ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.32 by root, Sun May 25 01:10:54 2008 UTC vs.
Revision 1.90 by root, Mon Sep 29 02:08:57 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEAGAIN); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.234;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
61=head1 METHODS 72=head1 METHODS
62 73
63=over 4 74=over 4
64 75
65=item B<new (%args)> 76=item B<new (%args)>
70 81
71=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
72 83
73The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
74 85
75NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
77 89
78=item on_eof => $cb->($self) 90=item on_eof => $cb->($handle)
79 91
80Set the callback to be called on EOF. 92Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the
94connection cleanly.
81 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
82While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
83otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
84waiting for data. 103waiting for data.
85 104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
107
86=item on_error => $cb->($self) 108=item on_error => $cb->($handle, $fatal)
87 109
88This is the fatal error callback, that is called when, well, a fatal error 110This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 111occured, such as not being able to resolve the hostname, failure to
90or a read error. 112connect or a read error.
91 113
92The object will not be in a usable state when this callback has been 114Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
120Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 124
95On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 127
98While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
99you will not be notified of errors otherwise. The default simply calls 129you will not be notified of errors otherwise. The default simply calls
100die. 130C<croak>.
101 131
102=item on_read => $cb->($self) 132=item on_read => $cb->($handle)
103 133
104This sets the default read callback, which is called when data arrives 134This sets the default read callback, which is called when data arrives
105and no read request is in the queue. 135and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the
137read buffer).
106 138
107To access (and remove data from) the read buffer, use the C<< ->rbuf >> 139To access (and remove data from) the read buffer, use the C<< ->rbuf >>
108method or access the C<$self->{rbuf}> member directly. 140method or access the C<$handle->{rbuf}> member directly.
109 141
110When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
111feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
112calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
113error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
114 146
115=item on_drain => $cb->() 147=item on_drain => $cb->($handle)
116 148
117This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
118(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
119 151
120To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
121 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
160=item timeout => $fractional_seconds
161
162If non-zero, then this enables an "inactivity" timeout: whenever this many
163seconds pass without a successful read or write on the underlying file
164handle, the C<on_timeout> callback will be invoked (and if that one is
165missing, a non-fatal C<ETIMEDOUT> error will be raised).
166
167Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
172
173Zero (the default) disables this timeout.
174
175=item on_timeout => $cb->($handle)
176
177Called whenever the inactivity timeout passes. If you return from this
178callback, then the timeout will be reset as if some activity had happened,
179so this condition is not fatal in any way.
180
122=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
123 182
124If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
125when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
126avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
127 186
128For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
129be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
130(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
131amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
132isn't finished). 191isn't finished).
133 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
134=item read_size => <bytes> 219=item read_size => <bytes>
135 220
136The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
137on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
138 224
139=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
140 226
141Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
142buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
143considered empty. 229considered empty.
144 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost.
246
145=item tls => "accept" | "connect" | Net::SSLeay::SSL object 247=item tls => "accept" | "connect" | Net::SSLeay::SSL object
146 248
147When this parameter is given, it enables TLS (SSL) mode, that means it 249When this parameter is given, it enables TLS (SSL) mode, that means
148will start making tls handshake and will transparently encrypt/decrypt 250AnyEvent will start a TLS handshake as soon as the conenction has been
149data. 251established and will transparently encrypt/decrypt data afterwards.
150 252
151TLS mode requires Net::SSLeay to be installed (it will be loaded 253TLS mode requires Net::SSLeay to be installed (it will be loaded
152automatically when you try to create a TLS handle). 254automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself.
153 257
154For the TLS server side, use C<accept>, and for the TLS client side of a 258Unlike TCP, TLS has a server and client side: for the TLS server side, use
155connection, use C<connect> mode. 259C<accept>, and for the TLS client side of a connection, use C<connect>
260mode.
156 261
157You can also provide your own TLS connection object, but you have 262You can also provide your own TLS connection object, but you have
158to make sure that you call either C<Net::SSLeay::set_connect_state> 263to make sure that you call either C<Net::SSLeay::set_connect_state>
159or C<Net::SSLeay::set_accept_state> on it before you pass it to 264or C<Net::SSLeay::set_accept_state> on it before you pass it to
160AnyEvent::Handle. 265AnyEvent::Handle.
161 266
162See the C<starttls> method if you need to start TLs negotiation later. 267See the C<< ->starttls >> method for when need to start TLS negotiation later.
163 268
164=item tls_ctx => $ssl_ctx 269=item tls_ctx => $ssl_ctx
165 270
166Use the given Net::SSLeay::CTX object to create the new TLS connection 271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
167(unless a connection object was specified directly). If this parameter is 272(unless a connection object was specified directly). If this parameter is
168missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274
275=item json => JSON or JSON::XS object
276
277This is the json coder object used by the C<json> read and write types.
278
279If you don't supply it, then AnyEvent::Handle will create and use a
280suitable one (on demand), which will write and expect UTF-8 encoded JSON
281texts.
282
283Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself.
285
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
169 292
170=back 293=back
171 294
172=cut 295=cut
173 296
183 if ($self->{tls}) { 306 if ($self->{tls}) {
184 require Net::SSLeay; 307 require Net::SSLeay;
185 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
186 } 309 }
187 310
188 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 311 $self->{_activity} = AnyEvent->now;
189 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 312 $self->_timeout;
313
190 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
191 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
192 316
193 $self->start_read; 317 $self->start_read
318 if $self->{on_read};
194 319
195 $self 320 $self
196} 321}
197 322
198sub _shutdown { 323sub _shutdown {
199 my ($self) = @_; 324 my ($self) = @_;
200 325
326 delete $self->{_tw};
201 delete $self->{rw}; 327 delete $self->{_rw};
202 delete $self->{ww}; 328 delete $self->{_ww};
203 delete $self->{fh}; 329 delete $self->{fh};
204}
205 330
331 $self->stoptls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336
206sub error { 337sub _error {
207 my ($self) = @_; 338 my ($self, $errno, $fatal) = @_;
208 339
209 {
210 local $!;
211 $self->_shutdown; 340 $self->_shutdown
212 } 341 if $fatal;
342
343 $! = $errno;
213 344
214 if ($self->{on_error}) { 345 if ($self->{on_error}) {
215 $self->{on_error}($self); 346 $self->{on_error}($self, $fatal);
216 } else { 347 } else {
217 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 348 Carp::croak "AnyEvent::Handle uncaught error: $!";
218 } 349 }
219} 350}
220 351
221=item $fh = $handle->fh 352=item $fh = $handle->fh
222 353
223This method returns the file handle of the L<AnyEvent::Handle> object. 354This method returns the file handle used to create the L<AnyEvent::Handle> object.
224 355
225=cut 356=cut
226 357
227sub fh { $_[0]->{fh} } 358sub fh { $_[0]{fh} }
228 359
229=item $handle->on_error ($cb) 360=item $handle->on_error ($cb)
230 361
231Replace the current C<on_error> callback (see the C<on_error> constructor argument). 362Replace the current C<on_error> callback (see the C<on_error> constructor argument).
232 363
242 373
243=cut 374=cut
244 375
245sub on_eof { 376sub on_eof {
246 $_[0]{on_eof} = $_[1]; 377 $_[0]{on_eof} = $_[1];
378}
379
380=item $handle->on_timeout ($cb)
381
382Replace the current C<on_timeout> callback, or disables the callback (but
383not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
384argument and method.
385
386=cut
387
388sub on_timeout {
389 $_[0]{on_timeout} = $_[1];
390}
391
392=item $handle->autocork ($boolean)
393
394Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument).
396
397=cut
398
399=item $handle->no_delay ($boolean)
400
401Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details).
403
404=cut
405
406sub no_delay {
407 $_[0]{no_delay} = $_[1];
408
409 eval {
410 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
412 };
413}
414
415#############################################################################
416
417=item $handle->timeout ($seconds)
418
419Configures (or disables) the inactivity timeout.
420
421=cut
422
423sub timeout {
424 my ($self, $timeout) = @_;
425
426 $self->{timeout} = $timeout;
427 $self->_timeout;
428}
429
430# reset the timeout watcher, as neccessary
431# also check for time-outs
432sub _timeout {
433 my ($self) = @_;
434
435 if ($self->{timeout}) {
436 my $NOW = AnyEvent->now;
437
438 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440
441 # now or in the past already?
442 if ($after <= 0) {
443 $self->{_activity} = $NOW;
444
445 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self);
447 } else {
448 $self->_error (&Errno::ETIMEDOUT);
449 }
450
451 # callback could have changed timeout value, optimise
452 return unless $self->{timeout};
453
454 # calculate new after
455 $after = $self->{timeout};
456 }
457
458 Scalar::Util::weaken $self;
459 return unless $self; # ->error could have destroyed $self
460
461 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
462 delete $self->{_tw};
463 $self->_timeout;
464 });
465 } else {
466 delete $self->{_tw};
467 }
247} 468}
248 469
249############################################################################# 470#############################################################################
250 471
251=back 472=back
288=cut 509=cut
289 510
290sub _drain_wbuf { 511sub _drain_wbuf {
291 my ($self) = @_; 512 my ($self) = @_;
292 513
293 if (!$self->{ww} && length $self->{wbuf}) { 514 if (!$self->{_ww} && length $self->{wbuf}) {
515
294 Scalar::Util::weaken $self; 516 Scalar::Util::weaken $self;
517
295 my $cb = sub { 518 my $cb = sub {
296 my $len = syswrite $self->{fh}, $self->{wbuf}; 519 my $len = syswrite $self->{fh}, $self->{wbuf};
297 520
298 if ($len >= 0) { 521 if ($len >= 0) {
299 substr $self->{wbuf}, 0, $len, ""; 522 substr $self->{wbuf}, 0, $len, "";
523
524 $self->{_activity} = AnyEvent->now;
300 525
301 $self->{on_drain}($self) 526 $self->{on_drain}($self)
302 if $self->{low_water_mark} >= length $self->{wbuf} 527 if $self->{low_water_mark} >= length $self->{wbuf}
303 && $self->{on_drain}; 528 && $self->{on_drain};
304 529
305 delete $self->{ww} unless length $self->{wbuf}; 530 delete $self->{_ww} unless length $self->{wbuf};
306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEAGAIN) { 531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
307 $self->error; 532 $self->_error ($!, 1);
308 } 533 }
309 }; 534 };
310 535
536 # try to write data immediately
537 $cb->() unless $self->{autocork};
538
539 # if still data left in wbuf, we need to poll
311 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 540 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
312 541 if length $self->{wbuf};
313 $cb->($self);
314 }; 542 };
315} 543}
316 544
317our %WH; 545our %WH;
318 546
329 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
330 ->($self, @_); 558 ->($self, @_);
331 } 559 }
332 560
333 if ($self->{filter_w}) { 561 if ($self->{filter_w}) {
334 $self->{filter_w}->($self, \$_[0]); 562 $self->{filter_w}($self, \$_[0]);
335 } else { 563 } else {
336 $self->{wbuf} .= $_[0]; 564 $self->{wbuf} .= $_[0];
337 $self->_drain_wbuf; 565 $self->_drain_wbuf;
338 } 566 }
339} 567}
340 568
341=item $handle->push_write (type => @args) 569=item $handle->push_write (type => @args)
342 570
343=item $handle->unshift_write (type => @args)
344
345Instead of formatting your data yourself, you can also let this module do 571Instead of formatting your data yourself, you can also let this module do
346the job by specifying a type and type-specific arguments. 572the job by specifying a type and type-specific arguments.
347 573
348Predefined types are (if you have ideas for additional types, feel free to 574Predefined types are (if you have ideas for additional types, feel free to
349drop by and tell us): 575drop by and tell us):
353=item netstring => $string 579=item netstring => $string
354 580
355Formats the given value as netstring 581Formats the given value as netstring
356(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 582(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
357 583
358=back
359
360=cut 584=cut
361 585
362register_write_type netstring => sub { 586register_write_type netstring => sub {
363 my ($self, $string) = @_; 587 my ($self, $string) = @_;
364 588
365 sprintf "%d:%s,", (length $string), $string 589 sprintf "%d:%s,", (length $string), $string
366}; 590};
367 591
592=item packstring => $format, $data
593
594An octet string prefixed with an encoded length. The encoding C<$format>
595uses the same format as a Perl C<pack> format, but must specify a single
596integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
597optional C<!>, C<< < >> or C<< > >> modifier).
598
599=cut
600
601register_write_type packstring => sub {
602 my ($self, $format, $string) = @_;
603
604 pack "$format/a*", $string
605};
606
607=item json => $array_or_hashref
608
609Encodes the given hash or array reference into a JSON object. Unless you
610provide your own JSON object, this means it will be encoded to JSON text
611in UTF-8.
612
613JSON objects (and arrays) are self-delimiting, so you can write JSON at
614one end of a handle and read them at the other end without using any
615additional framing.
616
617The generated JSON text is guaranteed not to contain any newlines: While
618this module doesn't need delimiters after or between JSON texts to be
619able to read them, many other languages depend on that.
620
621A simple RPC protocol that interoperates easily with others is to send
622JSON arrays (or objects, although arrays are usually the better choice as
623they mimic how function argument passing works) and a newline after each
624JSON text:
625
626 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
627 $handle->push_write ("\012");
628
629An AnyEvent::Handle receiver would simply use the C<json> read type and
630rely on the fact that the newline will be skipped as leading whitespace:
631
632 $handle->push_read (json => sub { my $array = $_[1]; ... });
633
634Other languages could read single lines terminated by a newline and pass
635this line into their JSON decoder of choice.
636
637=cut
638
639register_write_type json => sub {
640 my ($self, $ref) = @_;
641
642 require JSON;
643
644 $self->{json} ? $self->{json}->encode ($ref)
645 : JSON::encode_json ($ref)
646};
647
648=item storable => $reference
649
650Freezes the given reference using L<Storable> and writes it to the
651handle. Uses the C<nfreeze> format.
652
653=cut
654
655register_write_type storable => sub {
656 my ($self, $ref) = @_;
657
658 require Storable;
659
660 pack "w/a*", Storable::nfreeze ($ref)
661};
662
663=back
664
368=item AnyEvent::Handle::register_write_type type => $coderef->($self, @args) 665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
369 666
370This function (not method) lets you add your own types to C<push_write>. 667This function (not method) lets you add your own types to C<push_write>.
371Whenever the given C<type> is used, C<push_write> will invoke the code 668Whenever the given C<type> is used, C<push_write> will invoke the code
372reference with the handle object and the remaining arguments. 669reference with the handle object and the remaining arguments.
373 670
392ways, the "simple" way, using only C<on_read> and the "complex" way, using 689ways, the "simple" way, using only C<on_read> and the "complex" way, using
393a queue. 690a queue.
394 691
395In the simple case, you just install an C<on_read> callback and whenever 692In the simple case, you just install an C<on_read> callback and whenever
396new data arrives, it will be called. You can then remove some data (if 693new data arrives, it will be called. You can then remove some data (if
397enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 694enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
398or not. 695leave the data there if you want to accumulate more (e.g. when only a
696partial message has been received so far).
399 697
400In the more complex case, you want to queue multiple callbacks. In this 698In the more complex case, you want to queue multiple callbacks. In this
401case, AnyEvent::Handle will call the first queued callback each time new 699case, AnyEvent::Handle will call the first queued callback each time new
402data arrives and removes it when it has done its job (see C<push_read>, 700data arrives (also the first time it is queued) and removes it when it has
403below). 701done its job (see C<push_read>, below).
404 702
405This way you can, for example, push three line-reads, followed by reading 703This way you can, for example, push three line-reads, followed by reading
406a chunk of data, and AnyEvent::Handle will execute them in order. 704a chunk of data, and AnyEvent::Handle will execute them in order.
407 705
408Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 706Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
409the specified number of bytes which give an XML datagram. 707the specified number of bytes which give an XML datagram.
410 708
411 # in the default state, expect some header bytes 709 # in the default state, expect some header bytes
412 $handle->on_read (sub { 710 $handle->on_read (sub {
413 # some data is here, now queue the length-header-read (4 octets) 711 # some data is here, now queue the length-header-read (4 octets)
414 shift->unshift_read_chunk (4, sub { 712 shift->unshift_read (chunk => 4, sub {
415 # header arrived, decode 713 # header arrived, decode
416 my $len = unpack "N", $_[1]; 714 my $len = unpack "N", $_[1];
417 715
418 # now read the payload 716 # now read the payload
419 shift->unshift_read_chunk ($len, sub { 717 shift->unshift_read (chunk => $len, sub {
420 my $xml = $_[1]; 718 my $xml = $_[1];
421 # handle xml 719 # handle xml
422 }); 720 });
423 }); 721 });
424 }); 722 });
425 723
426Example 2: Implement a client for a protocol that replies either with 724Example 2: Implement a client for a protocol that replies either with "OK"
427"OK" and another line or "ERROR" for one request, and 64 bytes for the 725and another line or "ERROR" for the first request that is sent, and 64
428second request. Due tot he availability of a full queue, we can just 726bytes for the second request. Due to the availability of a queue, we can
429pipeline sending both requests and manipulate the queue as necessary in 727just pipeline sending both requests and manipulate the queue as necessary
430the callbacks: 728in the callbacks.
431 729
432 # request one 730When the first callback is called and sees an "OK" response, it will
731C<unshift> another line-read. This line-read will be queued I<before> the
73264-byte chunk callback.
733
734 # request one, returns either "OK + extra line" or "ERROR"
433 $handle->push_write ("request 1\015\012"); 735 $handle->push_write ("request 1\015\012");
434 736
435 # we expect "ERROR" or "OK" as response, so push a line read 737 # we expect "ERROR" or "OK" as response, so push a line read
436 $handle->push_read_line (sub { 738 $handle->push_read (line => sub {
437 # if we got an "OK", we have to _prepend_ another line, 739 # if we got an "OK", we have to _prepend_ another line,
438 # so it will be read before the second request reads its 64 bytes 740 # so it will be read before the second request reads its 64 bytes
439 # which are already in the queue when this callback is called 741 # which are already in the queue when this callback is called
440 # we don't do this in case we got an error 742 # we don't do this in case we got an error
441 if ($_[1] eq "OK") { 743 if ($_[1] eq "OK") {
442 $_[0]->unshift_read_line (sub { 744 $_[0]->unshift_read (line => sub {
443 my $response = $_[1]; 745 my $response = $_[1];
444 ... 746 ...
445 }); 747 });
446 } 748 }
447 }); 749 });
448 750
449 # request two 751 # request two, simply returns 64 octets
450 $handle->push_write ("request 2\015\012"); 752 $handle->push_write ("request 2\015\012");
451 753
452 # simply read 64 bytes, always 754 # simply read 64 bytes, always
453 $handle->push_read_chunk (64, sub { 755 $handle->push_read (chunk => 64, sub {
454 my $response = $_[1]; 756 my $response = $_[1];
455 ... 757 ...
456 }); 758 });
457 759
458=over 4 760=over 4
459 761
460=cut 762=cut
461 763
462sub _drain_rbuf { 764sub _drain_rbuf {
463 my ($self) = @_; 765 my ($self) = @_;
766
767 local $self->{_in_drain} = 1;
464 768
465 if ( 769 if (
466 defined $self->{rbuf_max} 770 defined $self->{rbuf_max}
467 && $self->{rbuf_max} < length $self->{rbuf} 771 && $self->{rbuf_max} < length $self->{rbuf}
468 ) { 772 ) {
469 $! = &Errno::ENOSPC; return $self->error; 773 $self->_error (&Errno::ENOSPC, 1), return;
470 } 774 }
471 775
472 return if $self->{in_drain}; 776 while () {
473 local $self->{in_drain} = 1;
474
475 while (my $len = length $self->{rbuf}) { 777 my $len = length $self->{rbuf};
476 no strict 'refs'; 778
477 if (my $cb = shift @{ $self->{queue} }) { 779 if (my $cb = shift @{ $self->{_queue} }) {
478 unless ($cb->($self)) { 780 unless ($cb->($self)) {
479 if ($self->{eof}) { 781 if ($self->{_eof}) {
480 # no progress can be made (not enough data and no data forthcoming) 782 # no progress can be made (not enough data and no data forthcoming)
481 $! = &Errno::EPIPE; return $self->error; 783 $self->_error (&Errno::EPIPE, 1), return;
482 } 784 }
483 785
484 unshift @{ $self->{queue} }, $cb; 786 unshift @{ $self->{_queue} }, $cb;
485 return; 787 last;
486 } 788 }
487 } elsif ($self->{on_read}) { 789 } elsif ($self->{on_read}) {
790 last unless $len;
791
488 $self->{on_read}($self); 792 $self->{on_read}($self);
489 793
490 if ( 794 if (
491 $self->{eof} # if no further data will arrive
492 && $len == length $self->{rbuf} # and no data has been consumed 795 $len == length $self->{rbuf} # if no data has been consumed
493 && !@{ $self->{queue} } # and the queue is still empty 796 && !@{ $self->{_queue} } # and the queue is still empty
494 && $self->{on_read} # and we still want to read data 797 && $self->{on_read} # but we still have on_read
495 ) { 798 ) {
799 # no further data will arrive
496 # then no progress can be made 800 # so no progress can be made
497 $! = &Errno::EPIPE; return $self->error; 801 $self->_error (&Errno::EPIPE, 1), return
802 if $self->{_eof};
803
804 last; # more data might arrive
498 } 805 }
499 } else { 806 } else {
500 # read side becomes idle 807 # read side becomes idle
501 delete $self->{rw}; 808 delete $self->{_rw};
502 return; 809 last;
503 } 810 }
504 } 811 }
505 812
506 if ($self->{eof}) { 813 if ($self->{_eof}) {
507 $self->_shutdown; 814 if ($self->{on_eof}) {
508 $self->{on_eof}($self) 815 $self->{on_eof}($self)
509 if $self->{on_eof}; 816 } else {
817 $self->_error (0, 1);
818 }
819 }
820
821 # may need to restart read watcher
822 unless ($self->{_rw}) {
823 $self->start_read
824 if $self->{on_read} || @{ $self->{_queue} };
510 } 825 }
511} 826}
512 827
513=item $handle->on_read ($cb) 828=item $handle->on_read ($cb)
514 829
520 835
521sub on_read { 836sub on_read {
522 my ($self, $cb) = @_; 837 my ($self, $cb) = @_;
523 838
524 $self->{on_read} = $cb; 839 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain};
525} 841}
526 842
527=item $handle->rbuf 843=item $handle->rbuf
528 844
529Returns the read buffer (as a modifiable lvalue). 845Returns the read buffer (as a modifiable lvalue).
577 893
578 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
579 ->($self, $cb, @_); 895 ->($self, $cb, @_);
580 } 896 }
581 897
582 push @{ $self->{queue} }, $cb; 898 push @{ $self->{_queue} }, $cb;
583 $self->_drain_rbuf; 899 $self->_drain_rbuf unless $self->{_in_drain};
584} 900}
585 901
586sub unshift_read { 902sub unshift_read {
587 my $self = shift; 903 my $self = shift;
588 my $cb = pop; 904 my $cb = pop;
593 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 909 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
594 ->($self, $cb, @_); 910 ->($self, $cb, @_);
595 } 911 }
596 912
597 913
598 unshift @{ $self->{queue} }, $cb; 914 unshift @{ $self->{_queue} }, $cb;
599 $self->_drain_rbuf; 915 $self->_drain_rbuf unless $self->{_in_drain};
600} 916}
601 917
602=item $handle->push_read (type => @args, $cb) 918=item $handle->push_read (type => @args, $cb)
603 919
604=item $handle->unshift_read (type => @args, $cb) 920=item $handle->unshift_read (type => @args, $cb)
610Predefined types are (if you have ideas for additional types, feel free to 926Predefined types are (if you have ideas for additional types, feel free to
611drop by and tell us): 927drop by and tell us):
612 928
613=over 4 929=over 4
614 930
615=item chunk => $octets, $cb->($self, $data) 931=item chunk => $octets, $cb->($handle, $data)
616 932
617Invoke the callback only once C<$octets> bytes have been read. Pass the 933Invoke the callback only once C<$octets> bytes have been read. Pass the
618data read to the callback. The callback will never be called with less 934data read to the callback. The callback will never be called with less
619data. 935data.
620 936
634 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 950 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
635 1 951 1
636 } 952 }
637}; 953};
638 954
639# compatibility with older API
640sub push_read_chunk {
641 $_[0]->push_read (chunk => $_[1], $_[2]);
642}
643
644sub unshift_read_chunk {
645 $_[0]->unshift_read (chunk => $_[1], $_[2]);
646}
647
648=item line => [$eol, ]$cb->($self, $line, $eol) 955=item line => [$eol, ]$cb->($handle, $line, $eol)
649 956
650The callback will be called only once a full line (including the end of 957The callback will be called only once a full line (including the end of
651line marker, C<$eol>) has been read. This line (excluding the end of line 958line marker, C<$eol>) has been read. This line (excluding the end of line
652marker) will be passed to the callback as second argument (C<$line>), and 959marker) will be passed to the callback as second argument (C<$line>), and
653the end of line marker as the third argument (C<$eol>). 960the end of line marker as the third argument (C<$eol>).
667=cut 974=cut
668 975
669register_read_type line => sub { 976register_read_type line => sub {
670 my ($self, $cb, $eol) = @_; 977 my ($self, $cb, $eol) = @_;
671 978
672 $eol = qr|(\015?\012)| if @_ < 3; 979 if (@_ < 3) {
980 # this is more than twice as fast as the generic code below
981 sub {
982 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
983
984 $cb->($_[0], $1, $2);
985 1
986 }
987 } else {
673 $eol = quotemeta $eol unless ref $eol; 988 $eol = quotemeta $eol unless ref $eol;
674 $eol = qr|^(.*?)($eol)|s; 989 $eol = qr|^(.*?)($eol)|s;
990
991 sub {
992 $_[0]{rbuf} =~ s/$eol// or return;
993
994 $cb->($_[0], $1, $2);
995 1
996 }
997 }
998};
999
1000=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1001
1002Makes a regex match against the regex object C<$accept> and returns
1003everything up to and including the match.
1004
1005Example: read a single line terminated by '\n'.
1006
1007 $handle->push_read (regex => qr<\n>, sub { ... });
1008
1009If C<$reject> is given and not undef, then it determines when the data is
1010to be rejected: it is matched against the data when the C<$accept> regex
1011does not match and generates an C<EBADMSG> error when it matches. This is
1012useful to quickly reject wrong data (to avoid waiting for a timeout or a
1013receive buffer overflow).
1014
1015Example: expect a single decimal number followed by whitespace, reject
1016anything else (not the use of an anchor).
1017
1018 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1019
1020If C<$skip> is given and not C<undef>, then it will be matched against
1021the receive buffer when neither C<$accept> nor C<$reject> match,
1022and everything preceding and including the match will be accepted
1023unconditionally. This is useful to skip large amounts of data that you
1024know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1025have to start matching from the beginning. This is purely an optimisation
1026and is usually worth only when you expect more than a few kilobytes.
1027
1028Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1029expect the header to be very large (it isn't in practise, but...), we use
1030a skip regex to skip initial portions. The skip regex is tricky in that
1031it only accepts something not ending in either \015 or \012, as these are
1032required for the accept regex.
1033
1034 $handle->push_read (regex =>
1035 qr<\015\012\015\012>,
1036 undef, # no reject
1037 qr<^.*[^\015\012]>,
1038 sub { ... });
1039
1040=cut
1041
1042register_read_type regex => sub {
1043 my ($self, $cb, $accept, $reject, $skip) = @_;
1044
1045 my $data;
1046 my $rbuf = \$self->{rbuf};
675 1047
676 sub { 1048 sub {
677 $_[0]{rbuf} =~ s/$eol// or return; 1049 # accept
678 1050 if ($$rbuf =~ $accept) {
679 $cb->($_[0], $1, $2); 1051 $data .= substr $$rbuf, 0, $+[0], "";
1052 $cb->($self, $data);
1053 return 1;
1054 }
680 1 1055
1056 # reject
1057 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG);
1059 }
1060
1061 # skip
1062 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], "";
1064 }
1065
1066 ()
681 } 1067 }
682}; 1068};
683 1069
684# compatibility with older API
685sub push_read_line {
686 my $self = shift;
687 $self->push_read (line => @_);
688}
689
690sub unshift_read_line {
691 my $self = shift;
692 $self->unshift_read (line => @_);
693}
694
695=item netstring => $cb->($string) 1070=item netstring => $cb->($handle, $string)
696 1071
697A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement). 1072A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
698 1073
699Throws an error with C<$!> set to EBADMSG on format violations. 1074Throws an error with C<$!> set to EBADMSG on format violations.
700 1075
704 my ($self, $cb) = @_; 1079 my ($self, $cb) = @_;
705 1080
706 sub { 1081 sub {
707 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
708 if ($_[0]{rbuf} =~ /[^0-9]/) { 1083 if ($_[0]{rbuf} =~ /[^0-9]/) {
709 $! = &Errno::EBADMSG; 1084 $self->_error (&Errno::EBADMSG);
710 $self->error;
711 } 1085 }
712 return; 1086 return;
713 } 1087 }
714 1088
715 my $len = $1; 1089 my $len = $1;
718 my $string = $_[1]; 1092 my $string = $_[1];
719 $_[0]->unshift_read (chunk => 1, sub { 1093 $_[0]->unshift_read (chunk => 1, sub {
720 if ($_[1] eq ",") { 1094 if ($_[1] eq ",") {
721 $cb->($_[0], $string); 1095 $cb->($_[0], $string);
722 } else { 1096 } else {
723 $! = &Errno::EBADMSG; 1097 $self->_error (&Errno::EBADMSG);
724 $self->error;
725 } 1098 }
726 }); 1099 });
727 }); 1100 });
728 1101
729 1 1102 1
730 } 1103 }
731}; 1104};
732 1105
1106=item packstring => $format, $cb->($handle, $string)
1107
1108An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier).
1112
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1114
1115Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient).
1117
1118 $handle->push_read (packstring => "w", sub {
1119 my ($handle, $data) = @_;
1120 });
1121
1122=cut
1123
1124register_read_type packstring => sub {
1125 my ($self, $cb, $format) = @_;
1126
1127 sub {
1128 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1129 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1130 or return;
1131
1132 $format = length pack $format, $len;
1133
1134 # bypass unshift if we already have the remaining chunk
1135 if ($format + $len <= length $_[0]{rbuf}) {
1136 my $data = substr $_[0]{rbuf}, $format, $len;
1137 substr $_[0]{rbuf}, 0, $format + $len, "";
1138 $cb->($_[0], $data);
1139 } else {
1140 # remove prefix
1141 substr $_[0]{rbuf}, 0, $format, "";
1142
1143 # read remaining chunk
1144 $_[0]->unshift_read (chunk => $len, $cb);
1145 }
1146
1147 1
1148 }
1149};
1150
1151=item json => $cb->($handle, $hash_or_arrayref)
1152
1153Reads a JSON object or array, decodes it and passes it to the callback.
1154
1155If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157
1158This read type uses the incremental parser available with JSON version
11592.09 (and JSON::XS version 2.2) and above. You have to provide a
1160dependency on your own: this module will load the JSON module, but
1161AnyEvent does not depend on it itself.
1162
1163Since JSON texts are fully self-delimiting, the C<json> read and write
1164types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1165the C<json> write type description, above, for an actual example.
1166
1167=cut
1168
1169register_read_type json => sub {
1170 my ($self, $cb) = @_;
1171
1172 require JSON;
1173
1174 my $data;
1175 my $rbuf = \$self->{rbuf};
1176
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf});
1181
1182 if ($ref) {
1183 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = "";
1185 $cb->($self, $ref);
1186
1187 1
1188 } else {
1189 $self->{rbuf} = "";
1190 ()
1191 }
1192 }
1193};
1194
1195=item storable => $cb->($handle, $ref)
1196
1197Deserialises a L<Storable> frozen representation as written by the
1198C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1199data).
1200
1201Raises C<EBADMSG> error if the data could not be decoded.
1202
1203=cut
1204
1205register_read_type storable => sub {
1206 my ($self, $cb) = @_;
1207
1208 require Storable;
1209
1210 sub {
1211 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1212 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1213 or return;
1214
1215 my $format = length pack "w", $len;
1216
1217 # bypass unshift if we already have the remaining chunk
1218 if ($format + $len <= length $_[0]{rbuf}) {
1219 my $data = substr $_[0]{rbuf}, $format, $len;
1220 substr $_[0]{rbuf}, 0, $format + $len, "";
1221 $cb->($_[0], Storable::thaw ($data));
1222 } else {
1223 # remove prefix
1224 substr $_[0]{rbuf}, 0, $format, "";
1225
1226 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref);
1230 } else {
1231 $self->_error (&Errno::EBADMSG);
1232 }
1233 });
1234 }
1235
1236 1
1237 }
1238};
1239
733=back 1240=back
734 1241
735=item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args) 1242=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
736 1243
737This function (not method) lets you add your own types to C<push_read>. 1244This function (not method) lets you add your own types to C<push_read>.
738 1245
739Whenever the given C<type> is used, C<push_read> will invoke the code 1246Whenever the given C<type> is used, C<push_read> will invoke the code
740reference with the handle object, the callback and the remaining 1247reference with the handle object, the callback and the remaining
742 1249
743The code reference is supposed to return a callback (usually a closure) 1250The code reference is supposed to return a callback (usually a closure)
744that works as a plain read callback (see C<< ->push_read ($cb) >>). 1251that works as a plain read callback (see C<< ->push_read ($cb) >>).
745 1252
746It should invoke the passed callback when it is done reading (remember to 1253It should invoke the passed callback when it is done reading (remember to
747pass C<$self> as first argument as all other callbacks do that). 1254pass C<$handle> as first argument as all other callbacks do that).
748 1255
749Note that this is a function, and all types registered this way will be 1256Note that this is a function, and all types registered this way will be
750global, so try to use unique names. 1257global, so try to use unique names.
751 1258
752For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1259For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
755=item $handle->stop_read 1262=item $handle->stop_read
756 1263
757=item $handle->start_read 1264=item $handle->start_read
758 1265
759In rare cases you actually do not want to read anything from the 1266In rare cases you actually do not want to read anything from the
760socket. In this case you can call C<stop_read>. Neither C<on_read> no 1267socket. In this case you can call C<stop_read>. Neither C<on_read> nor
761any queued callbacks will be executed then. To start reading again, call 1268any queued callbacks will be executed then. To start reading again, call
762C<start_read>. 1269C<start_read>.
763 1270
1271Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue.
1275
764=cut 1276=cut
765 1277
766sub stop_read { 1278sub stop_read {
767 my ($self) = @_; 1279 my ($self) = @_;
768 1280
769 delete $self->{rw}; 1281 delete $self->{_rw};
770} 1282}
771 1283
772sub start_read { 1284sub start_read {
773 my ($self) = @_; 1285 my ($self) = @_;
774 1286
775 unless ($self->{rw} || $self->{eof}) { 1287 unless ($self->{_rw} || $self->{_eof}) {
776 Scalar::Util::weaken $self; 1288 Scalar::Util::weaken $self;
777 1289
778 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
779 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
780 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
781 1293
782 if ($len > 0) { 1294 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now;
1296
783 $self->{filter_r} 1297 $self->{filter_r}
784 ? $self->{filter_r}->($self, $rbuf) 1298 ? $self->{filter_r}($self, $rbuf)
785 : $self->_drain_rbuf; 1299 : $self->{_in_drain} || $self->_drain_rbuf;
786 1300
787 } elsif (defined $len) { 1301 } elsif (defined $len) {
788 delete $self->{rw}; 1302 delete $self->{_rw};
789 $self->{eof} = 1; 1303 $self->{_eof} = 1;
790 $self->_drain_rbuf; 1304 $self->_drain_rbuf unless $self->{_in_drain};
791 1305
792 } elsif ($! != EAGAIN && $! != EINTR && $! != &AnyEvent::Util::WSAEAGAIN) { 1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
793 return $self->error; 1307 return $self->_error ($!, 1);
794 } 1308 }
795 }); 1309 });
796 } 1310 }
797} 1311}
798 1312
799sub _dotls { 1313sub _dotls {
800 my ($self) = @_; 1314 my ($self) = @_;
801 1315
1316 my $buf;
1317
802 if (length $self->{tls_wbuf}) { 1318 if (length $self->{_tls_wbuf}) {
803 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) { 1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
804 substr $self->{tls_wbuf}, 0, $len, ""; 1320 substr $self->{_tls_wbuf}, 0, $len, "";
805 } 1321 }
806 } 1322 }
807 1323
808 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1324 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
809 $self->{wbuf} .= $buf; 1325 $self->{wbuf} .= $buf;
810 $self->_drain_wbuf; 1326 $self->_drain_wbuf;
811 } 1327 }
812 1328
813 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1329 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1330 if (length $buf) {
814 $self->{rbuf} .= $buf; 1331 $self->{rbuf} .= $buf;
815 $self->_drain_rbuf; 1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 } else {
1334 # let's treat SSL-eof as we treat normal EOF
1335 $self->{_eof} = 1;
1336 $self->_shutdown;
1337 return;
1338 }
816 } 1339 }
817 1340
818 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1341 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
819 1342
820 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1343 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
821 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1344 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
822 $self->error; 1345 return $self->_error ($!, 1);
823 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1346 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
824 $! = &Errno::EIO; 1347 return $self->_error (&Errno::EIO, 1);
825 $self->error;
826 } 1348 }
827 1349
828 # all others are fine for our purposes 1350 # all others are fine for our purposes
829 } 1351 }
830} 1352}
839C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1361C<"connect">, C<"accept"> or an existing Net::SSLeay object).
840 1362
841The second argument is the optional C<Net::SSLeay::CTX> object that is 1363The second argument is the optional C<Net::SSLeay::CTX> object that is
842used when AnyEvent::Handle has to create its own TLS connection object. 1364used when AnyEvent::Handle has to create its own TLS connection object.
843 1365
844=cut 1366The TLS connection object will end up in C<< $handle->{tls} >> after this
1367call and can be used or changed to your liking. Note that the handshake
1368might have already started when this function returns.
845 1369
846# TODO: maybe document... 1370=cut
1371
847sub starttls { 1372sub starttls {
848 my ($self, $ssl, $ctx) = @_; 1373 my ($self, $ssl, $ctx) = @_;
849 1374
850 $self->stoptls; 1375 $self->stoptls;
851 1376
862 # basically, this is deep magic (because SSL_read should have the same issues) 1387 # basically, this is deep magic (because SSL_read should have the same issues)
863 # but the openssl maintainers basically said: "trust us, it just works". 1388 # but the openssl maintainers basically said: "trust us, it just works".
864 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1389 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
865 # and mismaintained ssleay-module doesn't even offer them). 1390 # and mismaintained ssleay-module doesn't even offer them).
866 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1391 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1392 #
1393 # in short: this is a mess.
1394 #
1395 # note that we do not try to kepe the length constant between writes as we are required to do.
1396 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1397 # and we drive openssl fully in blocking mode here.
867 Net::SSLeay::CTX_set_mode ($self->{tls}, 1398 Net::SSLeay::CTX_set_mode ($self->{tls},
868 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1399 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
869 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1400 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
870 1401
871 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1402 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
872 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1403 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
873 1404
874 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1405 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
875 1406
876 $self->{filter_w} = sub { 1407 $self->{filter_w} = sub {
877 $_[0]{tls_wbuf} .= ${$_[1]}; 1408 $_[0]{_tls_wbuf} .= ${$_[1]};
878 &_dotls; 1409 &_dotls;
879 }; 1410 };
880 $self->{filter_r} = sub { 1411 $self->{filter_r} = sub {
881 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]}); 1412 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
882 &_dotls; 1413 &_dotls;
883 }; 1414 };
884} 1415}
885 1416
886=item $handle->stoptls 1417=item $handle->stoptls
892 1423
893sub stoptls { 1424sub stoptls {
894 my ($self) = @_; 1425 my ($self) = @_;
895 1426
896 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1427 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1428
897 delete $self->{tls_rbio}; 1429 delete $self->{_rbio};
898 delete $self->{tls_wbio}; 1430 delete $self->{_wbio};
899 delete $self->{tls_wbuf}; 1431 delete $self->{_tls_wbuf};
900 delete $self->{filter_r}; 1432 delete $self->{filter_r};
901 delete $self->{filter_w}; 1433 delete $self->{filter_w};
902} 1434}
903 1435
904sub DESTROY { 1436sub DESTROY {
905 my $self = shift; 1437 my $self = shift;
906 1438
907 $self->stoptls; 1439 $self->stoptls;
1440
1441 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1442
1443 if ($linger && length $self->{wbuf}) {
1444 my $fh = delete $self->{fh};
1445 my $wbuf = delete $self->{wbuf};
1446
1447 my @linger;
1448
1449 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1450 my $len = syswrite $fh, $wbuf, length $wbuf;
1451
1452 if ($len > 0) {
1453 substr $wbuf, 0, $len, "";
1454 } else {
1455 @linger = (); # end
1456 }
1457 });
1458 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1459 @linger = ();
1460 });
1461 }
908} 1462}
909 1463
910=item AnyEvent::Handle::TLS_CTX 1464=item AnyEvent::Handle::TLS_CTX
911 1465
912This function creates and returns the Net::SSLeay::CTX object used by 1466This function creates and returns the Net::SSLeay::CTX object used by
942 } 1496 }
943} 1497}
944 1498
945=back 1499=back
946 1500
1501=head1 SUBCLASSING AnyEvent::Handle
1502
1503In many cases, you might want to subclass AnyEvent::Handle.
1504
1505To make this easier, a given version of AnyEvent::Handle uses these
1506conventions:
1507
1508=over 4
1509
1510=item * all constructor arguments become object members.
1511
1512At least initially, when you pass a C<tls>-argument to the constructor it
1513will end up in C<< $handle->{tls} >>. Those members might be changed or
1514mutated later on (for example C<tls> will hold the TLS connection object).
1515
1516=item * other object member names are prefixed with an C<_>.
1517
1518All object members not explicitly documented (internal use) are prefixed
1519with an underscore character, so the remaining non-C<_>-namespace is free
1520for use for subclasses.
1521
1522=item * all members not documented here and not prefixed with an underscore
1523are free to use in subclasses.
1524
1525Of course, new versions of AnyEvent::Handle may introduce more "public"
1526member variables, but thats just life, at least it is documented.
1527
1528=back
1529
947=head1 AUTHOR 1530=head1 AUTHOR
948 1531
949Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1532Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
950 1533
951=cut 1534=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines