ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.4 by elmex, Sun Apr 27 20:20:20 2008 UTC vs.
Revision 1.63 by root, Fri Jun 6 11:00:32 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3use warnings; 3no warnings;
4use strict; 4use strict;
5 5
6use AnyEvent; 6use AnyEvent ();
7use IO::Handle; 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
8use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
9 12
10=head1 NAME 13=head1 NAME
11 14
12AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 16
14=head1 VERSION
15
16Version 0.01
17
18=cut 17=cut
19 18
20our $VERSION = '0.01'; 19our $VERSION = 4.14;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
26 25
27 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
28 27
29 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
30
31 $ae_fh->on_eof (sub { $cv->broadcast });
32
33 $ae_fh->readlines (sub {
34 my ($ae_fh, @lines) = @_;
35 for (@lines) {
36 chomp;
37 print "Line: $_";
38 }
39 });
40
41 # or use the constructor to pass the callback:
42
43 my $ae_fh2 =
44 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
45 fh => \*STDIN, 30 fh => \*STDIN,
46 on_eof => sub { 31 on_eof => sub {
47 $cv->broadcast; 32 $cv->broadcast;
48 }, 33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48=head1 DESCRIPTION
49
50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>.
53
54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well.
57
58All callbacks will be invoked with the handle object as their first
59argument.
60
61=head1 METHODS
62
63=over 4
64
65=item B<new (%args)>
66
67The constructor supports these arguments (all as key => value pairs).
68
69=over 4
70
71=item fh => $filehandle [MANDATORY]
72
73The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using
76AnyEvent::Util::fh_nonblocking).
77
78=item on_eof => $cb->($handle)
79
80Set the callback to be called when an end-of-file condition is detcted,
81i.e. in the case of a socket, when the other side has closed the
82connection cleanly.
83
84While not mandatory, it is highly recommended to set an eof callback,
85otherwise you might end up with a closed socket while you are still
86waiting for data.
87
88=item on_error => $cb->($handle, $fatal)
89
90This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to
92connect or a read error.
93
94Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be
96usable. Non-fatal errors can be retried by simply returning, but it is
97recommended to simply ignore this parameter and instead abondon the handle
98object when this callback is invoked.
99
100On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls
105C<croak>.
106
107=item on_read => $cb->($handle)
108
109This sets the default read callback, which is called when data arrives
110and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the
112read buffer).
113
114To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly.
116
117When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>).
121
122=item on_drain => $cb->($handle)
123
124This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already).
126
127To append to the write buffer, use the C<< ->push_write >> method.
128
129=item timeout => $fractional_seconds
130
131If non-zero, then this enables an "inactivity" timeout: whenever this many
132seconds pass without a successful read or write on the underlying file
133handle, the C<on_timeout> callback will be invoked (and if that one is
134missing, an C<ETIMEDOUT> error will be raised).
135
136Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback.
140
141Zero (the default) disables this timeout.
142
143=item on_timeout => $cb->($handle)
144
145Called whenever the inactivity timeout passes. If you return from this
146callback, then the timeout will be reset as if some activity had happened,
147so this condition is not fatal in any way.
148
149=item rbuf_max => <bytes>
150
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks.
154
155For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line
159isn't finished).
160
161=item read_size => <bytes>
162
163The default read block size (the amount of bytes this module will try to read
164during each (loop iteration). Default: C<8192>.
165
166=item low_water_mark => <bytes>
167
168Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is
170considered empty.
171
172=item linger => <seconds>
173
174If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write
176data and will install a watcher that will write out this data. No errors
177will be reported (this mostly matches how the operating system treats
178outstanding data at socket close time).
179
180This will not work for partial TLS data that could not yet been
181encoded. This data will be lost.
182
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184
185When this parameter is given, it enables TLS (SSL) mode, that means it
186will start making tls handshake and will transparently encrypt/decrypt
187data.
188
189TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle).
191
192For the TLS server side, use C<accept>, and for the TLS client side of a
193connection, use C<connect> mode.
194
195You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle.
199
200See the C<starttls> method if you need to start TLs negotiation later.
201
202=item tls_ctx => $ssl_ctx
203
204Use the given Net::SSLeay::CTX object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207
208=item json => JSON or JSON::XS object
209
210This is the json coder object used by the C<json> read and write types.
211
212If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts.
214
215Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself.
217
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back
225
226=cut
227
228sub new {
229 my $class = shift;
230
231 my $self = bless { @_ }, $class;
232
233 $self->{fh} or Carp::croak "mandatory argument fh is missing";
234
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236
237 if ($self->{tls}) {
238 require Net::SSLeay;
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240 }
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246
247 $self
248}
249
250sub _shutdown {
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259}
260
261sub _error {
262 my ($self, $errno, $fatal) = @_;
263
264 $self->_shutdown
265 if $fatal;
266
267 $! = $errno;
268
269 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal);
271 } else {
272 Carp::croak "AnyEvent::Handle uncaught error: $!";
273 }
274}
275
276=item $fh = $handle->fh
277
278This method returns the file handle of the L<AnyEvent::Handle> object.
279
280=cut
281
282sub fh { $_[0]{fh} }
283
284=item $handle->on_error ($cb)
285
286Replace the current C<on_error> callback (see the C<on_error> constructor argument).
287
288=cut
289
290sub on_error {
291 $_[0]{on_error} = $_[1];
292}
293
294=item $handle->on_eof ($cb)
295
296Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
297
298=cut
299
300sub on_eof {
301 $_[0]{on_eof} = $_[1];
302}
303
304=item $handle->on_timeout ($cb)
305
306Replace the current C<on_timeout> callback, or disables the callback
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309
310=cut
311
312sub on_timeout {
313 $_[0]{on_timeout} = $_[1];
314}
315
316#############################################################################
317
318=item $handle->timeout ($seconds)
319
320Configures (or disables) the inactivity timeout.
321
322=cut
323
324sub timeout {
325 my ($self, $timeout) = @_;
326
327 $self->{timeout} = $timeout;
328 $self->_timeout;
329}
330
331# reset the timeout watcher, as neccessary
332# also check for time-outs
333sub _timeout {
334 my ($self) = @_;
335
336 if ($self->{timeout}) {
337 my $NOW = AnyEvent->now;
338
339 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW;
341
342 # now or in the past already?
343 if ($after <= 0) {
344 $self->{_activity} = $NOW;
345
346 if ($self->{on_timeout}) {
347 $self->{on_timeout}($self);
348 } else {
349 $self->_error (&Errno::ETIMEDOUT);
350 }
351
352 # callback could have changed timeout value, optimise
353 return unless $self->{timeout};
354
355 # calculate new after
356 $after = $self->{timeout};
357 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 }
369}
370
371#############################################################################
372
373=back
374
375=head2 WRITE QUEUE
376
377AnyEvent::Handle manages two queues per handle, one for writing and one
378for reading.
379
380The write queue is very simple: you can add data to its end, and
381AnyEvent::Handle will automatically try to get rid of it for you.
382
383When data could be written and the write buffer is shorter then the low
384water mark, the C<on_drain> callback will be invoked.
385
386=over 4
387
388=item $handle->on_drain ($cb)
389
390Sets the C<on_drain> callback or clears it (see the description of
391C<on_drain> in the constructor).
392
393=cut
394
395sub on_drain {
396 my ($self, $cb) = @_;
397
398 $self->{on_drain} = $cb;
399
400 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
402}
403
404=item $handle->push_write ($data)
405
406Queues the given scalar to be written. You can push as much data as you
407want (only limited by the available memory), as C<AnyEvent::Handle>
408buffers it independently of the kernel.
409
410=cut
411
412sub _drain_wbuf {
413 my ($self) = @_;
414
415 if (!$self->{_ww} && length $self->{wbuf}) {
416
417 Scalar::Util::weaken $self;
418
419 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf};
421
422 if ($len >= 0) {
423 substr $self->{wbuf}, 0, $len, "";
424
425 $self->{_activity} = AnyEvent->now;
426
427 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf}
429 && $self->{on_drain};
430
431 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1);
434 }
435 };
436
437 # try to write data immediately
438 $cb->();
439
440 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
442 if length $self->{wbuf};
443 };
444}
445
446our %WH;
447
448sub register_write_type($$) {
449 $WH{$_[0]} = $_[1];
450}
451
452sub push_write {
453 my $self = shift;
454
455 if (@_ > 1) {
456 my $type = shift;
457
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_);
460 }
461
462 if ($self->{filter_w}) {
463 $self->{filter_w}($self, \$_[0]);
464 } else {
465 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf;
467 }
468}
469
470=item $handle->push_write (type => @args)
471
472Instead of formatting your data yourself, you can also let this module do
473the job by specifying a type and type-specific arguments.
474
475Predefined types are (if you have ideas for additional types, feel free to
476drop by and tell us):
477
478=over 4
479
480=item netstring => $string
481
482Formats the given value as netstring
483(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
484
485=cut
486
487register_write_type netstring => sub {
488 my ($self, $string) = @_;
489
490 sprintf "%d:%s,", (length $string), $string
491};
492
493=item packstring => $format, $data
494
495An octet string prefixed with an encoded length. The encoding C<$format>
496uses the same format as a Perl C<pack> format, but must specify a single
497integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
498optional C<!>, C<< < >> or C<< > >> modifier).
499
500=cut
501
502register_write_type packstring => sub {
503 my ($self, $format, $string) = @_;
504
505 pack "$format/a", $string
506};
507
508=item json => $array_or_hashref
509
510Encodes the given hash or array reference into a JSON object. Unless you
511provide your own JSON object, this means it will be encoded to JSON text
512in UTF-8.
513
514JSON objects (and arrays) are self-delimiting, so you can write JSON at
515one end of a handle and read them at the other end without using any
516additional framing.
517
518The generated JSON text is guaranteed not to contain any newlines: While
519this module doesn't need delimiters after or between JSON texts to be
520able to read them, many other languages depend on that.
521
522A simple RPC protocol that interoperates easily with others is to send
523JSON arrays (or objects, although arrays are usually the better choice as
524they mimic how function argument passing works) and a newline after each
525JSON text:
526
527 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
528 $handle->push_write ("\012");
529
530An AnyEvent::Handle receiver would simply use the C<json> read type and
531rely on the fact that the newline will be skipped as leading whitespace:
532
533 $handle->push_read (json => sub { my $array = $_[1]; ... });
534
535Other languages could read single lines terminated by a newline and pass
536this line into their JSON decoder of choice.
537
538=cut
539
540register_write_type json => sub {
541 my ($self, $ref) = @_;
542
543 require JSON;
544
545 $self->{json} ? $self->{json}->encode ($ref)
546 : JSON::encode_json ($ref)
547};
548
549=item storable => $reference
550
551Freezes the given reference using L<Storable> and writes it to the
552handle. Uses the C<nfreeze> format.
553
554=cut
555
556register_write_type storable => sub {
557 my ($self, $ref) = @_;
558
559 require Storable;
560
561 pack "w/a", Storable::nfreeze ($ref)
562};
563
564=back
565
566=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
567
568This function (not method) lets you add your own types to C<push_write>.
569Whenever the given C<type> is used, C<push_write> will invoke the code
570reference with the handle object and the remaining arguments.
571
572The code reference is supposed to return a single octet string that will
573be appended to the write buffer.
574
575Note that this is a function, and all types registered this way will be
576global, so try to use unique names.
577
578=cut
579
580#############################################################################
581
582=back
583
584=head2 READ QUEUE
585
586AnyEvent::Handle manages two queues per handle, one for writing and one
587for reading.
588
589The read queue is more complex than the write queue. It can be used in two
590ways, the "simple" way, using only C<on_read> and the "complex" way, using
591a queue.
592
593In the simple case, you just install an C<on_read> callback and whenever
594new data arrives, it will be called. You can then remove some data (if
595enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
596or not.
597
598In the more complex case, you want to queue multiple callbacks. In this
599case, AnyEvent::Handle will call the first queued callback each time new
600data arrives (also the first time it is queued) and removes it when it has
601done its job (see C<push_read>, below).
602
603This way you can, for example, push three line-reads, followed by reading
604a chunk of data, and AnyEvent::Handle will execute them in order.
605
606Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
607the specified number of bytes which give an XML datagram.
608
609 # in the default state, expect some header bytes
610 $handle->on_read (sub {
611 # some data is here, now queue the length-header-read (4 octets)
612 shift->unshift_read (chunk => 4, sub {
613 # header arrived, decode
614 my $len = unpack "N", $_[1];
615
616 # now read the payload
617 shift->unshift_read (chunk => $len, sub {
618 my $xml = $_[1];
619 # handle xml
620 });
621 });
622 });
623
624Example 2: Implement a client for a protocol that replies either with
625"OK" and another line or "ERROR" for one request, and 64 bytes for the
626second request. Due tot he availability of a full queue, we can just
627pipeline sending both requests and manipulate the queue as necessary in
628the callbacks:
629
630 # request one
631 $handle->push_write ("request 1\015\012");
632
633 # we expect "ERROR" or "OK" as response, so push a line read
634 $handle->push_read (line => sub {
635 # if we got an "OK", we have to _prepend_ another line,
636 # so it will be read before the second request reads its 64 bytes
637 # which are already in the queue when this callback is called
638 # we don't do this in case we got an error
639 if ($_[1] eq "OK") {
49 on_readline => sub { 640 $_[0]->unshift_read (line => sub {
50 my ($ae_fh, @lines) = @_; 641 my $response = $_[1];
51 for (@lines) { 642 ...
52 chomp; 643 });
53 print "Line: $_"; 644 }
645 });
646
647 # request two
648 $handle->push_write ("request 2\015\012");
649
650 # simply read 64 bytes, always
651 $handle->push_read (chunk => 64, sub {
652 my $response = $_[1];
653 ...
654 });
655
656=over 4
657
658=cut
659
660sub _drain_rbuf {
661 my ($self) = @_;
662
663 local $self->{_in_drain} = 1;
664
665 if (
666 defined $self->{rbuf_max}
667 && $self->{rbuf_max} < length $self->{rbuf}
668 ) {
669 return $self->_error (&Errno::ENOSPC, 1);
670 }
671
672 while () {
673 no strict 'refs';
674
675 my $len = length $self->{rbuf};
676
677 if (my $cb = shift @{ $self->{_queue} }) {
678 unless ($cb->($self)) {
679 if ($self->{_eof}) {
680 # no progress can be made (not enough data and no data forthcoming)
681 $self->_error (&Errno::EPIPE, 1), last;
54 } 682 }
683
684 unshift @{ $self->{_queue} }, $cb;
685 last;
55 } 686 }
56 );
57
58 $cv->wait;
59
60=head1 DESCRIPTION
61
62This module is a helper module to make it easier to do non-blocking I/O
63on filehandles (and sockets, see L<AnyEvent::Socket>).
64
65The event loop is provided by L<AnyEvent>.
66
67=head1 METHODS
68
69=over 4
70
71=item B<new (%args)>
72
73The constructor has these arguments:
74
75=over 4
76
77=item fh => $filehandle
78
79The filehandle this L<AnyEvent::Handle> object will operate on.
80
81NOTE: The filehandle will be set to non-blocking.
82
83=item read_block_size => $size
84
85The default read block size use for reads via the C<on_read>
86method.
87
88=item on_read => $cb
89
90=item on_eof => $cb
91
92=item on_error => $cb
93
94These are shortcuts, that will call the corresponding method and set the callback to C<$cb>.
95
96=item on_readline => $cb
97
98The C<readlines> method is called with the default seperator and C<$cb> as callback
99for you.
100
101=back
102
103=cut
104
105sub new {
106 my $this = shift;
107 my $class = ref($this) || $this;
108 my $self = {
109 read_block_size => 4096,
110 rbuf => '',
111 @_
112 };
113 bless $self, $class;
114
115 $self->{fh}->blocking (0) if $self->{fh};
116
117 if ($self->{on_read}) {
118 $self->on_read ($self->{on_read});
119
120 } elsif ($self->{on_readline}) { 687 } elsif ($self->{on_read}) {
121 $self->readlines ($self->{on_readline}); 688 last unless $len;
122 689
123 } elsif ($self->{on_eof}) { 690 $self->{on_read}($self);
691
692 if (
693 $len == length $self->{rbuf} # if no data has been consumed
694 && !@{ $self->{_queue} } # and the queue is still empty
695 && $self->{on_read} # but we still have on_read
696 ) {
697 # no further data will arrive
698 # so no progress can be made
699 $self->_error (&Errno::EPIPE, 1), last
700 if $self->{_eof};
701
702 last; # more data might arrive
703 }
704 } else {
705 # read side becomes idle
706 delete $self->{_rw};
707 last;
708 }
709 }
710
711 $self->{on_eof}($self)
124 $self->on_eof ($self->{on_eof}); 712 if $self->{_eof} && $self->{on_eof};
125 713
126 } elsif ($self->{on_error}) { 714 # may need to restart read watcher
127 $self->on_eof ($self->{on_error}); 715 unless ($self->{_rw}) {
716 $self->start_read
717 if $self->{on_read} || @{ $self->{_queue} };
128 } 718 }
129
130 return $self
131} 719}
132 720
133=item B<fh> 721=item $handle->on_read ($cb)
134 722
135This method returns the filehandle of the L<AnyEvent::Handle> object. 723This replaces the currently set C<on_read> callback, or clears it (when
136 724the new callback is C<undef>). See the description of C<on_read> in the
137=cut 725constructor.
138
139sub fh { $_[0]->{fh} }
140
141=item B<on_read ($callback)>
142
143This method installs a C<$callback> that will be called
144when new data arrived. You can access the read buffer via the C<rbuf>
145method (see below).
146
147The first argument of the C<$callback> will be the L<AnyEvent::Handle> object.
148 726
149=cut 727=cut
150 728
151sub on_read { 729sub on_read {
152 my ($self, $cb) = @_; 730 my ($self, $cb) = @_;
731
153 $self->{on_read} = $cb; 732 $self->{on_read} = $cb;
733 $self->_drain_rbuf if $cb && !$self->{_in_drain};
734}
154 735
155 unless (defined $self->{on_read}) { 736=item $handle->rbuf
156 delete $self->{on_read_w}; 737
738Returns the read buffer (as a modifiable lvalue).
739
740You can access the read buffer directly as the C<< ->{rbuf} >> member, if
741you want.
742
743NOTE: The read buffer should only be used or modified if the C<on_read>,
744C<push_read> or C<unshift_read> methods are used. The other read methods
745automatically manage the read buffer.
746
747=cut
748
749sub rbuf : lvalue {
750 $_[0]{rbuf}
751}
752
753=item $handle->push_read ($cb)
754
755=item $handle->unshift_read ($cb)
756
757Append the given callback to the end of the queue (C<push_read>) or
758prepend it (C<unshift_read>).
759
760The callback is called each time some additional read data arrives.
761
762It must check whether enough data is in the read buffer already.
763
764If not enough data is available, it must return the empty list or a false
765value, in which case it will be called repeatedly until enough data is
766available (or an error condition is detected).
767
768If enough data was available, then the callback must remove all data it is
769interested in (which can be none at all) and return a true value. After returning
770true, it will be removed from the queue.
771
772=cut
773
774our %RH;
775
776sub register_read_type($$) {
777 $RH{$_[0]} = $_[1];
778}
779
780sub push_read {
781 my $self = shift;
782 my $cb = pop;
783
784 if (@_) {
785 my $type = shift;
786
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
788 ->($self, $cb, @_);
789 }
790
791 push @{ $self->{_queue} }, $cb;
792 $self->_drain_rbuf unless $self->{_in_drain};
793}
794
795sub unshift_read {
796 my $self = shift;
797 my $cb = pop;
798
799 if (@_) {
800 my $type = shift;
801
802 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
803 ->($self, $cb, @_);
804 }
805
806
807 unshift @{ $self->{_queue} }, $cb;
808 $self->_drain_rbuf unless $self->{_in_drain};
809}
810
811=item $handle->push_read (type => @args, $cb)
812
813=item $handle->unshift_read (type => @args, $cb)
814
815Instead of providing a callback that parses the data itself you can chose
816between a number of predefined parsing formats, for chunks of data, lines
817etc.
818
819Predefined types are (if you have ideas for additional types, feel free to
820drop by and tell us):
821
822=over 4
823
824=item chunk => $octets, $cb->($handle, $data)
825
826Invoke the callback only once C<$octets> bytes have been read. Pass the
827data read to the callback. The callback will never be called with less
828data.
829
830Example: read 2 bytes.
831
832 $handle->push_read (chunk => 2, sub {
833 warn "yay ", unpack "H*", $_[1];
834 });
835
836=cut
837
838register_read_type chunk => sub {
839 my ($self, $cb, $len) = @_;
840
841 sub {
842 $len <= length $_[0]{rbuf} or return;
843 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 1
845 }
846};
847
848# compatibility with older API
849sub push_read_chunk {
850 $_[0]->push_read (chunk => $_[1], $_[2]);
851}
852
853sub unshift_read_chunk {
854 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855}
856
857=item line => [$eol, ]$cb->($handle, $line, $eol)
858
859The callback will be called only once a full line (including the end of
860line marker, C<$eol>) has been read. This line (excluding the end of line
861marker) will be passed to the callback as second argument (C<$line>), and
862the end of line marker as the third argument (C<$eol>).
863
864The end of line marker, C<$eol>, can be either a string, in which case it
865will be interpreted as a fixed record end marker, or it can be a regex
866object (e.g. created by C<qr>), in which case it is interpreted as a
867regular expression.
868
869The end of line marker argument C<$eol> is optional, if it is missing (NOT
870undef), then C<qr|\015?\012|> is used (which is good for most internet
871protocols).
872
873Partial lines at the end of the stream will never be returned, as they are
874not marked by the end of line marker.
875
876=cut
877
878register_read_type line => sub {
879 my ($self, $cb, $eol) = @_;
880
881 $eol = qr|(\015?\012)| if @_ < 3;
882 $eol = quotemeta $eol unless ref $eol;
883 $eol = qr|^(.*?)($eol)|s;
884
885 sub {
886 $_[0]{rbuf} =~ s/$eol// or return;
887
888 $cb->($_[0], $1, $2);
889 1
890 }
891};
892
893# compatibility with older API
894sub push_read_line {
895 my $self = shift;
896 $self->push_read (line => @_);
897}
898
899sub unshift_read_line {
900 my $self = shift;
901 $self->unshift_read (line => @_);
902}
903
904=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905
906Makes a regex match against the regex object C<$accept> and returns
907everything up to and including the match.
908
909Example: read a single line terminated by '\n'.
910
911 $handle->push_read (regex => qr<\n>, sub { ... });
912
913If C<$reject> is given and not undef, then it determines when the data is
914to be rejected: it is matched against the data when the C<$accept> regex
915does not match and generates an C<EBADMSG> error when it matches. This is
916useful to quickly reject wrong data (to avoid waiting for a timeout or a
917receive buffer overflow).
918
919Example: expect a single decimal number followed by whitespace, reject
920anything else (not the use of an anchor).
921
922 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
923
924If C<$skip> is given and not C<undef>, then it will be matched against
925the receive buffer when neither C<$accept> nor C<$reject> match,
926and everything preceding and including the match will be accepted
927unconditionally. This is useful to skip large amounts of data that you
928know cannot be matched, so that the C<$accept> or C<$reject> regex do not
929have to start matching from the beginning. This is purely an optimisation
930and is usually worth only when you expect more than a few kilobytes.
931
932Example: expect a http header, which ends at C<\015\012\015\012>. Since we
933expect the header to be very large (it isn't in practise, but...), we use
934a skip regex to skip initial portions. The skip regex is tricky in that
935it only accepts something not ending in either \015 or \012, as these are
936required for the accept regex.
937
938 $handle->push_read (regex =>
939 qr<\015\012\015\012>,
940 undef, # no reject
941 qr<^.*[^\015\012]>,
942 sub { ... });
943
944=cut
945
946register_read_type regex => sub {
947 my ($self, $cb, $accept, $reject, $skip) = @_;
948
949 my $data;
950 my $rbuf = \$self->{rbuf};
951
952 sub {
953 # accept
954 if ($$rbuf =~ $accept) {
955 $data .= substr $$rbuf, 0, $+[0], "";
956 $cb->($self, $data);
957 return 1;
958 }
959
960 # reject
961 if ($reject && $$rbuf =~ $reject) {
962 $self->_error (&Errno::EBADMSG);
963 }
964
965 # skip
966 if ($skip && $$rbuf =~ $skip) {
967 $data .= substr $$rbuf, 0, $+[0], "";
968 }
969
970 ()
971 }
972};
973
974=item netstring => $cb->($handle, $string)
975
976A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
977
978Throws an error with C<$!> set to EBADMSG on format violations.
979
980=cut
981
982register_read_type netstring => sub {
983 my ($self, $cb) = @_;
984
985 sub {
986 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987 if ($_[0]{rbuf} =~ /[^0-9]/) {
988 $self->_error (&Errno::EBADMSG);
989 }
157 return; 990 return;
991 }
992
993 my $len = $1;
994
995 $self->unshift_read (chunk => $len, sub {
996 my $string = $_[1];
997 $_[0]->unshift_read (chunk => 1, sub {
998 if ($_[1] eq ",") {
999 $cb->($_[0], $string);
1000 } else {
1001 $self->_error (&Errno::EBADMSG);
1002 }
1003 });
1004 });
1005
1006 1
1007 }
1008};
1009
1010=item packstring => $format, $cb->($handle, $string)
1011
1012An octet string prefixed with an encoded length. The encoding C<$format>
1013uses the same format as a Perl C<pack> format, but must specify a single
1014integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015optional C<!>, C<< < >> or C<< > >> modifier).
1016
1017DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1018
1019Example: read a block of data prefixed by its length in BER-encoded
1020format (very efficient).
1021
1022 $handle->push_read (packstring => "w", sub {
1023 my ($handle, $data) = @_;
158 } 1024 });
159 1025
160 $self->{on_read_w} = 1026=cut
161 AnyEvent->io (poll => 'r', fh => $self->{fh}, cb => sub { 1027
162 #d# warn "READ:[$self->{read_size}] $self->{read_block_size} : ".length ($self->{rbuf})."\n"; 1028register_read_type packstring => sub {
1029 my ($self, $cb, $format) = @_;
1030
1031 sub {
1032 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1034 or return;
1035
1036 # remove prefix
1037 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1038
1039 # read rest
1040 $_[0]->unshift_read (chunk => $len, $cb);
1041
1042 1
1043 }
1044};
1045
1046=item json => $cb->($handle, $hash_or_arrayref)
1047
1048Reads a JSON object or array, decodes it and passes it to the callback.
1049
1050If a C<json> object was passed to the constructor, then that will be used
1051for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052
1053This read type uses the incremental parser available with JSON version
10542.09 (and JSON::XS version 2.2) and above. You have to provide a
1055dependency on your own: this module will load the JSON module, but
1056AnyEvent does not depend on it itself.
1057
1058Since JSON texts are fully self-delimiting, the C<json> read and write
1059types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1060the C<json> write type description, above, for an actual example.
1061
1062=cut
1063
1064register_read_type json => sub {
1065 my ($self, $cb) = @_;
1066
1067 require JSON;
1068
1069 my $data;
163 my $rbuf_len = length $self->{rbuf}; 1070 my $rbuf = \$self->{rbuf};
164 my $l; 1071
165 if (defined $self->{read_size}) { 1072 my $json = $self->{json} ||= JSON->new->utf8;
166 $l = sysread $self->{fh}, $self->{rbuf}, 1073
167 ($self->{read_size} - $rbuf_len), $rbuf_len; 1074 sub {
1075 my $ref = $json->incr_parse ($self->{rbuf});
1076
1077 if ($ref) {
1078 $self->{rbuf} = $json->incr_text;
1079 $json->incr_text = "";
1080 $cb->($self, $ref);
1081
1082 1
1083 } else {
1084 $self->{rbuf} = "";
1085 ()
1086 }
1087 }
1088};
1089
1090=item storable => $cb->($handle, $ref)
1091
1092Deserialises a L<Storable> frozen representation as written by the
1093C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1094data).
1095
1096Raises C<EBADMSG> error if the data could not be decoded.
1097
1098=cut
1099
1100register_read_type storable => sub {
1101 my ($self, $cb) = @_;
1102
1103 require Storable;
1104
1105 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1108 or return;
1109
1110 # remove prefix
1111 substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1112
1113 # read rest
1114 $_[0]->unshift_read (chunk => $len, sub {
1115 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116 $cb->($_[0], $ref);
168 } else { 1117 } else {
169 $l = sysread $self->{fh}, $self->{rbuf}, $self->{read_block_size}, $rbuf_len; 1118 $self->_error (&Errno::EBADMSG);
170 }
171 #d# warn "READL $l [$self->{rbuf}]\n";
172
173 if (not defined $l) {
174 return if $! == EAGAIN || $! == EINTR;
175 $self->{on_error}->($self) if $self->{on_error};
176 delete $self->{on_read_w};
177
178 } elsif ($l == 0) {
179 $self->{on_eof}->($self) if $self->{on_eof};
180 delete $self->{on_read_w};
181
182 } else {
183 $self->{on_read}->($self);
184 } 1119 }
185 }); 1120 });
186}
187
188=item B<on_error ($callback)>
189
190Whenever a read or write operation resulted in an error the C<$callback>
191will be called.
192
193The first argument of C<$callback> will be the L<AnyEvent::Handle> object itself.
194The error is given as errno in C<$!>.
195
196=cut
197
198sub on_error {
199 $_[0]->{on_error} = $_[1];
200}
201
202=item B<on_eof ($callback)>
203
204Installs the C<$callback> that will be called when the end of file is
205encountered in a read operation this C<$callback> will be called. The first
206argument will be the L<AnyEvent::Handle> object itself.
207
208=cut
209
210sub on_eof {
211 $_[0]->{on_eof} = $_[1];
212}
213
214=item B<rbuf>
215
216Returns a reference to the read buffer.
217
218NOTE: The read buffer should only be used or modified if the C<on_read>
219method is used directly. The C<read> and C<readlines> methods will provide
220the read data to their callbacks.
221
222=cut
223
224sub rbuf : lvalue {
225 $_[0]->{rbuf}
226}
227
228=item B<read ($len, $callback)>
229
230Will read exactly C<$len> bytes from the filehandle and call the C<$callback>
231if done so. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
232object itself and the second argument the read data.
233
234NOTE: This method will override any callbacks installed via the C<on_read> method.
235
236=cut
237
238sub read {
239 my ($self, $len, $cb) = @_;
240
241 $self->{read_cb} = $cb;
242 my $old_blk_size = $self->{read_block_size};
243 $self->{read_block_size} = $len;
244
245 $self->on_read (sub {
246 #d# warn "OFOFO $len || ".length($_[0]->{rbuf})."||\n";
247
248 if ($len == length $_[0]->{rbuf}) {
249 $_[0]->{read_block_size} = $old_blk_size;
250 $_[0]->on_read (undef);
251 $_[0]->{read_cb}->($_[0], (substr $self->{rbuf}, 0, $len, ''));
252 }
253 }); 1121 }
254} 1122};
255 1123
256=item B<readlines ($callback)> 1124=back
257 1125
258=item B<readlines ($sep, $callback)> 1126=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
259 1127
260This method will read lines from the filehandle, seperated by C<$sep> or C<"\n"> 1128This function (not method) lets you add your own types to C<push_read>.
261if C<$sep> is not provided. C<$sep> will be used as part of a regex, so it can be
262a regex itself and won't be quoted!
263 1129
264The C<$callback> will be called when at least one 1130Whenever the given C<type> is used, C<push_read> will invoke the code
265line could be read. The first argument to the C<$callback> will be the L<AnyEvent::Handle> 1131reference with the handle object, the callback and the remaining
266object itself and the rest of the arguments will be the read lines. 1132arguments.
267 1133
268NOTE: This method will override any callbacks installed via the C<on_read> method. 1134The code reference is supposed to return a callback (usually a closure)
1135that works as a plain read callback (see C<< ->push_read ($cb) >>).
269 1136
270=cut 1137It should invoke the passed callback when it is done reading (remember to
1138pass C<$handle> as first argument as all other callbacks do that).
271 1139
272sub readlines { 1140Note that this is a function, and all types registered this way will be
273 my ($self, $NL, $cb) = @_; 1141global, so try to use unique names.
274 1142
275 if (ref $NL) { 1143For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
276 $cb = $NL; 1144search for C<register_read_type>)).
277 $NL = "\n";
278 }
279 1145
280 $self->{on_readline} = $cb; 1146=item $handle->stop_read
281 1147
282 $self->on_read (sub { 1148=item $handle->start_read
283 my @lines;
284 push @lines, $1 while $_[0]->{rbuf} =~ s/(.*)$NL//;
285 $self->{on_readline}->($_[0], @lines);
286 });
287}
288 1149
289=item B<write ($data)> 1150In rare cases you actually do not want to read anything from the
1151socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1152any queued callbacks will be executed then. To start reading again, call
1153C<start_read>.
290 1154
291=item B<write ($callback)> 1155Note that AnyEvent::Handle will automatically C<start_read> for you when
1156you change the C<on_read> callback or push/unshift a read callback, and it
1157will automatically C<stop_read> for you when neither C<on_read> is set nor
1158there are any read requests in the queue.
292 1159
293=item B<write ($data, $callback)>
294
295This method will write C<$data> to the filehandle and call the C<$callback>
296afterwards. If only C<$callback> is provided it will be called when the
297write buffer becomes empty the next time (or immediately if it already is empty).
298
299=cut 1160=cut
300 1161
301sub write { 1162sub stop_read {
302 my ($self, $data, $cb) = @_;
303 if (ref $data) { $cb = $data; undef $data }
304 push @{$self->{write_bufs}}, [$data, $cb];
305 $self->_check_writer;
306}
307
308sub _check_writer {
309 my ($self) = @_; 1163 my ($self) = @_;
310 1164
311 if ($self->{write_w}) { 1165 delete $self->{_rw};
312 unless ($self->{write_cb}) { 1166}
313 while (@{$self->{write_bufs}} && not defined $self->{write_bufs}->[0]->[1]) {
314 my $wba = shift @{$self->{write_bufs}};
315 $self->{wbuf} .= $wba->[0];
316 }
317 }
318 return;
319 }
320 1167
321 my $wba = shift @{$self->{write_bufs}} 1168sub start_read {
322 or return; 1169 my ($self) = @_;
323 1170
324 unless (defined $wba->[0]) { 1171 unless ($self->{_rw} || $self->{_eof}) {
325 $wba->[1]->($self) if $wba->[1]; 1172 Scalar::Util::weaken $self;
326 $self->_check_writer;
327 return;
328 }
329 1173
330 $self->{wbuf} = $wba->[0]; 1174 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
331 $self->{write_cb} = $wba->[1]; 1175 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1176 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
332 1177
333 $self->{write_w} = 1178 if ($len > 0) {
334 AnyEvent->io (poll => 'w', fh => $self->{fh}, cb => sub { 1179 $self->{_activity} = AnyEvent->now;
335 my $l = syswrite $self->{fh}, $self->{wbuf}, length $self->{wbuf};
336 1180
1181 $self->{filter_r}
1182 ? $self->{filter_r}($self, $rbuf)
1183 : $self->{_in_drain} || $self->_drain_rbuf;
1184
337 if (not defined $l) { 1185 } elsif (defined $len) {
338 return if $! == EAGAIN || $! == EINTR;
339 delete $self->{write_w}; 1186 delete $self->{_rw};
340 $self->{on_error}->($self) if $self->{on_error}; 1187 $self->{_eof} = 1;
1188 $self->_drain_rbuf unless $self->{_in_drain};
341 1189
342 } else { 1190 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
343 substr $self->{wbuf}, 0, $l, ''; 1191 return $self->_error ($!, 1);
344
345 if (length ($self->{wbuf}) == 0) {
346 $self->{write_cb}->($self) if $self->{write_cb};
347
348 delete $self->{write_w};
349 delete $self->{wbuf};
350 delete $self->{write_cb};
351
352 $self->_check_writer;
353 }
354 } 1192 }
355 }); 1193 });
1194 }
1195}
1196
1197sub _dotls {
1198 my ($self) = @_;
1199
1200 my $buf;
1201
1202 if (length $self->{_tls_wbuf}) {
1203 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204 substr $self->{_tls_wbuf}, 0, $len, "";
1205 }
1206 }
1207
1208 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 $self->{wbuf} .= $buf;
1210 $self->_drain_wbuf;
1211 }
1212
1213 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1214 if (length $buf) {
1215 $self->{rbuf} .= $buf;
1216 $self->_drain_rbuf unless $self->{_in_drain};
1217 } else {
1218 # let's treat SSL-eof as we treat normal EOF
1219 $self->{_eof} = 1;
1220 $self->_shutdown;
1221 return;
1222 }
1223 }
1224
1225 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226
1227 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 return $self->_error ($!, 1);
1230 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 return $self->_error (&Errno::EIO, 1);
1232 }
1233
1234 # all others are fine for our purposes
1235 }
1236}
1237
1238=item $handle->starttls ($tls[, $tls_ctx])
1239
1240Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241object is created, you can also do that at a later time by calling
1242C<starttls>.
1243
1244The first argument is the same as the C<tls> constructor argument (either
1245C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246
1247The second argument is the optional C<Net::SSLeay::CTX> object that is
1248used when AnyEvent::Handle has to create its own TLS connection object.
1249
1250The TLS connection object will end up in C<< $handle->{tls} >> after this
1251call and can be used or changed to your liking. Note that the handshake
1252might have already started when this function returns.
1253
1254=cut
1255
1256sub starttls {
1257 my ($self, $ssl, $ctx) = @_;
1258
1259 $self->stoptls;
1260
1261 if ($ssl eq "accept") {
1262 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1263 Net::SSLeay::set_accept_state ($ssl);
1264 } elsif ($ssl eq "connect") {
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1266 Net::SSLeay::set_connect_state ($ssl);
1267 }
1268
1269 $self->{tls} = $ssl;
1270
1271 # basically, this is deep magic (because SSL_read should have the same issues)
1272 # but the openssl maintainers basically said: "trust us, it just works".
1273 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274 # and mismaintained ssleay-module doesn't even offer them).
1275 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1276 Net::SSLeay::CTX_set_mode ($self->{tls},
1277 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1279
1280 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282
1283 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1284
1285 $self->{filter_w} = sub {
1286 $_[0]{_tls_wbuf} .= ${$_[1]};
1287 &_dotls;
1288 };
1289 $self->{filter_r} = sub {
1290 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 &_dotls;
1292 };
1293}
1294
1295=item $handle->stoptls
1296
1297Destroys the SSL connection, if any. Partial read or write data will be
1298lost.
1299
1300=cut
1301
1302sub stoptls {
1303 my ($self) = @_;
1304
1305 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1306
1307 delete $self->{_rbio};
1308 delete $self->{_wbio};
1309 delete $self->{_tls_wbuf};
1310 delete $self->{filter_r};
1311 delete $self->{filter_w};
1312}
1313
1314sub DESTROY {
1315 my $self = shift;
1316
1317 $self->stoptls;
1318
1319 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320
1321 if ($linger && length $self->{wbuf}) {
1322 my $fh = delete $self->{fh};
1323 my $wbuf = delete $self->{wbuf};
1324
1325 my @linger;
1326
1327 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1328 my $len = syswrite $fh, $wbuf, length $wbuf;
1329
1330 if ($len > 0) {
1331 substr $wbuf, 0, $len, "";
1332 } else {
1333 @linger = (); # end
1334 }
1335 });
1336 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1337 @linger = ();
1338 });
1339 }
1340}
1341
1342=item AnyEvent::Handle::TLS_CTX
1343
1344This function creates and returns the Net::SSLeay::CTX object used by
1345default for TLS mode.
1346
1347The context is created like this:
1348
1349 Net::SSLeay::load_error_strings;
1350 Net::SSLeay::SSLeay_add_ssl_algorithms;
1351 Net::SSLeay::randomize;
1352
1353 my $CTX = Net::SSLeay::CTX_new;
1354
1355 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356
1357=cut
1358
1359our $TLS_CTX;
1360
1361sub TLS_CTX() {
1362 $TLS_CTX || do {
1363 require Net::SSLeay;
1364
1365 Net::SSLeay::load_error_strings ();
1366 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367 Net::SSLeay::randomize ();
1368
1369 $TLS_CTX = Net::SSLeay::CTX_new ();
1370
1371 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372
1373 $TLS_CTX
1374 }
356} 1375}
357 1376
358=back 1377=back
359 1378
1379=head1 SUBCLASSING AnyEvent::Handle
1380
1381In many cases, you might want to subclass AnyEvent::Handle.
1382
1383To make this easier, a given version of AnyEvent::Handle uses these
1384conventions:
1385
1386=over 4
1387
1388=item * all constructor arguments become object members.
1389
1390At least initially, when you pass a C<tls>-argument to the constructor it
1391will end up in C<< $handle->{tls} >>. Those members might be changes or
1392mutated later on (for example C<tls> will hold the TLS connection object).
1393
1394=item * other object member names are prefixed with an C<_>.
1395
1396All object members not explicitly documented (internal use) are prefixed
1397with an underscore character, so the remaining non-C<_>-namespace is free
1398for use for subclasses.
1399
1400=item * all members not documented here and not prefixed with an underscore
1401are free to use in subclasses.
1402
1403Of course, new versions of AnyEvent::Handle may introduce more "public"
1404member variables, but thats just life, at least it is documented.
1405
1406=back
1407
360=head1 AUTHOR 1408=head1 AUTHOR
361 1409
362Robin Redeker, C<< <elmex at ta-sa.org> >> 1410Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
363 1411
364=cut 1412=cut
365 1413
3661; # End of AnyEvent::Handle 14141; # End of AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines