSL) mode, that means
148will start making tls handshake and will transparently encrypt/decrypt 233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
149data. 234data.
150 235
151TLS mode requires Net::SSLeay to be installed (it will be loaded 236TLS mode requires Net::SSLeay to be installed (it will be loaded
152automatically when you try to create a TLS handle). 237automatically when you try to create a TLS handle).
153 238
154For the TLS server side, use C<accept>, and for the TLS client side of a 239Unlike TCP, TLS has a server and client side: for the TLS server side, use
155connection, use C<connect> mode. 240C<accept>, and for the TLS client side of a connection, use C<connect>
241mode.
156 242
157You can also provide your own TLS connection object, but you have 243You can also provide your own TLS connection object, but you have
158to make sure that you call either C<Net::SSLeay::set_connect_state> 244to make sure that you call either C<Net::SSLeay::set_connect_state>
159or C<Net::SSLeay::set_accept_state> on it before you pass it to 245or C<Net::SSLeay::set_accept_state> on it before you pass it to
160AnyEvent::Handle. 246AnyEvent::Handle.
161 247
162See the C<starttls> method if you need to start TLs negotiation later. 248See the C<starttls> method for when need to start TLS negotiation later.
163 249
164=item tls_ctx => $ssl_ctx 250=item tls_ctx => $ssl_ctx
165 251
166Use the given Net::SSLeay::CTX object to create the new TLS connection 252Use the given Net::SSLeay::CTX object to create the new TLS connection
167(unless a connection object was specified directly). If this parameter is 253(unless a connection object was specified directly). If this parameter is
168missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
169 255
256=item json => JSON or JSON::XS object
257
258This is the json coder object used by the C<json> read and write types.
259
260If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one (on demand), which will write and expect UTF-8 encoded JSON
262texts.
263
264Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself.
266
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time. (They are used internally
272by the TLS code).
273
170=back 274=back
171 275
172=cut 276=cut
173 277
174sub new { 278sub new {
183 if ($self->{tls}) { 287 if ($self->{tls}) {
184 require Net::SSLeay; 288 require Net::SSLeay;
185 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 289 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
186 } 290 }
187 291
188 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 292 $self->{_activity} = AnyEvent->now;
189 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 293 $self->_timeout;
294
190 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 295 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
191 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 296 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
192 297
193 $self->start_read; 298 $self->start_read
299 if $self->{on_read};
194 300
195 $self 301 $self
196} 302}
197 303
198sub _shutdown { 304sub _shutdown {
199 my ($self) = @_; 305 my ($self) = @_;
200 306
307 delete $self->{_tw};
201 delete $self->{rw}; 308 delete $self->{_rw};
202 delete $self->{ww}; 309 delete $self->{_ww};
203 delete $self->{fh}; 310 delete $self->{fh};
204}
205 311
312 $self->stoptls;
313
314 delete $self->{on_read};
315 delete $self->{_queue};
316}
317
206sub error { 318sub _error {
207 my ($self) = @_; 319 my ($self, $errno, $fatal) = @_;
208 320
209 {
210 local $!;
211 $self->_shutdown; 321 $self->_shutdown
212 } 322 if $fatal;
323
324 $! = $errno;
213 325
214 if ($self->{on_error}) { 326 if ($self->{on_error}) {
215 $self->{on_error}($self); 327 $self->{on_error}($self, $fatal);
216 } else { 328 } else {
217 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 329 Carp::croak "AnyEvent::Handle uncaught error: $!";
218 } 330 }
219} 331}
220 332
221=item $fh = $handle->fh 333=item $fh = $handle->fh
222 334
223This method returns the file handle of the L<AnyEvent::Handle> object. 335This method returns the file handle of the L<AnyEvent::Handle> object.
224 336
225=cut 337=cut
226 338
227sub fh { $_[0]->{fh} } 339sub fh { $_[0]{fh} }
228 340
229=item $handle->on_error ($cb) 341=item $handle->on_error ($cb)
230 342
231Replace the current C<on_error> callback (see the C<on_error> constructor argument). 343Replace the current C<on_error> callback (see the C<on_error> constructor argument).
232 344
242 354
243=cut 355=cut
244 356
245sub on_eof { 357sub on_eof {
246 $_[0]{on_eof} = $_[1]; 358 $_[0]{on_eof} = $_[1];
359}
360
361=item $handle->on_timeout ($cb)
362
363Replace the current C<on_timeout> callback, or disables the callback
364(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
365argument.
366
367=cut
368
369sub on_timeout {
370 $_[0]{on_timeout} = $_[1];
371}
372
373=item $handle->autocork ($boolean)
374
375Enables or disables the current autocork behaviour (see C<autocork>
376constructor argument).
377
378=cut
379
380=item $handle->no_delay ($boolean)
381
382Enables or disables the C<no_delay> setting (see constructor argument of
383the same name for details).
384
385=cut
386
387sub no_delay {
388 $_[0]{no_delay} = $_[1];
389
390 eval {
391 local $SIG{__DIE__};
392 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
393 };
394}
395
396#############################################################################
397
398=item $handle->timeout ($seconds)
399
400Configures (or disables) the inactivity timeout.
401
402=cut
403
404sub timeout {
405 my ($self, $timeout) = @_;
406
407 $self->{timeout} = $timeout;
408 $self->_timeout;
409}
410
411# reset the timeout watcher, as neccessary
412# also check for time-outs
413sub _timeout {
414 my ($self) = @_;
415
416 if ($self->{timeout}) {
417 my $NOW = AnyEvent->now;
418
419 # when would the timeout trigger?
420 my $after = $self->{_activity} + $self->{timeout} - $NOW;
421
422 # now or in the past already?
423 if ($after <= 0) {
424 $self->{_activity} = $NOW;
425
426 if ($self->{on_timeout}) {
427 $self->{on_timeout}($self);
428 } else {
429 $self->_error (&Errno::ETIMEDOUT);
430 }
431
432 # callback could have changed timeout value, optimise
433 return unless $self->{timeout};
434
435 # calculate new after
436 $after = $self->{timeout};
437 }
438
439 Scalar::Util::weaken $self;
440 return unless $self; # ->error could have destroyed $self
441
442 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
443 delete $self->{_tw};
444 $self->_timeout;
445 });
446 } else {
447 delete $self->{_tw};
448 }
247} 449}
248 450
249############################################################################# 451#############################################################################
250 452
251=back 453=back
288=cut 490=cut
289 491
290sub _drain_wbuf { 492sub _drain_wbuf {
291 my ($self) = @_; 493 my ($self) = @_;
292 494
293 if (!$self->{ww} && length $self->{wbuf}) { 495 if (!$self->{_ww} && length $self->{wbuf}) {
496
294 Scalar::Util::weaken $self; 497 Scalar::Util::weaken $self;
498
295 my $cb = sub { 499 my $cb = sub {
296 my $len = syswrite $self->{fh}, $self->{wbuf}; 500 my $len = syswrite $self->{fh}, $self->{wbuf};
297 501
298 if ($len >= 0) { 502 if ($len >= 0) {
299 substr $self->{wbuf}, 0, $len, ""; 503 substr $self->{wbuf}, 0, $len, "";
504
505 $self->{_activity} = AnyEvent->now;
300 506
301 $self->{on_drain}($self) 507 $self->{on_drain}($self)
302 if $self->{low_water_mark} >= length $self->{wbuf} 508 if $self->{low_water_mark} >= length $self->{wbuf}
303 && $self->{on_drain}; 509 && $self->{on_drain};
304 510
305 delete $self->{ww} unless length $self->{wbuf}; 511 delete $self->{_ww} unless length $self->{wbuf};
306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEAGAIN) { 512 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
307 $self->error; 513 $self->_error ($!, 1);
308 } 514 }
309 }; 515 };
310 516
517 # try to write data immediately
518 $cb->() unless $self->{autocork};
519
520 # if still data left in wbuf, we need to poll
311 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 521 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
312 522 if length $self->{wbuf};
313 $cb->($self);
314 }; 523 };
315} 524}
316 525
317our %WH; 526our %WH;
318 527
329 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 538 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
330 ->($self, @_); 539 ->($self, @_);
331 } 540 }
332 541
333 if ($self->{filter_w}) { 542 if ($self->{filter_w}) {
334 $self->{filter_w}->($self, \$_[0]); 543 $self->{filter_w}($self, \$_[0]);
335 } else { 544 } else {
336 $self->{wbuf} .= $_[0]; 545 $self->{wbuf} .= $_[0];
337 $self->_drain_wbuf; 546 $self->_drain_wbuf;
338 } 547 }
339} 548}
340 549
341=item $handle->push_write (type => @args) 550=item $handle->push_write (type => @args)
342 551
343=item $handle->unshift_write (type => @args)
344
345Instead of formatting your data yourself, you can also let this module do 552Instead of formatting your data yourself, you can also let this module do
346the job by specifying a type and type-specific arguments. 553the job by specifying a type and type-specific arguments.
347 554
348Predefined types are (if you have ideas for additional types, feel free to 555Predefined types are (if you have ideas for additional types, feel free to
349drop by and tell us): 556drop by and tell us):
353=item netstring => $string 560=item netstring => $string
354 561
355Formats the given value as netstring 562Formats the given value as netstring
356(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 563(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
357 564
358=back
359
360=cut 565=cut
361 566
362register_write_type netstring => sub { 567register_write_type netstring => sub {
363 my ($self, $string) = @_; 568 my ($self, $string) = @_;
364 569
365 sprintf "%d:%s,", (length $string), $string 570 sprintf "%d:%s,", (length $string), $string
366}; 571};
367 572
573=item packstring => $format, $data
574
575An octet string prefixed with an encoded length. The encoding C<$format>
576uses the same format as a Perl C<pack> format, but must specify a single
577integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
578optional C<!>, C<< < >> or C<< > >> modifier).
579
580=cut
581
582register_write_type packstring => sub {
583 my ($self, $format, $string) = @_;
584
585 pack "$format/a*", $string
586};
587
588=item json => $array_or_hashref
589
590Encodes the given hash or array reference into a JSON object. Unless you
591provide your own JSON object, this means it will be encoded to JSON text
592in UTF-8.
593
594JSON objects (and arrays) are self-delimiting, so you can write JSON at
595one end of a handle and read them at the other end without using any
596additional framing.
597
598The generated JSON text is guaranteed not to contain any newlines: While
599this module doesn't need delimiters after or between JSON texts to be
600able to read them, many other languages depend on that.
601
602A simple RPC protocol that interoperates easily with others is to send
603JSON arrays (or objects, although arrays are usually the better choice as
604they mimic how function argument passing works) and a newline after each
605JSON text:
606
607 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
608 $handle->push_write ("\012");
609
610An AnyEvent::Handle receiver would simply use the C<json> read type and
611rely on the fact that the newline will be skipped as leading whitespace:
612
613 $handle->push_read (json => sub { my $array = $_[1]; ... });
614
615Other languages could read single lines terminated by a newline and pass
616this line into their JSON decoder of choice.
617
618=cut
619
620register_write_type json => sub {
621 my ($self, $ref) = @_;
622
623 require JSON;
624
625 $self->{json} ? $self->{json}->encode ($ref)
626 : JSON::encode_json ($ref)
627};
628
629=item storable => $reference
630
631Freezes the given reference using L<Storable> and writes it to the
632handle. Uses the C<nfreeze> format.
633
634=cut
635
636register_write_type storable => sub {
637 my ($self, $ref) = @_;
638
639 require Storable;
640
641 pack "w/a*", Storable::nfreeze ($ref)
642};
643
644=back
645
368=item AnyEvent::Handle::register_write_type type => $coderef->($self, @args) 646=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
369 647
370This function (not method) lets you add your own types to C<push_write>. 648This function (not method) lets you add your own types to C<push_write>.
371Whenever the given C<type> is used, C<push_write> will invoke the code 649Whenever the given C<type> is used, C<push_write> will invoke the code
372reference with the handle object and the remaining arguments. 650reference with the handle object and the remaining arguments.
373 651
392ways, the "simple" way, using only C<on_read> and the "complex" way, using 670ways, the "simple" way, using only C<on_read> and the "complex" way, using
393a queue. 671a queue.
394 672
395In the simple case, you just install an C<on_read> callback and whenever 673In the simple case, you just install an C<on_read> callback and whenever
396new data arrives, it will be called. You can then remove some data (if 674new data arrives, it will be called. You can then remove some data (if
397enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 675enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
398or not. 676leave the data there if you want to accumulate more (e.g. when only a
677partial message has been received so far).
399 678
400In the more complex case, you want to queue multiple callbacks. In this 679In the more complex case, you want to queue multiple callbacks. In this
401case, AnyEvent::Handle will call the first queued callback each time new 680case, AnyEvent::Handle will call the first queued callback each time new
402data arrives and removes it when it has done its job (see C<push_read>, 681data arrives (also the first time it is queued) and removes it when it has
403below). 682done its job (see C<push_read>, below).
404 683
405This way you can, for example, push three line-reads, followed by reading 684This way you can, for example, push three line-reads, followed by reading
406a chunk of data, and AnyEvent::Handle will execute them in order. 685a chunk of data, and AnyEvent::Handle will execute them in order.
407 686
408Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 687Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
409the specified number of bytes which give an XML datagram. 688the specified number of bytes which give an XML datagram.
410 689
411 # in the default state, expect some header bytes 690 # in the default state, expect some header bytes
412 $handle->on_read (sub { 691 $handle->on_read (sub {
413 # some data is here, now queue the length-header-read (4 octets) 692 # some data is here, now queue the length-header-read (4 octets)
414 shift->unshift_read_chunk (4, sub { 693 shift->unshift_read (chunk => 4, sub {
415 # header arrived, decode 694 # header arrived, decode
416 my $len = unpack "N", $_[1]; 695 my $len = unpack "N", $_[1];
417 696
418 # now read the payload 697 # now read the payload
419 shift->unshift_read_chunk ($len, sub { 698 shift->unshift_read (chunk => $len, sub {
420 my $xml = $_[1]; 699 my $xml = $_[1];
421 # handle xml 700 # handle xml
422 }); 701 });
423 }); 702 });
424 }); 703 });
425 704
426Example 2: Implement a client for a protocol that replies either with 705Example 2: Implement a client for a protocol that replies either with "OK"
427"OK" and another line or "ERROR" for one request, and 64 bytes for the 706and another line or "ERROR" for the first request that is sent, and 64
428second request. Due tot he availability of a full queue, we can just 707bytes for the second request. Due to the availability of a queue, we can
429pipeline sending both requests and manipulate the queue as necessary in 708just pipeline sending both requests and manipulate the queue as necessary
430the callbacks: 709in the callbacks.
431 710
432 # request one 711When the first callback is called and sees an "OK" response, it will
712C<unshift> another line-read. This line-read will be queued I<before> the
71364-byte chunk callback.
714
715 # request one, returns either "OK + extra line" or "ERROR"
433 $handle->push_write ("request 1\015\012"); 716 $handle->push_write ("request 1\015\012");
434 717
435 # we expect "ERROR" or "OK" as response, so push a line read 718 # we expect "ERROR" or "OK" as response, so push a line read
436 $handle->push_read_line (sub { 719 $handle->push_read (line => sub {
437 # if we got an "OK", we have to _prepend_ another line, 720 # if we got an "OK", we have to _prepend_ another line,
438 # so it will be read before the second request reads its 64 bytes 721 # so it will be read before the second request reads its 64 bytes
439 # which are already in the queue when this callback is called 722 # which are already in the queue when this callback is called
440 # we don't do this in case we got an error 723 # we don't do this in case we got an error
441 if ($_[1] eq "OK") { 724 if ($_[1] eq "OK") {
442 $_[0]->unshift_read_line (sub { 725 $_[0]->unshift_read (line => sub {
443 my $response = $_[1]; 726 my $response = $_[1];
444 ... 727 ...
445 }); 728 });
446 } 729 }
447 }); 730 });
448 731
449 # request two 732 # request two, simply returns 64 octets
450 $handle->push_write ("request 2\015\012"); 733 $handle->push_write ("request 2\015\012");
451 734
452 # simply read 64 bytes, always 735 # simply read 64 bytes, always
453 $handle->push_read_chunk (64, sub { 736 $handle->push_read (chunk => 64, sub {
454 my $response = $_[1]; 737 my $response = $_[1];
455 ... 738 ...
456 }); 739 });
457 740
458=over 4 741=over 4
459 742
460=cut 743=cut
461 744
462sub _drain_rbuf { 745sub _drain_rbuf {
463 my ($self) = @_; 746 my ($self) = @_;
747
748 local $self->{_in_drain} = 1;
464 749
465 if ( 750 if (
466 defined $self->{rbuf_max} 751 defined $self->{rbuf_max}
467 && $self->{rbuf_max} < length $self->{rbuf} 752 && $self->{rbuf_max} < length $self->{rbuf}
468 ) { 753 ) {
469 $! = &Errno::ENOSPC; return $self->error; 754 $self->_error (&Errno::ENOSPC, 1), return;
470 } 755 }
471 756
472 return if $self->{in_drain}; 757 while () {
473 local $self->{in_drain} = 1;
474
475 while (my $len = length $self->{rbuf}) { 758 my $len = length $self->{rbuf};
476 no strict 'refs'; 759
477 if (my $cb = shift @{ $self->{queue} }) { 760 if (my $cb = shift @{ $self->{_queue} }) {
478 unless ($cb->($self)) { 761 unless ($cb->($self)) {
479 if ($self->{eof}) { 762 if ($self->{_eof}) {
480 # no progress can be made (not enough data and no data forthcoming) 763 # no progress can be made (not enough data and no data forthcoming)
481 $! = &Errno::EPIPE; return $self->error; 764 $self->_error (&Errno::EPIPE, 1), return;
482 } 765 }
483 766
484 unshift @{ $self->{queue} }, $cb; 767 unshift @{ $self->{_queue} }, $cb;
485 return; 768 last;
486 } 769 }
487 } elsif ($self->{on_read}) { 770 } elsif ($self->{on_read}) {
771 last unless $len;
772
488 $self->{on_read}($self); 773 $self->{on_read}($self);
489 774
490 if ( 775 if (
491 $self->{eof} # if no further data will arrive
492 && $len == length $self->{rbuf} # and no data has been consumed 776 $len == length $self->{rbuf} # if no data has been consumed
493 && !@{ $self->{queue} } # and the queue is still empty 777 && !@{ $self->{_queue} } # and the queue is still empty
494 && $self->{on_read} # and we still want to read data 778 && $self->{on_read} # but we still have on_read
495 ) { 779 ) {
780 # no further data will arrive
496 # then no progress can be made 781 # so no progress can be made
497 $! = &Errno::EPIPE; return $self->error; 782 $self->_error (&Errno::EPIPE, 1), return
783 if $self->{_eof};
784
785 last; # more data might arrive
498 } 786 }
499 } else { 787 } else {
500 # read side becomes idle 788 # read side becomes idle
501 delete $self->{rw}; 789 delete $self->{_rw};
502 return; 790 last;
503 } 791 }
504 } 792 }
505 793
506 if ($self->{eof}) { 794 if ($self->{_eof}) {
507 $self->_shutdown; 795 if ($self->{on_eof}) {
508 $self->{on_eof}($self) 796 $self->{on_eof}($self)
509 if $self->{on_eof}; 797 } else {
798 $self->_error (0, 1);
799 }
800 }
801
802 # may need to restart read watcher
803 unless ($self->{_rw}) {
804 $self->start_read
805 if $self->{on_read} || @{ $self->{_queue} };
510 } 806 }
511} 807}
512 808
513=item $handle->on_read ($cb) 809=item $handle->on_read ($cb)
514 810
520 816
521sub on_read { 817sub on_read {
522 my ($self, $cb) = @_; 818 my ($self, $cb) = @_;
523 819
524 $self->{on_read} = $cb; 820 $self->{on_read} = $cb;
821 $self->_drain_rbuf if $cb && !$self->{_in_drain};
525} 822}
526 823
527=item $handle->rbuf 824=item $handle->rbuf
528 825
529Returns the read buffer (as a modifiable lvalue). 826Returns the read buffer (as a modifiable lvalue).
577 874
578 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 875 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
579 ->($self, $cb, @_); 876 ->($self, $cb, @_);
580 } 877 }
581 878
582 push @{ $self->{queue} }, $cb; 879 push @{ $self->{_queue} }, $cb;
583 $self->_drain_rbuf; 880 $self->_drain_rbuf unless $self->{_in_drain};
584} 881}
585 882
586sub unshift_read { 883sub unshift_read {
587 my $self = shift; 884 my $self = shift;
588 my $cb = pop; 885 my $cb = pop;
593 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 890 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
594 ->($self, $cb, @_); 891 ->($self, $cb, @_);
595 } 892 }
596 893
597 894
598 unshift @{ $self->{queue} }, $cb; 895 unshift @{ $self->{_queue} }, $cb;
599 $self->_drain_rbuf; 896 $self->_drain_rbuf unless $self->{_in_drain};
600} 897}
601 898
602=item $handle->push_read (type => @args, $cb) 899=item $handle->push_read (type => @args, $cb)
603 900
604=item $handle->unshift_read (type => @args, $cb) 901=item $handle->unshift_read (type => @args, $cb)
610Predefined types are (if you have ideas for additional types, feel free to 907Predefined types are (if you have ideas for additional types, feel free to
611drop by and tell us): 908drop by and tell us):
612 909
613=over 4 910=over 4
614 911
615=item chunk => $octets, $cb->($self, $data) 912=item chunk => $octets, $cb->($handle, $data)
616 913
617Invoke the callback only once C<$octets> bytes have been read. Pass the 914Invoke the callback only once C<$octets> bytes have been read. Pass the
618data read to the callback. The callback will never be called with less 915data read to the callback. The callback will never be called with less
619data. 916data.
620 917
634 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 931 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
635 1 932 1
636 } 933 }
637}; 934};
638 935
639# compatibility with older API
640sub push_read_chunk {
641 $_[0]->push_read (chunk => $_[1], $_[2]);
642}
643
644sub unshift_read_chunk {
645 $_[0]->unshift_read (chunk => $_[1], $_[2]);
646}
647
648=item line => [$eol, ]$cb->($self, $line, $eol) 936=item line => [$eol, ]$cb->($handle, $line, $eol)
649 937
650The callback will be called only once a full line (including the end of 938The callback will be called only once a full line (including the end of
651line marker, C<$eol>) has been read. This line (excluding the end of line 939line marker, C<$eol>) has been read. This line (excluding the end of line
652marker) will be passed to the callback as second argument (C<$line>), and 940marker) will be passed to the callback as second argument (C<$line>), and
653the end of line marker as the third argument (C<$eol>). 941the end of line marker as the third argument (C<$eol>).
667=cut 955=cut
668 956
669register_read_type line => sub { 957register_read_type line => sub {
670 my ($self, $cb, $eol) = @_; 958 my ($self, $cb, $eol) = @_;
671 959
672 $eol = qr|(\015?\012)| if @_ < 3; 960 if (@_ < 3) {
961 # this is more than twice as fast as the generic code below
962 sub {
963 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
964
965 $cb->($_[0], $1, $2);
966 1
967 }
968 } else {
673 $eol = quotemeta $eol unless ref $eol; 969 $eol = quotemeta $eol unless ref $eol;
674 $eol = qr|^(.*?)($eol)|s; 970 $eol = qr|^(.*?)($eol)|s;
971
972 sub {
973 $_[0]{rbuf} =~ s/$eol// or return;
974
975 $cb->($_[0], $1, $2);
976 1
977 }
978 }
979};
980
981=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
982
983Makes a regex match against the regex object C<$accept> and returns
984everything up to and including the match.
985
986Example: read a single line terminated by '\n'.
987
988 $handle->push_read (regex => qr<\n>, sub { ... });
989
990If C<$reject> is given and not undef, then it determines when the data is
991to be rejected: it is matched against the data when the C<$accept> regex
992does not match and generates an C<EBADMSG> error when it matches. This is
993useful to quickly reject wrong data (to avoid waiting for a timeout or a
994receive buffer overflow).
995
996Example: expect a single decimal number followed by whitespace, reject
997anything else (not the use of an anchor).
998
999 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1000
1001If C<$skip> is given and not C<undef>, then it will be matched against
1002the receive buffer when neither C<$accept> nor C<$reject> match,
1003and everything preceding and including the match will be accepted
1004unconditionally. This is useful to skip large amounts of data that you
1005know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1006have to start matching from the beginning. This is purely an optimisation
1007and is usually worth only when you expect more than a few kilobytes.
1008
1009Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1010expect the header to be very large (it isn't in practise, but...), we use
1011a skip regex to skip initial portions. The skip regex is tricky in that
1012it only accepts something not ending in either \015 or \012, as these are
1013required for the accept regex.
1014
1015 $handle->push_read (regex =>
1016 qr<\015\012\015\012>,
1017 undef, # no reject
1018 qr<^.*[^\015\012]>,
1019 sub { ... });
1020
1021=cut
1022
1023register_read_type regex => sub {
1024 my ($self, $cb, $accept, $reject, $skip) = @_;
1025
1026 my $data;
1027 my $rbuf = \$self->{rbuf};
675 1028
676 sub { 1029 sub {
677 $_[0]{rbuf} =~ s/$eol// or return; 1030 # accept
678 1031 if ($$rbuf =~ $accept) {
679 $cb->($_[0], $1, $2); 1032 $data .= substr $$rbuf, 0, $+[0], "";
1033 $cb->($self, $data);
1034 return 1;
1035 }
680 1 1036
1037 # reject
1038 if ($reject && $$rbuf =~ $reject) {
1039 $self->_error (&Errno::EBADMSG);
1040 }
1041
1042 # skip
1043 if ($skip && $$rbuf =~ $skip) {
1044 $data .= substr $$rbuf, 0, $+[0], "";
1045 }
1046
1047 ()
681 } 1048 }
682}; 1049};
683 1050
684# compatibility with older API
685sub push_read_line {
686 my $self = shift;
687 $self->push_read (line => @_);
688}
689
690sub unshift_read_line {
691 my $self = shift;
692 $self->unshift_read (line => @_);
693}
694
695=item netstring => $cb->($string) 1051=item netstring => $cb->($handle, $string)
696 1052
697A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement). 1053A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
698 1054
699Throws an error with C<$!> set to EBADMSG on format violations. 1055Throws an error with C<$!> set to EBADMSG on format violations.
700 1056
704 my ($self, $cb) = @_; 1060 my ($self, $cb) = @_;
705 1061
706 sub { 1062 sub {
707 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1063 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
708 if ($_[0]{rbuf} =~ /[^0-9]/) { 1064 if ($_[0]{rbuf} =~ /[^0-9]/) {
709 $! = &Errno::EBADMSG; 1065 $self->_error (&Errno::EBADMSG);
710 $self->error;
711 } 1066 }
712 return; 1067 return;
713 } 1068 }
714 1069
715 my $len = $1; 1070 my $len = $1;
718 my $string = $_[1]; 1073 my $string = $_[1];
719 $_[0]->unshift_read (chunk => 1, sub { 1074 $_[0]->unshift_read (chunk => 1, sub {
720 if ($_[1] eq ",") { 1075 if ($_[1] eq ",") {
721 $cb->($_[0], $string); 1076 $cb->($_[0], $string);
722 } else { 1077 } else {
723 $! = &Errno::EBADMSG; 1078 $self->_error (&Errno::EBADMSG);
724 $self->error;
725 } 1079 }
726 }); 1080 });
727 }); 1081 });
728 1082
729 1 1083 1
730 } 1084 }
731}; 1085};
732 1086
1087=item packstring => $format, $cb->($handle, $string)
1088
1089An octet string prefixed with an encoded length. The encoding C<$format>
1090uses the same format as a Perl C<pack> format, but must specify a single
1091integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092optional C<!>, C<< < >> or C<< > >> modifier).
1093
1094DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1095
1096Example: read a block of data prefixed by its length in BER-encoded
1097format (very efficient).
1098
1099 $handle->push_read (packstring => "w", sub {
1100 my ($handle, $data) = @_;
1101 });
1102
1103=cut
1104
1105register_read_type packstring => sub {
1106 my ($self, $cb, $format) = @_;
1107
1108 sub {
1109 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1111 or return;
1112
1113 $format = length pack $format, $len;
1114
1115 # bypass unshift if we already have the remaining chunk
1116 if ($format + $len <= length $_[0]{rbuf}) {
1117 my $data = substr $_[0]{rbuf}, $format, $len;
1118 substr $_[0]{rbuf}, 0, $format + $len, "";
1119 $cb->($_[0], $data);
1120 } else {
1121 # remove prefix
1122 substr $_[0]{rbuf}, 0, $format, "";
1123
1124 # read remaining chunk
1125 $_[0]->unshift_read (chunk => $len, $cb);
1126 }
1127
1128 1
1129 }
1130};
1131
1132=item json => $cb->($handle, $hash_or_arrayref)
1133
1134Reads a JSON object or array, decodes it and passes it to the callback.
1135
1136If a C<json> object was passed to the constructor, then that will be used
1137for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138
1139This read type uses the incremental parser available with JSON version
11402.09 (and JSON::XS version 2.2) and above. You have to provide a
1141dependency on your own: this module will load the JSON module, but
1142AnyEvent does not depend on it itself.
1143
1144Since JSON texts are fully self-delimiting, the C<json> read and write
1145types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1146the C<json> write type description, above, for an actual example.
1147
1148=cut
1149
1150register_read_type json => sub {
1151 my ($self, $cb) = @_;
1152
1153 require JSON;
1154
1155 my $data;
1156 my $rbuf = \$self->{rbuf};
1157
1158 my $json = $self->{json} ||= JSON->new->utf8;
1159
1160 sub {
1161 my $ref = $json->incr_parse ($self->{rbuf});
1162
1163 if ($ref) {
1164 $self->{rbuf} = $json->incr_text;
1165 $json->incr_text = "";
1166 $cb->($self, $ref);
1167
1168 1
1169 } else {
1170 $self->{rbuf} = "";
1171 ()
1172 }
1173 }
1174};
1175
1176=item storable => $cb->($handle, $ref)
1177
1178Deserialises a L<Storable> frozen representation as written by the
1179C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1180data).
1181
1182Raises C<EBADMSG> error if the data could not be decoded.
1183
1184=cut
1185
1186register_read_type storable => sub {
1187 my ($self, $cb) = @_;
1188
1189 require Storable;
1190
1191 sub {
1192 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1193 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1194 or return;
1195
1196 my $format = length pack "w", $len;
1197
1198 # bypass unshift if we already have the remaining chunk
1199 if ($format + $len <= length $_[0]{rbuf}) {
1200 my $data = substr $_[0]{rbuf}, $format, $len;
1201 substr $_[0]{rbuf}, 0, $format + $len, "";
1202 $cb->($_[0], Storable::thaw ($data));
1203 } else {
1204 # remove prefix
1205 substr $_[0]{rbuf}, 0, $format, "";
1206
1207 # read remaining chunk
1208 $_[0]->unshift_read (chunk => $len, sub {
1209 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210 $cb->($_[0], $ref);
1211 } else {
1212 $self->_error (&Errno::EBADMSG);
1213 }
1214 });
1215 }
1216
1217 1
1218 }
1219};
1220
733=back 1221=back
734 1222
735=item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args) 1223=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
736 1224
737This function (not method) lets you add your own types to C<push_read>. 1225This function (not method) lets you add your own types to C<push_read>.
738 1226
739Whenever the given C<type> is used, C<push_read> will invoke the code 1227Whenever the given C<type> is used, C<push_read> will invoke the code
740reference with the handle object, the callback and the remaining 1228reference with the handle object, the callback and the remaining
742 1230
743The code reference is supposed to return a callback (usually a closure) 1231The code reference is supposed to return a callback (usually a closure)
744that works as a plain read callback (see C<< ->push_read ($cb) >>). 1232that works as a plain read callback (see C<< ->push_read ($cb) >>).
745 1233
746It should invoke the passed callback when it is done reading (remember to 1234It should invoke the passed callback when it is done reading (remember to
747pass C<$self> as first argument as all other callbacks do that). 1235pass C<$handle> as first argument as all other callbacks do that).
748 1236
749Note that this is a function, and all types registered this way will be 1237Note that this is a function, and all types registered this way will be
750global, so try to use unique names. 1238global, so try to use unique names.
751 1239
752For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1240For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
755=item $handle->stop_read 1243=item $handle->stop_read
756 1244
757=item $handle->start_read 1245=item $handle->start_read
758 1246
759In rare cases you actually do not want to read anything from the 1247In rare cases you actually do not want to read anything from the
760socket. In this case you can call C<stop_read>. Neither C<on_read> no 1248socket. In this case you can call C<stop_read>. Neither C<on_read> nor
761any queued callbacks will be executed then. To start reading again, call 1249any queued callbacks will be executed then. To start reading again, call
762C<start_read>. 1250C<start_read>.
763 1251
1252Note that AnyEvent::Handle will automatically C<start_read> for you when
1253you change the C<on_read> callback or push/unshift a read callback, and it
1254will automatically C<stop_read> for you when neither C<on_read> is set nor
1255there are any read requests in the queue.
1256
764=cut 1257=cut
765 1258
766sub stop_read { 1259sub stop_read {
767 my ($self) = @_; 1260 my ($self) = @_;
768 1261
769 delete $self->{rw}; 1262 delete $self->{_rw};
770} 1263}
771 1264
772sub start_read { 1265sub start_read {
773 my ($self) = @_; 1266 my ($self) = @_;
774 1267
775 unless ($self->{rw} || $self->{eof}) { 1268 unless ($self->{_rw} || $self->{_eof}) {
776 Scalar::Util::weaken $self; 1269 Scalar::Util::weaken $self;
777 1270
778 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1271 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
779 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1272 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
780 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1273 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
781 1274
782 if ($len > 0) { 1275 if ($len > 0) {
1276 $self->{_activity} = AnyEvent->now;
1277
783 $self->{filter_r} 1278 $self->{filter_r}
784 ? $self->{filter_r}->($self, $rbuf) 1279 ? $self->{filter_r}($self, $rbuf)
785 : $self->_drain_rbuf; 1280 : $self->{_in_drain} || $self->_drain_rbuf;
786 1281
787 } elsif (defined $len) { 1282 } elsif (defined $len) {
788 delete $self->{rw}; 1283 delete $self->{_rw};
789 $self->{eof} = 1; 1284 $self->{_eof} = 1;
790 $self->_drain_rbuf; 1285 $self->_drain_rbuf unless $self->{_in_drain};
791 1286
792 } elsif ($! != EAGAIN && $! != EINTR && $! != &AnyEvent::Util::WSAEAGAIN) { 1287 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
793 return $self->error; 1288 return $self->_error ($!, 1);
794 } 1289 }
795 }); 1290 });
796 } 1291 }
797} 1292}
798 1293
799sub _dotls { 1294sub _dotls {
800 my ($self) = @_; 1295 my ($self) = @_;
801 1296
1297 my $buf;
1298
802 if (length $self->{tls_wbuf}) { 1299 if (length $self->{_tls_wbuf}) {
803 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) { 1300 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
804 substr $self->{tls_wbuf}, 0, $len, ""; 1301 substr $self->{_tls_wbuf}, 0, $len, "";
805 } 1302 }
806 } 1303 }
807 1304
808 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1305 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
809 $self->{wbuf} .= $buf; 1306 $self->{wbuf} .= $buf;
810 $self->_drain_wbuf; 1307 $self->_drain_wbuf;
811 } 1308 }
812 1309
813 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1310 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1311 if (length $buf) {
814 $self->{rbuf} .= $buf; 1312 $self->{rbuf} .= $buf;
815 $self->_drain_rbuf; 1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 } else {
1315 # let's treat SSL-eof as we treat normal EOF
1316 $self->{_eof} = 1;
1317 $self->_shutdown;
1318 return;
1319 }
816 } 1320 }
817 1321
818 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1322 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
819 1323
820 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1324 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
821 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1325 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
822 $self->error; 1326 return $self->_error ($!, 1);
823 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1327 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
824 $! = &Errno::EIO; 1328 return $self->_error (&Errno::EIO, 1);
825 $self->error;
826 } 1329 }
827 1330
828 # all others are fine for our purposes 1331 # all others are fine for our purposes
829 } 1332 }
830} 1333}
839C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1342C<"connect">, C<"accept"> or an existing Net::SSLeay object).
840 1343
841The second argument is the optional C<Net::SSLeay::CTX> object that is 1344The second argument is the optional C<Net::SSLeay::CTX> object that is
842used when AnyEvent::Handle has to create its own TLS connection object. 1345used when AnyEvent::Handle has to create its own TLS connection object.
843 1346
844=cut 1347The TLS connection object will end up in C<< $handle->{tls} >> after this
1348call and can be used or changed to your liking. Note that the handshake
1349might have already started when this function returns.
845 1350
846# TODO: maybe document... 1351=cut
1352
847sub starttls { 1353sub starttls {
848 my ($self, $ssl, $ctx) = @_; 1354 my ($self, $ssl, $ctx) = @_;
849 1355
850 $self->stoptls; 1356 $self->stoptls;
851 1357
862 # basically, this is deep magic (because SSL_read should have the same issues) 1368 # basically, this is deep magic (because SSL_read should have the same issues)
863 # but the openssl maintainers basically said: "trust us, it just works". 1369 # but the openssl maintainers basically said: "trust us, it just works".
864 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1370 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
865 # and mismaintained ssleay-module doesn't even offer them). 1371 # and mismaintained ssleay-module doesn't even offer them).
866 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1372 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 #
1374 # in short: this is a mess.
1375 #
1376 # note that we do not try to kepe the length constant between writes as we are required to do.
1377 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378 # and we drive openssl fully in blocking mode here.
867 Net::SSLeay::CTX_set_mode ($self->{tls}, 1379 Net::SSLeay::CTX_set_mode ($self->{tls},
868 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1380 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
869 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1381 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
870 1382
871 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1383 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
872 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1384 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
873 1385
874 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1386 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
875 1387
876 $self->{filter_w} = sub { 1388 $self->{filter_w} = sub {
877 $_[0]{tls_wbuf} .= ${$_[1]}; 1389 $_[0]{_tls_wbuf} .= ${$_[1]};
878 &_dotls; 1390 &_dotls;
879 }; 1391 };
880 $self->{filter_r} = sub { 1392 $self->{filter_r} = sub {
881 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]}); 1393 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
882 &_dotls; 1394 &_dotls;
883 }; 1395 };
884} 1396}
885 1397
886=item $handle->stoptls 1398=item $handle->stoptls
892 1404
893sub stoptls { 1405sub stoptls {
894 my ($self) = @_; 1406 my ($self) = @_;
895 1407
896 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1408 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1409
897 delete $self->{tls_rbio}; 1410 delete $self->{_rbio};
898 delete $self->{tls_wbio}; 1411 delete $self->{_wbio};
899 delete $self->{tls_wbuf}; 1412 delete $self->{_tls_wbuf};
900 delete $self->{filter_r}; 1413 delete $self->{filter_r};
901 delete $self->{filter_w}; 1414 delete $self->{filter_w};
902} 1415}
903 1416
904sub DESTROY { 1417sub DESTROY {
905 my $self = shift; 1418 my $self = shift;
906 1419
907 $self->stoptls; 1420 $self->stoptls;
1421
1422 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423
1424 if ($linger && length $self->{wbuf}) {
1425 my $fh = delete $self->{fh};
1426 my $wbuf = delete $self->{wbuf};
1427
1428 my @linger;
1429
1430 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1431 my $len = syswrite $fh, $wbuf, length $wbuf;
1432
1433 if ($len > 0) {
1434 substr $wbuf, 0, $len, "";
1435 } else {
1436 @linger = (); # end
1437 }
1438 });
1439 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1440 @linger = ();
1441 });
1442 }
908} 1443}
909 1444
910=item AnyEvent::Handle::TLS_CTX 1445=item AnyEvent::Handle::TLS_CTX
911 1446
912This function creates and returns the Net::SSLeay::CTX object used by 1447This function creates and returns the Net::SSLeay::CTX object used by
942 } 1477 }
943} 1478}
944 1479
945=back 1480=back
946 1481
1482=head1 SUBCLASSING AnyEvent::Handle
1483
1484In many cases, you might want to subclass AnyEvent::Handle.
1485
1486To make this easier, a given version of AnyEvent::Handle uses these
1487conventions:
1488
1489=over 4
1490
1491=item * all constructor arguments become object members.
1492
1493At least initially, when you pass a C<tls>-argument to the constructor it
1494will end up in C<< $handle->{tls} >>. Those members might be changed or
1495mutated later on (for example C<tls> will hold the TLS connection object).
1496
1497=item * other object member names are prefixed with an C<_>.
1498
1499All object members not explicitly documented (internal use) are prefixed
1500with an underscore character, so the remaining non-C<_>-namespace is free
1501for use for subclasses.
1502
1503=item * all members not documented here and not prefixed with an underscore
1504are free to use in subclasses.
1505
1506Of course, new versions of AnyEvent::Handle may introduce more "public"
1507member variables, but thats just life, at least it is documented.
1508
1509=back
1510
947=head1 AUTHOR 1511=head1 AUTHOR
948 1512
949Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1513Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
950 1514
951=cut 1515=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines