ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.44 by root, Thu May 29 00:00:07 2008 UTC vs.
Revision 1.100 by root, Thu Oct 23 02:44:50 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.3;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
81 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
82While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
83otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
84waiting for data. 95waiting for data.
85 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
86=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal)
87 101
88This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
90or a read error. 104connect or a read error.
91 105
92The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 116
95On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 119
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100
101While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
103die. 122C<croak>.
104 123
105=item on_read => $cb->($handle) 124=item on_read => $cb->($handle)
106 125
107This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
109 130
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
112 133
113When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
120This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
122 143
123To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
124 145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
125=item timeout => $fractional_seconds 152=item timeout => $fractional_seconds
126 153
127If non-zero, then this enables an "inactivity" timeout: whenever this many 154If non-zero, then this enables an "inactivity" timeout: whenever this many
128seconds pass without a successful read or write on the underlying file 155seconds pass without a successful read or write on the underlying file
129handle, the C<on_timeout> callback will be invoked (and if that one is 156handle, the C<on_timeout> callback will be invoked (and if that one is
130missing, an C<ETIMEDOUT> errror will be raised). 157missing, a non-fatal C<ETIMEDOUT> error will be raised).
131 158
132Note that timeout processing is also active when you currently do not have 159Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 160any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 161idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163restart the timeout.
136 164
137Zero (the default) disables this timeout. 165Zero (the default) disables this timeout.
138 166
139=item on_timeout => $cb->($handle) 167=item on_timeout => $cb->($handle)
140 168
144 172
145=item rbuf_max => <bytes> 173=item rbuf_max => <bytes>
146 174
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 175If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 176when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 177avoid some forms of denial-of-service attacks.
150 178
151For example, a server accepting connections from untrusted sources should 179For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 180be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 181(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 182amount of data without a callback ever being called as long as the line
155isn't finished). 183isn't finished).
156 184
185=item autocork => <boolean>
186
187When disabled (the default), then C<push_write> will try to immediately
188write the data to the handle, if possible. This avoids having to register
189a write watcher and wait for the next event loop iteration, but can
190be inefficient if you write multiple small chunks (on the wire, this
191disadvantage is usually avoided by your kernel's nagle algorithm, see
192C<no_delay>, but this option can save costly syscalls).
193
194When enabled, then writes will always be queued till the next event loop
195iteration. This is efficient when you do many small writes per iteration,
196but less efficient when you do a single write only per iteration (or when
197the write buffer often is full). It also increases write latency.
198
199=item no_delay => <boolean>
200
201When doing small writes on sockets, your operating system kernel might
202wait a bit for more data before actually sending it out. This is called
203the Nagle algorithm, and usually it is beneficial.
204
205In some situations you want as low a delay as possible, which can be
206accomplishd by setting this option to a true value.
207
208The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible.
210
157=item read_size => <bytes> 211=item read_size => <bytes>
158 212
159The default read block size (the amount of bytes this module will try to read 213The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 214try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>.
161 216
162=item low_water_mark => <bytes> 217=item low_water_mark => <bytes>
163 218
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 219Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 220buffer: If the write reaches this size or gets even samller it is
166considered empty. 221considered empty.
167 222
223Sometimes it can be beneficial (for performance reasons) to add data to
224the write buffer before it is fully drained, but this is a rare case, as
225the operating system kernel usually buffers data as well, so the default
226is good in almost all cases.
227
228=item linger => <seconds>
229
230If non-zero (default: C<3600>), then the destructor of the
231AnyEvent::Handle object will check whether there is still outstanding
232write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time).
235
236This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might
238help.
239
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 240=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 241
170When this parameter is given, it enables TLS (SSL) mode, that means it 242When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 243AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 244established and will transparently encrypt/decrypt data afterwards.
173 245
174TLS mode requires Net::SSLeay to be installed (it will be loaded 246TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 247automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself.
176 250
177For the TLS server side, use C<accept>, and for the TLS client side of a 251Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 252C<accept>, and for the TLS client side of a connection, use C<connect>
253mode.
179 254
180You can also provide your own TLS connection object, but you have 255You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 256to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 257or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 258AnyEvent::Handle.
184 259
185See the C<starttls> method if you need to start TLs negotiation later. 260See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 261
187=item tls_ctx => $ssl_ctx 262=item tls_ctx => $ssl_ctx
188 263
189Use the given Net::SSLeay::CTX object to create the new TLS connection 264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 265(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 267
193=item json => JSON or JSON::XS object 268=item json => JSON or JSON::XS object
194 269
195This is the json coder object used by the C<json> read and write types. 270This is the json coder object used by the C<json> read and write types.
196 271
197If you don't supply it, then AnyEvent::Handle will create and use a 272If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 273suitable one (on demand), which will write and expect UTF-8 encoded JSON
274texts.
199 275
200Note that you are responsible to depend on the JSON module if you want to 276Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 277use this functionality, as AnyEvent does not have a dependency itself.
202 278
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 279=back
210 280
211=cut 281=cut
212 282
213sub new { 283sub new {
217 287
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 288 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219 289
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 291
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
225 } 293 if $self->{tls};
226
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 294
232 $self->{_activity} = AnyEvent->now; 295 $self->{_activity} = AnyEvent->now;
233 $self->_timeout; 296 $self->_timeout;
234 297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300
235 $self->start_read; 301 $self->start_read
302 if $self->{on_read};
236 303
237 $self 304 $self
238} 305}
239 306
240sub _shutdown { 307sub _shutdown {
241 my ($self) = @_; 308 my ($self) = @_;
242 309
310 delete $self->{_tw};
243 delete $self->{_rw}; 311 delete $self->{_rw};
244 delete $self->{_ww}; 312 delete $self->{_ww};
245 delete $self->{fh}; 313 delete $self->{fh};
246}
247 314
315 &_freetls;
316
317 delete $self->{on_read};
318 delete $self->{_queue};
319}
320
248sub error { 321sub _error {
249 my ($self) = @_; 322 my ($self, $errno, $fatal) = @_;
250 323
251 {
252 local $!;
253 $self->_shutdown; 324 $self->_shutdown
254 } 325 if $fatal;
255 326
256 $self->{on_error}($self) 327 $! = $errno;
328
257 if $self->{on_error}; 329 if ($self->{on_error}) {
258 330 $self->{on_error}($self, $fatal);
331 } elsif ($self->{fh}) {
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 332 Carp::croak "AnyEvent::Handle uncaught error: $!";
333 }
260} 334}
261 335
262=item $fh = $handle->fh 336=item $fh = $handle->fh
263 337
264This method returns the file handle of the L<AnyEvent::Handle> object. 338This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 339
266=cut 340=cut
267 341
268sub fh { $_[0]{fh} } 342sub fh { $_[0]{fh} }
269 343
287 $_[0]{on_eof} = $_[1]; 361 $_[0]{on_eof} = $_[1];
288} 362}
289 363
290=item $handle->on_timeout ($cb) 364=item $handle->on_timeout ($cb)
291 365
292Replace the current C<on_timeout> callback, or disables the callback 366Replace the current C<on_timeout> callback, or disables the callback (but
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 367not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
294argument. 368argument and method.
295 369
296=cut 370=cut
297 371
298sub on_timeout { 372sub on_timeout {
299 $_[0]{on_timeout} = $_[1]; 373 $_[0]{on_timeout} = $_[1];
374}
375
376=item $handle->autocork ($boolean)
377
378Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument).
380
381=cut
382
383=item $handle->no_delay ($boolean)
384
385Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details).
387
388=cut
389
390sub no_delay {
391 $_[0]{no_delay} = $_[1];
392
393 eval {
394 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
396 };
300} 397}
301 398
302############################################################################# 399#############################################################################
303 400
304=item $handle->timeout ($seconds) 401=item $handle->timeout ($seconds)
328 # now or in the past already? 425 # now or in the past already?
329 if ($after <= 0) { 426 if ($after <= 0) {
330 $self->{_activity} = $NOW; 427 $self->{_activity} = $NOW;
331 428
332 if ($self->{on_timeout}) { 429 if ($self->{on_timeout}) {
333 $self->{on_timeout}->($self); 430 $self->{on_timeout}($self);
334 } else { 431 } else {
335 $! = Errno::ETIMEDOUT; 432 $self->_error (&Errno::ETIMEDOUT);
336 $self->error;
337 } 433 }
338 434
339 # callbakx could have changed timeout value, optimise 435 # callback could have changed timeout value, optimise
340 return unless $self->{timeout}; 436 return unless $self->{timeout};
341 437
342 # calculate new after 438 # calculate new after
343 $after = $self->{timeout}; 439 $after = $self->{timeout};
344 } 440 }
345 441
346 Scalar::Util::weaken $self; 442 Scalar::Util::weaken $self;
443 return unless $self; # ->error could have destroyed $self
347 444
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 445 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw}; 446 delete $self->{_tw};
350 $self->_timeout; 447 $self->_timeout;
351 }); 448 });
382 my ($self, $cb) = @_; 479 my ($self, $cb) = @_;
383 480
384 $self->{on_drain} = $cb; 481 $self->{on_drain} = $cb;
385 482
386 $cb->($self) 483 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 484 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 485}
389 486
390=item $handle->push_write ($data) 487=item $handle->push_write ($data)
391 488
392Queues the given scalar to be written. You can push as much data as you 489Queues the given scalar to be written. You can push as much data as you
409 substr $self->{wbuf}, 0, $len, ""; 506 substr $self->{wbuf}, 0, $len, "";
410 507
411 $self->{_activity} = AnyEvent->now; 508 $self->{_activity} = AnyEvent->now;
412 509
413 $self->{on_drain}($self) 510 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 511 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 512 && $self->{on_drain};
416 513
417 delete $self->{_ww} unless length $self->{wbuf}; 514 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 515 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 516 $self->_error ($!, 1);
420 } 517 }
421 }; 518 };
422 519
423 # try to write data immediately 520 # try to write data immediately
424 $cb->(); 521 $cb->() unless $self->{autocork};
425 522
426 # if still data left in wbuf, we need to poll 523 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 524 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
428 if length $self->{wbuf}; 525 if length $self->{wbuf};
429 }; 526 };
443 540
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 541 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 542 ->($self, @_);
446 } 543 }
447 544
448 if ($self->{filter_w}) { 545 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 546 $self->{_tls_wbuf} .= $_[0];
547
548 &_dotls ($self);
450 } else { 549 } else {
451 $self->{wbuf} .= $_[0]; 550 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 551 $self->_drain_wbuf;
453 } 552 }
454} 553}
455 554
456=item $handle->push_write (type => @args) 555=item $handle->push_write (type => @args)
457 556
458=item $handle->unshift_write (type => @args)
459
460Instead of formatting your data yourself, you can also let this module do 557Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 558the job by specifying a type and type-specific arguments.
462 559
463Predefined types are (if you have ideas for additional types, feel free to 560Predefined types are (if you have ideas for additional types, feel free to
464drop by and tell us): 561drop by and tell us):
468=item netstring => $string 565=item netstring => $string
469 566
470Formats the given value as netstring 567Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 568(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 569
473=back
474
475=cut 570=cut
476 571
477register_write_type netstring => sub { 572register_write_type netstring => sub {
478 my ($self, $string) = @_; 573 my ($self, $string) = @_;
479 574
480 sprintf "%d:%s,", (length $string), $string 575 (length $string) . ":$string,"
576};
577
578=item packstring => $format, $data
579
580An octet string prefixed with an encoded length. The encoding C<$format>
581uses the same format as a Perl C<pack> format, but must specify a single
582integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
583optional C<!>, C<< < >> or C<< > >> modifier).
584
585=cut
586
587register_write_type packstring => sub {
588 my ($self, $format, $string) = @_;
589
590 pack "$format/a*", $string
481}; 591};
482 592
483=item json => $array_or_hashref 593=item json => $array_or_hashref
484 594
485Encodes the given hash or array reference into a JSON object. Unless you 595Encodes the given hash or array reference into a JSON object. Unless you
519 629
520 $self->{json} ? $self->{json}->encode ($ref) 630 $self->{json} ? $self->{json}->encode ($ref)
521 : JSON::encode_json ($ref) 631 : JSON::encode_json ($ref)
522}; 632};
523 633
634=item storable => $reference
635
636Freezes the given reference using L<Storable> and writes it to the
637handle. Uses the C<nfreeze> format.
638
639=cut
640
641register_write_type storable => sub {
642 my ($self, $ref) = @_;
643
644 require Storable;
645
646 pack "w/a*", Storable::nfreeze ($ref)
647};
648
649=back
650
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 652
526This function (not method) lets you add your own types to C<push_write>. 653This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 654Whenever the given C<type> is used, C<push_write> will invoke the code
528reference with the handle object and the remaining arguments. 655reference with the handle object and the remaining arguments.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 675ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 676a queue.
550 677
551In the simple case, you just install an C<on_read> callback and whenever 678In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 679new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 680enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 681leave the data there if you want to accumulate more (e.g. when only a
682partial message has been received so far).
555 683
556In the more complex case, you want to queue multiple callbacks. In this 684In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 685case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 686data arrives (also the first time it is queued) and removes it when it has
559below). 687done its job (see C<push_read>, below).
560 688
561This way you can, for example, push three line-reads, followed by reading 689This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 690a chunk of data, and AnyEvent::Handle will execute them in order.
563 691
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 692Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 693the specified number of bytes which give an XML datagram.
566 694
567 # in the default state, expect some header bytes 695 # in the default state, expect some header bytes
568 $handle->on_read (sub { 696 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 697 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 698 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 699 # header arrived, decode
572 my $len = unpack "N", $_[1]; 700 my $len = unpack "N", $_[1];
573 701
574 # now read the payload 702 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 703 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 704 my $xml = $_[1];
577 # handle xml 705 # handle xml
578 }); 706 });
579 }); 707 });
580 }); 708 });
581 709
582Example 2: Implement a client for a protocol that replies either with 710Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 711and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 712bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 713just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 714in the callbacks.
587 715
588 # request one 716When the first callback is called and sees an "OK" response, it will
717C<unshift> another line-read. This line-read will be queued I<before> the
71864-byte chunk callback.
719
720 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 721 $handle->push_write ("request 1\015\012");
590 722
591 # we expect "ERROR" or "OK" as response, so push a line read 723 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 724 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 725 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 726 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 727 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 728 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 729 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 730 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 731 my $response = $_[1];
600 ... 732 ...
601 }); 733 });
602 } 734 }
603 }); 735 });
604 736
605 # request two 737 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 738 $handle->push_write ("request 2\015\012");
607 739
608 # simply read 64 bytes, always 740 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 741 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 742 my $response = $_[1];
611 ... 743 ...
612 }); 744 });
613 745
614=over 4 746=over 4
615 747
616=cut 748=cut
617 749
618sub _drain_rbuf { 750sub _drain_rbuf {
619 my ($self) = @_; 751 my ($self) = @_;
752
753 local $self->{_in_drain} = 1;
620 754
621 if ( 755 if (
622 defined $self->{rbuf_max} 756 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 757 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 758 ) {
625 $! = &Errno::ENOSPC; 759 $self->_error (&Errno::ENOSPC, 1), return;
626 $self->error;
627 } 760 }
628 761
629 return if $self->{in_drain}; 762 while () {
630 local $self->{in_drain} = 1;
631
632 while (my $len = length $self->{rbuf}) { 763 my $len = length $self->{rbuf};
633 no strict 'refs'; 764
634 if (my $cb = shift @{ $self->{_queue} }) { 765 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) { 766 unless ($cb->($self)) {
636 if ($self->{_eof}) { 767 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming) 768 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE; 769 $self->_error (&Errno::EPIPE, 1), return;
639 $self->error;
640 } 770 }
641 771
642 unshift @{ $self->{_queue} }, $cb; 772 unshift @{ $self->{_queue} }, $cb;
643 return; 773 last;
644 } 774 }
645 } elsif ($self->{on_read}) { 775 } elsif ($self->{on_read}) {
776 last unless $len;
777
646 $self->{on_read}($self); 778 $self->{on_read}($self);
647 779
648 if ( 780 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed 781 $len == length $self->{rbuf} # if no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty 782 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data 783 && $self->{on_read} # but we still have on_read
653 ) { 784 ) {
785 # no further data will arrive
654 # then no progress can be made 786 # so no progress can be made
655 $! = &Errno::EPIPE; 787 $self->_error (&Errno::EPIPE, 1), return
656 $self->error; 788 if $self->{_eof};
789
790 last; # more data might arrive
657 } 791 }
658 } else { 792 } else {
659 # read side becomes idle 793 # read side becomes idle
660 delete $self->{_rw}; 794 delete $self->{_rw} unless $self->{tls};
661 return; 795 last;
662 } 796 }
663 } 797 }
664 798
665 if ($self->{_eof}) { 799 if ($self->{_eof}) {
666 $self->_shutdown; 800 if ($self->{on_eof}) {
667 $self->{on_eof}($self) 801 $self->{on_eof}($self)
668 if $self->{on_eof}; 802 } else {
803 $self->_error (0, 1);
804 }
805 }
806
807 # may need to restart read watcher
808 unless ($self->{_rw}) {
809 $self->start_read
810 if $self->{on_read} || @{ $self->{_queue} };
669 } 811 }
670} 812}
671 813
672=item $handle->on_read ($cb) 814=item $handle->on_read ($cb)
673 815
679 821
680sub on_read { 822sub on_read {
681 my ($self, $cb) = @_; 823 my ($self, $cb) = @_;
682 824
683 $self->{on_read} = $cb; 825 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain};
684} 827}
685 828
686=item $handle->rbuf 829=item $handle->rbuf
687 830
688Returns the read buffer (as a modifiable lvalue). 831Returns the read buffer (as a modifiable lvalue).
737 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
738 ->($self, $cb, @_); 881 ->($self, $cb, @_);
739 } 882 }
740 883
741 push @{ $self->{_queue} }, $cb; 884 push @{ $self->{_queue} }, $cb;
742 $self->_drain_rbuf; 885 $self->_drain_rbuf unless $self->{_in_drain};
743} 886}
744 887
745sub unshift_read { 888sub unshift_read {
746 my $self = shift; 889 my $self = shift;
747 my $cb = pop; 890 my $cb = pop;
753 ->($self, $cb, @_); 896 ->($self, $cb, @_);
754 } 897 }
755 898
756 899
757 unshift @{ $self->{_queue} }, $cb; 900 unshift @{ $self->{_queue} }, $cb;
758 $self->_drain_rbuf; 901 $self->_drain_rbuf unless $self->{_in_drain};
759} 902}
760 903
761=item $handle->push_read (type => @args, $cb) 904=item $handle->push_read (type => @args, $cb)
762 905
763=item $handle->unshift_read (type => @args, $cb) 906=item $handle->unshift_read (type => @args, $cb)
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 936 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 937 1
795 } 938 }
796}; 939};
797 940
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 941=item line => [$eol, ]$cb->($handle, $line, $eol)
808 942
809The callback will be called only once a full line (including the end of 943The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 944line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 945marker) will be passed to the callback as second argument (C<$line>), and
826=cut 960=cut
827 961
828register_read_type line => sub { 962register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 963 my ($self, $cb, $eol) = @_;
830 964
831 $eol = qr|(\015?\012)| if @_ < 3; 965 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 966 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 967 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 968 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 969
838 $cb->($_[0], $1, $2); 970 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 971 1
871 return;
872 } 972 }
973 } else {
974 $eol = quotemeta $eol unless ref $eol;
975 $eol = qr|^(.*?)($eol)|s;
873 976
874 my $len = $1; 977 sub {
978 $_[0]{rbuf} =~ s/$eol// or return;
875 979
876 $self->unshift_read (chunk => $len, sub { 980 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 981 1
886 }); 982 }
887
888 1
889 } 983 }
890}; 984};
891 985
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 986=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 987
945 return 1; 1039 return 1;
946 } 1040 }
947 1041
948 # reject 1042 # reject
949 if ($reject && $$rbuf =~ $reject) { 1043 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1044 $self->_error (&Errno::EBADMSG);
951 $self->error;
952 } 1045 }
953 1046
954 # skip 1047 # skip
955 if ($skip && $$rbuf =~ $skip) { 1048 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1049 $data .= substr $$rbuf, 0, $+[0], "";
958 1051
959 () 1052 ()
960 } 1053 }
961}; 1054};
962 1055
1056=item netstring => $cb->($handle, $string)
1057
1058A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1059
1060Throws an error with C<$!> set to EBADMSG on format violations.
1061
1062=cut
1063
1064register_read_type netstring => sub {
1065 my ($self, $cb) = @_;
1066
1067 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG);
1071 }
1072 return;
1073 }
1074
1075 my $len = $1;
1076
1077 $self->unshift_read (chunk => $len, sub {
1078 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") {
1081 $cb->($_[0], $string);
1082 } else {
1083 $self->_error (&Errno::EBADMSG);
1084 }
1085 });
1086 });
1087
1088 1
1089 }
1090};
1091
1092=item packstring => $format, $cb->($handle, $string)
1093
1094An octet string prefixed with an encoded length. The encoding C<$format>
1095uses the same format as a Perl C<pack> format, but must specify a single
1096integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1097optional C<!>, C<< < >> or C<< > >> modifier).
1098
1099For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1100EPP uses a prefix of C<N> (4 octtes).
1101
1102Example: read a block of data prefixed by its length in BER-encoded
1103format (very efficient).
1104
1105 $handle->push_read (packstring => "w", sub {
1106 my ($handle, $data) = @_;
1107 });
1108
1109=cut
1110
1111register_read_type packstring => sub {
1112 my ($self, $cb, $format) = @_;
1113
1114 sub {
1115 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1116 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1117 or return;
1118
1119 $format = length pack $format, $len;
1120
1121 # bypass unshift if we already have the remaining chunk
1122 if ($format + $len <= length $_[0]{rbuf}) {
1123 my $data = substr $_[0]{rbuf}, $format, $len;
1124 substr $_[0]{rbuf}, 0, $format + $len, "";
1125 $cb->($_[0], $data);
1126 } else {
1127 # remove prefix
1128 substr $_[0]{rbuf}, 0, $format, "";
1129
1130 # read remaining chunk
1131 $_[0]->unshift_read (chunk => $len, $cb);
1132 }
1133
1134 1
1135 }
1136};
1137
963=item json => $cb->($handle, $hash_or_arrayref) 1138=item json => $cb->($handle, $hash_or_arrayref)
964 1139
965Reads a JSON object or array, decodes it and passes it to the callback. 1140Reads a JSON object or array, decodes it and passes it to the callback.
966 1141
967If a C<json> object was passed to the constructor, then that will be used 1142If a C<json> object was passed to the constructor, then that will be used
977the C<json> write type description, above, for an actual example. 1152the C<json> write type description, above, for an actual example.
978 1153
979=cut 1154=cut
980 1155
981register_read_type json => sub { 1156register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1157 my ($self, $cb) = @_;
983 1158
984 require JSON; 1159 require JSON;
985 1160
986 my $data; 1161 my $data;
987 my $rbuf = \$self->{rbuf}; 1162 my $rbuf = \$self->{rbuf};
1002 () 1177 ()
1003 } 1178 }
1004 } 1179 }
1005}; 1180};
1006 1181
1182=item storable => $cb->($handle, $ref)
1183
1184Deserialises a L<Storable> frozen representation as written by the
1185C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1186data).
1187
1188Raises C<EBADMSG> error if the data could not be decoded.
1189
1190=cut
1191
1192register_read_type storable => sub {
1193 my ($self, $cb) = @_;
1194
1195 require Storable;
1196
1197 sub {
1198 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1199 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1200 or return;
1201
1202 my $format = length pack "w", $len;
1203
1204 # bypass unshift if we already have the remaining chunk
1205 if ($format + $len <= length $_[0]{rbuf}) {
1206 my $data = substr $_[0]{rbuf}, $format, $len;
1207 substr $_[0]{rbuf}, 0, $format + $len, "";
1208 $cb->($_[0], Storable::thaw ($data));
1209 } else {
1210 # remove prefix
1211 substr $_[0]{rbuf}, 0, $format, "";
1212
1213 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref);
1217 } else {
1218 $self->_error (&Errno::EBADMSG);
1219 }
1220 });
1221 }
1222
1223 1
1224 }
1225};
1226
1007=back 1227=back
1008 1228
1009=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1229=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1010 1230
1011This function (not method) lets you add your own types to C<push_read>. 1231This function (not method) lets you add your own types to C<push_read>.
1029=item $handle->stop_read 1249=item $handle->stop_read
1030 1250
1031=item $handle->start_read 1251=item $handle->start_read
1032 1252
1033In rare cases you actually do not want to read anything from the 1253In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1254socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1255any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1256C<start_read>.
1037 1257
1258Note that AnyEvent::Handle will automatically C<start_read> for you when
1259you change the C<on_read> callback or push/unshift a read callback, and it
1260will automatically C<stop_read> for you when neither C<on_read> is set nor
1261there are any read requests in the queue.
1262
1263These methods will have no effect when in TLS mode (as TLS doesn't support
1264half-duplex connections).
1265
1038=cut 1266=cut
1039 1267
1040sub stop_read { 1268sub stop_read {
1041 my ($self) = @_; 1269 my ($self) = @_;
1042 1270
1043 delete $self->{_rw}; 1271 delete $self->{_rw} unless $self->{tls};
1044} 1272}
1045 1273
1046sub start_read { 1274sub start_read {
1047 my ($self) = @_; 1275 my ($self) = @_;
1048 1276
1049 unless ($self->{_rw} || $self->{_eof}) { 1277 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1278 Scalar::Util::weaken $self;
1051 1279
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1280 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1281 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1282 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1283
1056 if ($len > 0) { 1284 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1285 $self->{_activity} = AnyEvent->now;
1058 1286
1059 $self->{filter_r} 1287 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1061 : $self->_drain_rbuf; 1289
1290 &_dotls ($self);
1291 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain};
1293 }
1062 1294
1063 } elsif (defined $len) { 1295 } elsif (defined $len) {
1064 delete $self->{_rw}; 1296 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1297 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1298 $self->_drain_rbuf unless $self->{_in_drain};
1069 1299
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1301 return $self->_error ($!, 1);
1072 } 1302 }
1073 }); 1303 });
1074 } 1304 }
1075} 1305}
1076 1306
1307# poll the write BIO and send the data if applicable
1077sub _dotls { 1308sub _dotls {
1078 my ($self) = @_; 1309 my ($self) = @_;
1079 1310
1311 my $tmp;
1312
1080 if (length $self->{_tls_wbuf}) { 1313 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1315 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1316 }
1084 } 1317 }
1085 1318
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF
1322 delete $self->{_rw};
1323 $self->{_eof} = 1;
1324 &_freetls;
1325 }
1326
1327 $self->{rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain};
1329 $self->{tls} or return; # tls session might have gone away in callback
1330 }
1331
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1);
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1338 return $self->_error (&Errno::EIO, 1);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1345 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1346 $self->_drain_wbuf;
1089 }
1090
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1092 $self->{rbuf} .= $buf;
1093 $self->_drain_rbuf;
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 } 1347 }
1108} 1348}
1109 1349
1110=item $handle->starttls ($tls[, $tls_ctx]) 1350=item $handle->starttls ($tls[, $tls_ctx])
1111 1351
1121 1361
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1362The TLS connection object will end up in C<< $handle->{tls} >> after this
1123call and can be used or changed to your liking. Note that the handshake 1363call and can be used or changed to your liking. Note that the handshake
1124might have already started when this function returns. 1364might have already started when this function returns.
1125 1365
1126=cut 1366If it an error to start a TLS handshake more than once per
1367AnyEvent::Handle object (this is due to bugs in OpenSSL).
1127 1368
1128# TODO: maybe document... 1369=cut
1370
1129sub starttls { 1371sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1372 my ($self, $ssl, $ctx) = @_;
1131 1373
1132 $self->stoptls; 1374 require Net::SSLeay;
1133 1375
1376 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1377 if $self->{tls};
1378
1134 if ($ssl eq "accept") { 1379 if ($ssl eq "accept") {
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1136 Net::SSLeay::set_accept_state ($ssl); 1381 Net::SSLeay::set_accept_state ($ssl);
1137 } elsif ($ssl eq "connect") { 1382 } elsif ($ssl eq "connect") {
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1389 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1390 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1392 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1393 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1394 #
1395 # in short: this is a mess.
1396 #
1397 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1401 Net::SSLeay::CTX_set_mode ($self->{tls},
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1152 1404
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1407
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1157 1409
1158 $self->{filter_w} = sub { 1410 &_dotls; # need to trigger the initial handshake
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1411 $self->start_read; # make sure we actually do read
1160 &_dotls;
1161 };
1162 $self->{filter_r} = sub {
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1412}
1167 1413
1168=item $handle->stoptls 1414=item $handle->stoptls
1169 1415
1170Destroys the SSL connection, if any. Partial read or write data will be 1416Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1417sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream
1419afterwards.
1172 1420
1173=cut 1421=cut
1174 1422
1175sub stoptls { 1423sub stoptls {
1176 my ($self) = @_; 1424 my ($self) = @_;
1177 1425
1426 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls});
1428
1429 &_dotls;
1430
1431 # we don't give a shit. no, we do, but we can't. no...
1432 # we, we... have to use openssl :/
1433 &_freetls;
1434 }
1435}
1436
1437sub _freetls {
1438 my ($self) = @_;
1439
1440 return unless $self->{tls};
1441
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1442 Net::SSLeay::free (delete $self->{tls});
1179 1443
1180 delete $self->{_rbio}; 1444 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1181 delete $self->{_wbio};
1182 delete $self->{_tls_wbuf};
1183 delete $self->{filter_r};
1184 delete $self->{filter_w};
1185} 1445}
1186 1446
1187sub DESTROY { 1447sub DESTROY {
1188 my $self = shift; 1448 my $self = shift;
1189 1449
1190 $self->stoptls; 1450 &_freetls;
1451
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453
1454 if ($linger && length $self->{wbuf}) {
1455 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf};
1457
1458 my @linger;
1459
1460 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1461 my $len = syswrite $fh, $wbuf, length $wbuf;
1462
1463 if ($len > 0) {
1464 substr $wbuf, 0, $len, "";
1465 } else {
1466 @linger = (); # end
1467 }
1468 });
1469 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1470 @linger = ();
1471 });
1472 }
1473}
1474
1475=item $handle->destroy
1476
1477Shut's down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much
1479as possible. You must not call any methods on the object afterwards.
1480
1481The handle might still linger in the background and write out remaining
1482data, as specified by the C<linger> option, however.
1483
1484=cut
1485
1486sub destroy {
1487 my ($self) = @_;
1488
1489 $self->DESTROY;
1490 %$self = ();
1191} 1491}
1192 1492
1193=item AnyEvent::Handle::TLS_CTX 1493=item AnyEvent::Handle::TLS_CTX
1194 1494
1195This function creates and returns the Net::SSLeay::CTX object used by 1495This function creates and returns the Net::SSLeay::CTX object used by
1225 } 1525 }
1226} 1526}
1227 1527
1228=back 1528=back
1229 1529
1530
1531=head1 NONFREQUENTLY ASKED QUESTIONS
1532
1533=over 4
1534
1535=item How do I read data until the other side closes the connection?
1536
1537If you just want to read your data into a perl scalar, the easiest way
1538to achieve this is by setting an C<on_read> callback that does nothing,
1539clearing the C<on_eof> callback and in the C<on_error> callback, the data
1540will be in C<$_[0]{rbuf}>:
1541
1542 $handle->on_read (sub { });
1543 $handle->on_eof (undef);
1544 $handle->on_error (sub {
1545 my $data = delete $_[0]{rbuf};
1546 undef $handle;
1547 });
1548
1549The reason to use C<on_error> is that TCP connections, due to latencies
1550and packets loss, might get closed quite violently with an error, when in
1551fact, all data has been received.
1552
1553It is usually better to use acknowledgements when transfering data,
1554to make sure the other side hasn't just died and you got the data
1555intact. This is also one reason why so many internet protocols have an
1556explicit QUIT command.
1557
1558
1559=item I don't want to destroy the handle too early - how do I wait until
1560all data has been written?
1561
1562After writing your last bits of data, set the C<on_drain> callback
1563and destroy the handle in there - with the default setting of
1564C<low_water_mark> this will be called precisely when all data has been
1565written to the socket:
1566
1567 $handle->push_write (...);
1568 $handle->on_drain (sub {
1569 warn "all data submitted to the kernel\n";
1570 undef $handle;
1571 });
1572
1573=item I get different callback invocations in TLS mode/Why can't I pause
1574reading?
1575
1576Unlike, say, TCP, TLS conenctions do not consist of two independent
1577communication channels, one for each direction. Or put differently. the
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1582callback invocations when you are not expecting any read data - the reason
1583is that AnyEvent::Handle always reads in TLS mode.
1584
1585During the connection, you have to make sure that you always have a
1586non-empty read-queue, or an C<on_read> watcher. At the end of the
1587connection (or when you no longer want to use it) you can call the
1588C<destroy> method.
1589
1590=back
1591
1592
1230=head1 SUBCLASSING AnyEvent::Handle 1593=head1 SUBCLASSING AnyEvent::Handle
1231 1594
1232In many cases, you might want to subclass AnyEvent::Handle. 1595In many cases, you might want to subclass AnyEvent::Handle.
1233 1596
1234To make this easier, a given version of AnyEvent::Handle uses these 1597To make this easier, a given version of AnyEvent::Handle uses these
1237=over 4 1600=over 4
1238 1601
1239=item * all constructor arguments become object members. 1602=item * all constructor arguments become object members.
1240 1603
1241At least initially, when you pass a C<tls>-argument to the constructor it 1604At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 1605will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 1606mutated later on (for example C<tls> will hold the TLS connection object).
1244 1607
1245=item * other object member names are prefixed with an C<_>. 1608=item * other object member names are prefixed with an C<_>.
1246 1609
1247All object members not explicitly documented (internal use) are prefixed 1610All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines