ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.44 by root, Thu May 29 00:00:07 2008 UTC vs.
Revision 1.137 by root, Sat Jul 4 23:58:52 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
81 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
82While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
83otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
84waiting for data. 95waiting for data.
85 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
86=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal, $message)
87 101
88This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
90or a read error. 104connect or a read error.
91 105
92The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
117Non-fatal errors can be retried by simply returning, but it is recommended
118to simply ignore this parameter and instead abondon the handle object
119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 121
95On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 124C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 125
101While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
103die. 128C<croak>.
104 129
105=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
106 131
107This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
109 136
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 138method or access the C<$handle->{rbuf}> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
112 141
113When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
120This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
122 151
123To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
124 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
125=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
126 161
127If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
128seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
129handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
130missing, an C<ETIMEDOUT> errror will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
131 166
132Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
136 172
137Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
138 174
139=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
140 176
144 180
145=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
146 182
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
150 186
151For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
155isn't finished). 191isn't finished).
156 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
157=item read_size => <bytes> 219=item read_size => <bytes>
158 220
159The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
161 224
162=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
163 226
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
166considered empty. 229considered empty.
167 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254common name verification (see C<verify_cn> in L<AnyEvent::TLS>).
255
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 257
170When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
173 264
174TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
176 269
177For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
179 273
180You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
184 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
185See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 290
187=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
188 292
189Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
193=item json => JSON or JSON::XS object 301=item json => JSON or JSON::XS object
194 302
195This is the json coder object used by the C<json> read and write types. 303This is the json coder object used by the C<json> read and write types.
196 304
197If you don't supply it, then AnyEvent::Handle will create and use a 305If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 306suitable one (on demand), which will write and expect UTF-8 encoded JSON
307texts.
199 308
200Note that you are responsible to depend on the JSON module if you want to 309Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 310use this functionality, as AnyEvent does not have a dependency itself.
202 311
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 312=back
210 313
211=cut 314=cut
212 315
213sub new { 316sub new {
214 my $class = shift; 317 my $class = shift;
215
216 my $self = bless { @_ }, $class; 318 my $self = bless { @_ }, $class;
217 319
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 320 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219 321
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 322 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225 }
226
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 323
232 $self->{_activity} = AnyEvent->now; 324 $self->{_activity} = AnyEvent->now;
233 $self->_timeout; 325 $self->_timeout;
234 326
327 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328
329 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330 if $self->{tls};
331
332 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
333
235 $self->start_read; 334 $self->start_read
335 if $self->{on_read};
236 336
237 $self 337 $self->{fh} && $self
238} 338}
239 339
240sub _shutdown { 340sub _shutdown {
241 my ($self) = @_; 341 my ($self) = @_;
242 342
243 delete $self->{_rw}; 343 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
244 delete $self->{_ww}; 344 $self->{_eof} = 1; # tell starttls et. al to stop trying
245 delete $self->{fh};
246}
247 345
346 &_freetls;
347}
348
248sub error { 349sub _error {
249 my ($self) = @_; 350 my ($self, $errno, $fatal, $message) = @_;
250 351
251 {
252 local $!;
253 $self->_shutdown; 352 $self->_shutdown
254 } 353 if $fatal;
255 354
256 $self->{on_error}($self) 355 $! = $errno;
356 $message ||= "$!";
357
257 if $self->{on_error}; 358 if ($self->{on_error}) {
258 359 $self->{on_error}($self, $fatal, $message);
360 } elsif ($self->{fh}) {
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 361 Carp::croak "AnyEvent::Handle uncaught error: $message";
362 }
260} 363}
261 364
262=item $fh = $handle->fh 365=item $fh = $handle->fh
263 366
264This method returns the file handle of the L<AnyEvent::Handle> object. 367This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 368
266=cut 369=cut
267 370
268sub fh { $_[0]{fh} } 371sub fh { $_[0]{fh} }
269 372
287 $_[0]{on_eof} = $_[1]; 390 $_[0]{on_eof} = $_[1];
288} 391}
289 392
290=item $handle->on_timeout ($cb) 393=item $handle->on_timeout ($cb)
291 394
292Replace the current C<on_timeout> callback, or disables the callback 395Replace the current C<on_timeout> callback, or disables the callback (but
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 396not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
294argument. 397argument and method.
295 398
296=cut 399=cut
297 400
298sub on_timeout { 401sub on_timeout {
299 $_[0]{on_timeout} = $_[1]; 402 $_[0]{on_timeout} = $_[1];
403}
404
405=item $handle->autocork ($boolean)
406
407Enables or disables the current autocork behaviour (see C<autocork>
408constructor argument). Changes will only take effect on the next write.
409
410=cut
411
412sub autocork {
413 $_[0]{autocork} = $_[1];
414}
415
416=item $handle->no_delay ($boolean)
417
418Enables or disables the C<no_delay> setting (see constructor argument of
419the same name for details).
420
421=cut
422
423sub no_delay {
424 $_[0]{no_delay} = $_[1];
425
426 eval {
427 local $SIG{__DIE__};
428 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
429 };
300} 430}
301 431
302############################################################################# 432#############################################################################
303 433
304=item $handle->timeout ($seconds) 434=item $handle->timeout ($seconds)
328 # now or in the past already? 458 # now or in the past already?
329 if ($after <= 0) { 459 if ($after <= 0) {
330 $self->{_activity} = $NOW; 460 $self->{_activity} = $NOW;
331 461
332 if ($self->{on_timeout}) { 462 if ($self->{on_timeout}) {
333 $self->{on_timeout}->($self); 463 $self->{on_timeout}($self);
334 } else { 464 } else {
335 $! = Errno::ETIMEDOUT; 465 $self->_error (&Errno::ETIMEDOUT);
336 $self->error;
337 } 466 }
338 467
339 # callbakx could have changed timeout value, optimise 468 # callback could have changed timeout value, optimise
340 return unless $self->{timeout}; 469 return unless $self->{timeout};
341 470
342 # calculate new after 471 # calculate new after
343 $after = $self->{timeout}; 472 $after = $self->{timeout};
344 } 473 }
345 474
346 Scalar::Util::weaken $self; 475 Scalar::Util::weaken $self;
476 return unless $self; # ->error could have destroyed $self
347 477
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 478 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw}; 479 delete $self->{_tw};
350 $self->_timeout; 480 $self->_timeout;
351 }); 481 });
382 my ($self, $cb) = @_; 512 my ($self, $cb) = @_;
383 513
384 $self->{on_drain} = $cb; 514 $self->{on_drain} = $cb;
385 515
386 $cb->($self) 516 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 517 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 518}
389 519
390=item $handle->push_write ($data) 520=item $handle->push_write ($data)
391 521
392Queues the given scalar to be written. You can push as much data as you 522Queues the given scalar to be written. You can push as much data as you
409 substr $self->{wbuf}, 0, $len, ""; 539 substr $self->{wbuf}, 0, $len, "";
410 540
411 $self->{_activity} = AnyEvent->now; 541 $self->{_activity} = AnyEvent->now;
412 542
413 $self->{on_drain}($self) 543 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 544 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 545 && $self->{on_drain};
416 546
417 delete $self->{_ww} unless length $self->{wbuf}; 547 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 549 $self->_error ($!, 1);
420 } 550 }
421 }; 551 };
422 552
423 # try to write data immediately 553 # try to write data immediately
424 $cb->(); 554 $cb->() unless $self->{autocork};
425 555
426 # if still data left in wbuf, we need to poll 556 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 557 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
428 if length $self->{wbuf}; 558 if length $self->{wbuf};
429 }; 559 };
443 573
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 574 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 575 ->($self, @_);
446 } 576 }
447 577
448 if ($self->{filter_w}) { 578 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 579 $self->{_tls_wbuf} .= $_[0];
580
581 &_dotls ($self);
450 } else { 582 } else {
451 $self->{wbuf} .= $_[0]; 583 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 584 $self->_drain_wbuf;
453 } 585 }
454} 586}
455 587
456=item $handle->push_write (type => @args) 588=item $handle->push_write (type => @args)
457 589
458=item $handle->unshift_write (type => @args)
459
460Instead of formatting your data yourself, you can also let this module do 590Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 591the job by specifying a type and type-specific arguments.
462 592
463Predefined types are (if you have ideas for additional types, feel free to 593Predefined types are (if you have ideas for additional types, feel free to
464drop by and tell us): 594drop by and tell us):
468=item netstring => $string 598=item netstring => $string
469 599
470Formats the given value as netstring 600Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 601(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 602
473=back
474
475=cut 603=cut
476 604
477register_write_type netstring => sub { 605register_write_type netstring => sub {
478 my ($self, $string) = @_; 606 my ($self, $string) = @_;
479 607
480 sprintf "%d:%s,", (length $string), $string 608 (length $string) . ":$string,"
609};
610
611=item packstring => $format, $data
612
613An octet string prefixed with an encoded length. The encoding C<$format>
614uses the same format as a Perl C<pack> format, but must specify a single
615integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
616optional C<!>, C<< < >> or C<< > >> modifier).
617
618=cut
619
620register_write_type packstring => sub {
621 my ($self, $format, $string) = @_;
622
623 pack "$format/a*", $string
481}; 624};
482 625
483=item json => $array_or_hashref 626=item json => $array_or_hashref
484 627
485Encodes the given hash or array reference into a JSON object. Unless you 628Encodes the given hash or array reference into a JSON object. Unless you
519 662
520 $self->{json} ? $self->{json}->encode ($ref) 663 $self->{json} ? $self->{json}->encode ($ref)
521 : JSON::encode_json ($ref) 664 : JSON::encode_json ($ref)
522}; 665};
523 666
667=item storable => $reference
668
669Freezes the given reference using L<Storable> and writes it to the
670handle. Uses the C<nfreeze> format.
671
672=cut
673
674register_write_type storable => sub {
675 my ($self, $ref) = @_;
676
677 require Storable;
678
679 pack "w/a*", Storable::nfreeze ($ref)
680};
681
682=back
683
684=item $handle->push_shutdown
685
686Sometimes you know you want to close the socket after writing your data
687before it was actually written. One way to do that is to replace your
688C<on_drain> handler by a callback that shuts down the socket. This method
689is a shorthand for just that, and replaces the C<on_drain> callback with:
690
691 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692
693This simply shuts down the write side and signals an EOF condition to the
694the peer.
695
696You can rely on the normal read queue and C<on_eof> handling
697afterwards. This is the cleanest way to close a connection.
698
699=cut
700
701sub push_shutdown {
702 $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703}
704
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 705=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 706
526This function (not method) lets you add your own types to C<push_write>. 707This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 708Whenever the given C<type> is used, C<push_write> will invoke the code
528reference with the handle object and the remaining arguments. 709reference with the handle object and the remaining arguments.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 729ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 730a queue.
550 731
551In the simple case, you just install an C<on_read> callback and whenever 732In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 733new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 734enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 735leave the data there if you want to accumulate more (e.g. when only a
736partial message has been received so far).
555 737
556In the more complex case, you want to queue multiple callbacks. In this 738In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 739case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 740data arrives (also the first time it is queued) and removes it when it has
559below). 741done its job (see C<push_read>, below).
560 742
561This way you can, for example, push three line-reads, followed by reading 743This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 744a chunk of data, and AnyEvent::Handle will execute them in order.
563 745
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 746Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 747the specified number of bytes which give an XML datagram.
566 748
567 # in the default state, expect some header bytes 749 # in the default state, expect some header bytes
568 $handle->on_read (sub { 750 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 751 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 752 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 753 # header arrived, decode
572 my $len = unpack "N", $_[1]; 754 my $len = unpack "N", $_[1];
573 755
574 # now read the payload 756 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 757 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 758 my $xml = $_[1];
577 # handle xml 759 # handle xml
578 }); 760 });
579 }); 761 });
580 }); 762 });
581 763
582Example 2: Implement a client for a protocol that replies either with 764Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 765and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 766bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 767just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 768in the callbacks.
587 769
588 # request one 770When the first callback is called and sees an "OK" response, it will
771C<unshift> another line-read. This line-read will be queued I<before> the
77264-byte chunk callback.
773
774 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 775 $handle->push_write ("request 1\015\012");
590 776
591 # we expect "ERROR" or "OK" as response, so push a line read 777 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 778 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 779 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 780 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 781 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 782 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 783 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 784 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 785 my $response = $_[1];
600 ... 786 ...
601 }); 787 });
602 } 788 }
603 }); 789 });
604 790
605 # request two 791 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 792 $handle->push_write ("request 2\015\012");
607 793
608 # simply read 64 bytes, always 794 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 795 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 796 my $response = $_[1];
611 ... 797 ...
612 }); 798 });
613 799
614=over 4 800=over 4
615 801
616=cut 802=cut
617 803
618sub _drain_rbuf { 804sub _drain_rbuf {
619 my ($self) = @_; 805 my ($self) = @_;
806
807 local $self->{_in_drain} = 1;
620 808
621 if ( 809 if (
622 defined $self->{rbuf_max} 810 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 811 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 812 ) {
625 $! = &Errno::ENOSPC; 813 $self->_error (&Errno::ENOSPC, 1), return;
626 $self->error;
627 } 814 }
628 815
629 return if $self->{in_drain}; 816 while () {
630 local $self->{in_drain} = 1; 817 # we need to use a separate tls read buffer, as we must not receive data while
818 # we are draining the buffer, and this can only happen with TLS.
819 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
631 820
632 while (my $len = length $self->{rbuf}) { 821 my $len = length $self->{rbuf};
633 no strict 'refs'; 822
634 if (my $cb = shift @{ $self->{_queue} }) { 823 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) { 824 unless ($cb->($self)) {
636 if ($self->{_eof}) { 825 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming) 826 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE; 827 $self->_error (&Errno::EPIPE, 1), return;
639 $self->error;
640 } 828 }
641 829
642 unshift @{ $self->{_queue} }, $cb; 830 unshift @{ $self->{_queue} }, $cb;
643 return; 831 last;
644 } 832 }
645 } elsif ($self->{on_read}) { 833 } elsif ($self->{on_read}) {
834 last unless $len;
835
646 $self->{on_read}($self); 836 $self->{on_read}($self);
647 837
648 if ( 838 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed 839 $len == length $self->{rbuf} # if no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty 840 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data 841 && $self->{on_read} # but we still have on_read
653 ) { 842 ) {
843 # no further data will arrive
654 # then no progress can be made 844 # so no progress can be made
655 $! = &Errno::EPIPE; 845 $self->_error (&Errno::EPIPE, 1), return
656 $self->error; 846 if $self->{_eof};
847
848 last; # more data might arrive
657 } 849 }
658 } else { 850 } else {
659 # read side becomes idle 851 # read side becomes idle
660 delete $self->{_rw}; 852 delete $self->{_rw} unless $self->{tls};
661 return; 853 last;
662 } 854 }
663 } 855 }
664 856
665 if ($self->{_eof}) { 857 if ($self->{_eof}) {
666 $self->_shutdown; 858 if ($self->{on_eof}) {
667 $self->{on_eof}($self) 859 $self->{on_eof}($self)
668 if $self->{on_eof}; 860 } else {
861 $self->_error (0, 1);
862 }
863 }
864
865 # may need to restart read watcher
866 unless ($self->{_rw}) {
867 $self->start_read
868 if $self->{on_read} || @{ $self->{_queue} };
669 } 869 }
670} 870}
671 871
672=item $handle->on_read ($cb) 872=item $handle->on_read ($cb)
673 873
679 879
680sub on_read { 880sub on_read {
681 my ($self, $cb) = @_; 881 my ($self, $cb) = @_;
682 882
683 $self->{on_read} = $cb; 883 $self->{on_read} = $cb;
884 $self->_drain_rbuf if $cb && !$self->{_in_drain};
684} 885}
685 886
686=item $handle->rbuf 887=item $handle->rbuf
687 888
688Returns the read buffer (as a modifiable lvalue). 889Returns the read buffer (as a modifiable lvalue).
689 890
690You can access the read buffer directly as the C<< ->{rbuf} >> member, if 891You can access the read buffer directly as the C<< ->{rbuf} >>
691you want. 892member, if you want. However, the only operation allowed on the
893read buffer (apart from looking at it) is removing data from its
894beginning. Otherwise modifying or appending to it is not allowed and will
895lead to hard-to-track-down bugs.
692 896
693NOTE: The read buffer should only be used or modified if the C<on_read>, 897NOTE: The read buffer should only be used or modified if the C<on_read>,
694C<push_read> or C<unshift_read> methods are used. The other read methods 898C<push_read> or C<unshift_read> methods are used. The other read methods
695automatically manage the read buffer. 899automatically manage the read buffer.
696 900
737 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 941 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
738 ->($self, $cb, @_); 942 ->($self, $cb, @_);
739 } 943 }
740 944
741 push @{ $self->{_queue} }, $cb; 945 push @{ $self->{_queue} }, $cb;
742 $self->_drain_rbuf; 946 $self->_drain_rbuf unless $self->{_in_drain};
743} 947}
744 948
745sub unshift_read { 949sub unshift_read {
746 my $self = shift; 950 my $self = shift;
747 my $cb = pop; 951 my $cb = pop;
753 ->($self, $cb, @_); 957 ->($self, $cb, @_);
754 } 958 }
755 959
756 960
757 unshift @{ $self->{_queue} }, $cb; 961 unshift @{ $self->{_queue} }, $cb;
758 $self->_drain_rbuf; 962 $self->_drain_rbuf unless $self->{_in_drain};
759} 963}
760 964
761=item $handle->push_read (type => @args, $cb) 965=item $handle->push_read (type => @args, $cb)
762 966
763=item $handle->unshift_read (type => @args, $cb) 967=item $handle->unshift_read (type => @args, $cb)
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 997 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 998 1
795 } 999 }
796}; 1000};
797 1001
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 1002=item line => [$eol, ]$cb->($handle, $line, $eol)
808 1003
809The callback will be called only once a full line (including the end of 1004The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 1005line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 1006marker) will be passed to the callback as second argument (C<$line>), and
826=cut 1021=cut
827 1022
828register_read_type line => sub { 1023register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 1024 my ($self, $cb, $eol) = @_;
830 1025
831 $eol = qr|(\015?\012)| if @_ < 3; 1026 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 1027 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 1028 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 1029 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 1030
838 $cb->($_[0], $1, $2); 1031 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 1032 1
871 return;
872 } 1033 }
1034 } else {
1035 $eol = quotemeta $eol unless ref $eol;
1036 $eol = qr|^(.*?)($eol)|s;
873 1037
874 my $len = $1; 1038 sub {
1039 $_[0]{rbuf} =~ s/$eol// or return;
875 1040
876 $self->unshift_read (chunk => $len, sub { 1041 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 1042 1
886 }); 1043 }
887
888 1
889 } 1044 }
890}; 1045};
891 1046
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1047=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 1048
945 return 1; 1100 return 1;
946 } 1101 }
947 1102
948 # reject 1103 # reject
949 if ($reject && $$rbuf =~ $reject) { 1104 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1105 $self->_error (&Errno::EBADMSG);
951 $self->error;
952 } 1106 }
953 1107
954 # skip 1108 # skip
955 if ($skip && $$rbuf =~ $skip) { 1109 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1110 $data .= substr $$rbuf, 0, $+[0], "";
958 1112
959 () 1113 ()
960 } 1114 }
961}; 1115};
962 1116
1117=item netstring => $cb->($handle, $string)
1118
1119A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1120
1121Throws an error with C<$!> set to EBADMSG on format violations.
1122
1123=cut
1124
1125register_read_type netstring => sub {
1126 my ($self, $cb) = @_;
1127
1128 sub {
1129 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1130 if ($_[0]{rbuf} =~ /[^0-9]/) {
1131 $self->_error (&Errno::EBADMSG);
1132 }
1133 return;
1134 }
1135
1136 my $len = $1;
1137
1138 $self->unshift_read (chunk => $len, sub {
1139 my $string = $_[1];
1140 $_[0]->unshift_read (chunk => 1, sub {
1141 if ($_[1] eq ",") {
1142 $cb->($_[0], $string);
1143 } else {
1144 $self->_error (&Errno::EBADMSG);
1145 }
1146 });
1147 });
1148
1149 1
1150 }
1151};
1152
1153=item packstring => $format, $cb->($handle, $string)
1154
1155An octet string prefixed with an encoded length. The encoding C<$format>
1156uses the same format as a Perl C<pack> format, but must specify a single
1157integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1158optional C<!>, C<< < >> or C<< > >> modifier).
1159
1160For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161EPP uses a prefix of C<N> (4 octtes).
1162
1163Example: read a block of data prefixed by its length in BER-encoded
1164format (very efficient).
1165
1166 $handle->push_read (packstring => "w", sub {
1167 my ($handle, $data) = @_;
1168 });
1169
1170=cut
1171
1172register_read_type packstring => sub {
1173 my ($self, $cb, $format) = @_;
1174
1175 sub {
1176 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1177 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1178 or return;
1179
1180 $format = length pack $format, $len;
1181
1182 # bypass unshift if we already have the remaining chunk
1183 if ($format + $len <= length $_[0]{rbuf}) {
1184 my $data = substr $_[0]{rbuf}, $format, $len;
1185 substr $_[0]{rbuf}, 0, $format + $len, "";
1186 $cb->($_[0], $data);
1187 } else {
1188 # remove prefix
1189 substr $_[0]{rbuf}, 0, $format, "";
1190
1191 # read remaining chunk
1192 $_[0]->unshift_read (chunk => $len, $cb);
1193 }
1194
1195 1
1196 }
1197};
1198
963=item json => $cb->($handle, $hash_or_arrayref) 1199=item json => $cb->($handle, $hash_or_arrayref)
964 1200
965Reads a JSON object or array, decodes it and passes it to the callback. 1201Reads a JSON object or array, decodes it and passes it to the
1202callback. When a parse error occurs, an C<EBADMSG> error will be raised.
966 1203
967If a C<json> object was passed to the constructor, then that will be used 1204If a C<json> object was passed to the constructor, then that will be used
968for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1205for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969 1206
970This read type uses the incremental parser available with JSON version 1207This read type uses the incremental parser available with JSON version
977the C<json> write type description, above, for an actual example. 1214the C<json> write type description, above, for an actual example.
978 1215
979=cut 1216=cut
980 1217
981register_read_type json => sub { 1218register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1219 my ($self, $cb) = @_;
983 1220
984 require JSON; 1221 my $json = $self->{json} ||=
1222 eval { require JSON::XS; JSON::XS->new->utf8 }
1223 || do { require JSON; JSON->new->utf8 };
985 1224
986 my $data; 1225 my $data;
987 my $rbuf = \$self->{rbuf}; 1226 my $rbuf = \$self->{rbuf};
988 1227
989 my $json = $self->{json} ||= JSON->new->utf8;
990
991 sub { 1228 sub {
992 my $ref = $json->incr_parse ($self->{rbuf}); 1229 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
993 1230
994 if ($ref) { 1231 if ($ref) {
995 $self->{rbuf} = $json->incr_text; 1232 $self->{rbuf} = $json->incr_text;
996 $json->incr_text = ""; 1233 $json->incr_text = "";
997 $cb->($self, $ref); 1234 $cb->($self, $ref);
998 1235
999 1 1236 1
1237 } elsif ($@) {
1238 # error case
1239 $json->incr_skip;
1240
1241 $self->{rbuf} = $json->incr_text;
1242 $json->incr_text = "";
1243
1244 $self->_error (&Errno::EBADMSG);
1245
1246 ()
1000 } else { 1247 } else {
1001 $self->{rbuf} = ""; 1248 $self->{rbuf} = "";
1249
1002 () 1250 ()
1003 } 1251 }
1252 }
1253};
1254
1255=item storable => $cb->($handle, $ref)
1256
1257Deserialises a L<Storable> frozen representation as written by the
1258C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1259data).
1260
1261Raises C<EBADMSG> error if the data could not be decoded.
1262
1263=cut
1264
1265register_read_type storable => sub {
1266 my ($self, $cb) = @_;
1267
1268 require Storable;
1269
1270 sub {
1271 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1272 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1273 or return;
1274
1275 my $format = length pack "w", $len;
1276
1277 # bypass unshift if we already have the remaining chunk
1278 if ($format + $len <= length $_[0]{rbuf}) {
1279 my $data = substr $_[0]{rbuf}, $format, $len;
1280 substr $_[0]{rbuf}, 0, $format + $len, "";
1281 $cb->($_[0], Storable::thaw ($data));
1282 } else {
1283 # remove prefix
1284 substr $_[0]{rbuf}, 0, $format, "";
1285
1286 # read remaining chunk
1287 $_[0]->unshift_read (chunk => $len, sub {
1288 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1289 $cb->($_[0], $ref);
1290 } else {
1291 $self->_error (&Errno::EBADMSG);
1292 }
1293 });
1294 }
1295
1296 1
1004 } 1297 }
1005}; 1298};
1006 1299
1007=back 1300=back
1008 1301
1029=item $handle->stop_read 1322=item $handle->stop_read
1030 1323
1031=item $handle->start_read 1324=item $handle->start_read
1032 1325
1033In rare cases you actually do not want to read anything from the 1326In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1327socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1328any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1329C<start_read>.
1037 1330
1331Note that AnyEvent::Handle will automatically C<start_read> for you when
1332you change the C<on_read> callback or push/unshift a read callback, and it
1333will automatically C<stop_read> for you when neither C<on_read> is set nor
1334there are any read requests in the queue.
1335
1336These methods will have no effect when in TLS mode (as TLS doesn't support
1337half-duplex connections).
1338
1038=cut 1339=cut
1039 1340
1040sub stop_read { 1341sub stop_read {
1041 my ($self) = @_; 1342 my ($self) = @_;
1042 1343
1043 delete $self->{_rw}; 1344 delete $self->{_rw} unless $self->{tls};
1044} 1345}
1045 1346
1046sub start_read { 1347sub start_read {
1047 my ($self) = @_; 1348 my ($self) = @_;
1048 1349
1049 unless ($self->{_rw} || $self->{_eof}) { 1350 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1351 Scalar::Util::weaken $self;
1051 1352
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1353 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1354 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1355 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1356
1056 if ($len > 0) { 1357 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1358 $self->{_activity} = AnyEvent->now;
1058 1359
1059 $self->{filter_r} 1360 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1361 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1061 : $self->_drain_rbuf; 1362
1363 &_dotls ($self);
1364 } else {
1365 $self->_drain_rbuf unless $self->{_in_drain};
1366 }
1062 1367
1063 } elsif (defined $len) { 1368 } elsif (defined $len) {
1064 delete $self->{_rw}; 1369 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1370 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1371 $self->_drain_rbuf unless $self->{_in_drain};
1069 1372
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1373 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1374 return $self->_error ($!, 1);
1072 } 1375 }
1073 }); 1376 });
1074 } 1377 }
1075} 1378}
1076 1379
1380our $ERROR_SYSCALL;
1381our $ERROR_WANT_READ;
1382our $ERROR_ZERO_RETURN;
1383
1384sub _tls_error {
1385 my ($self, $err) = @_;
1386
1387 return $self->_error ($!, 1)
1388 if $err == Net::SSLeay::ERROR_SYSCALL ();
1389
1390 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1391
1392 # reduce error string to look less scary
1393 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1394
1395 $self->_error (&Errno::EPROTO, 1, $err);
1396}
1397
1398# poll the write BIO and send the data if applicable
1399# also decode read data if possible
1400# this is basiclaly our TLS state machine
1401# more efficient implementations are possible with openssl,
1402# but not with the buggy and incomplete Net::SSLeay.
1077sub _dotls { 1403sub _dotls {
1078 my ($self) = @_; 1404 my ($self) = @_;
1079 1405
1406 my $tmp;
1407
1080 if (length $self->{_tls_wbuf}) { 1408 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1409 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1410 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1411 }
1084 }
1085 1412
1413 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1414 return $self->_tls_error ($tmp)
1415 if $tmp != $ERROR_WANT_READ
1416 && ($tmp != $ERROR_SYSCALL || $!)
1417 && $tmp != $ERROR_ZERO_RETURN;
1418 }
1419
1420 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1421 unless (length $tmp) {
1422 # let's treat SSL-eof as we treat normal EOF
1423 delete $self->{_rw};
1424 $self->{_eof} = 1;
1425 &_freetls;
1426 }
1427
1428 $self->{_tls_rbuf} .= $tmp;
1429 $self->_drain_rbuf unless $self->{_in_drain};
1430 $self->{tls} or return; # tls session might have gone away in callback
1431 }
1432
1433 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1434 return $self->_tls_error ($tmp)
1435 if $tmp != $ERROR_WANT_READ
1436 && ($tmp != $ERROR_SYSCALL || $!)
1437 && $tmp != $ERROR_ZERO_RETURN;
1438
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1439 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1440 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1441 $self->_drain_wbuf;
1089 }
1090
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1092 $self->{rbuf} .= $buf;
1093 $self->_drain_rbuf;
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 } 1442 }
1108} 1443}
1109 1444
1110=item $handle->starttls ($tls[, $tls_ctx]) 1445=item $handle->starttls ($tls[, $tls_ctx])
1111 1446
1114C<starttls>. 1449C<starttls>.
1115 1450
1116The first argument is the same as the C<tls> constructor argument (either 1451The first argument is the same as the C<tls> constructor argument (either
1117C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1452C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118 1453
1119The second argument is the optional C<Net::SSLeay::CTX> object that is 1454The second argument is the optional C<AnyEvent::TLS> object that is used
1120used when AnyEvent::Handle has to create its own TLS connection object. 1455when AnyEvent::Handle has to create its own TLS connection object, or
1456a hash reference with C<< key => value >> pairs that will be used to
1457construct a new context.
1121 1458
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1459The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1123call and can be used or changed to your liking. Note that the handshake 1460context in C<< $handle->{tls_ctx} >> after this call and can be used or
1124might have already started when this function returns. 1461changed to your liking. Note that the handshake might have already started
1462when this function returns.
1125 1463
1126=cut 1464If it an error to start a TLS handshake more than once per
1465AnyEvent::Handle object (this is due to bugs in OpenSSL).
1127 1466
1128# TODO: maybe document... 1467=cut
1468
1469our %TLS_CACHE; #TODO not yet documented, should we?
1470
1129sub starttls { 1471sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1472 my ($self, $ssl, $ctx) = @_;
1131 1473
1132 $self->stoptls; 1474 require Net::SSLeay;
1133 1475
1134 if ($ssl eq "accept") { 1476 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1477 if $self->{tls};
1136 Net::SSLeay::set_accept_state ($ssl); 1478
1137 } elsif ($ssl eq "connect") { 1479 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1480 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1139 Net::SSLeay::set_connect_state ($ssl); 1481 $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1482
1483 $ctx ||= $self->{tls_ctx};
1484
1485 if ("HASH" eq ref $ctx) {
1486 require AnyEvent::TLS;
1487
1488 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1489
1490 if ($ctx->{cache}) {
1491 my $key = $ctx+0;
1492 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1493 } else {
1494 $ctx = new AnyEvent::TLS %$ctx;
1495 }
1496 }
1140 } 1497
1141 1498 $self->{tls_ctx} = $ctx || TLS_CTX ();
1142 $self->{tls} = $ssl; 1499 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1143 1500
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1501 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1502 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1503 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1504 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1505 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1506 #
1507 # in short: this is a mess.
1508 #
1509 # note that we do not try to keep the length constant between writes as we are required to do.
1510 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1511 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1512 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1513# Net::SSLeay::CTX_set_mode ($ssl,
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1514# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1515# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1516 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1152 1517
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1518 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1519 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1520
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1521 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1157 1522
1158 $self->{filter_w} = sub { 1523 &_dotls; # need to trigger the initial handshake
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1524 $self->start_read; # make sure we actually do read
1160 &_dotls;
1161 };
1162 $self->{filter_r} = sub {
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1525}
1167 1526
1168=item $handle->stoptls 1527=item $handle->stoptls
1169 1528
1170Destroys the SSL connection, if any. Partial read or write data will be 1529Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1530sending a close notify to the other side, but since OpenSSL doesn't
1531support non-blocking shut downs, it is not possible to re-use the stream
1532afterwards.
1172 1533
1173=cut 1534=cut
1174 1535
1175sub stoptls { 1536sub stoptls {
1176 my ($self) = @_; 1537 my ($self) = @_;
1177 1538
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1539 if ($self->{tls}) {
1540 Net::SSLeay::shutdown ($self->{tls});
1179 1541
1180 delete $self->{_rbio}; 1542 &_dotls;
1181 delete $self->{_wbio}; 1543
1182 delete $self->{_tls_wbuf}; 1544 # we don't give a shit. no, we do, but we can't. no...
1183 delete $self->{filter_r}; 1545 # we, we... have to use openssl :/
1184 delete $self->{filter_w}; 1546 &_freetls;
1547 }
1548}
1549
1550sub _freetls {
1551 my ($self) = @_;
1552
1553 return unless $self->{tls};
1554
1555 $self->{tls_ctx}->_put_session (delete $self->{tls});
1556
1557 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1185} 1558}
1186 1559
1187sub DESTROY { 1560sub DESTROY {
1188 my $self = shift; 1561 my ($self) = @_;
1189 1562
1190 $self->stoptls; 1563 &_freetls;
1564
1565 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1566
1567 if ($linger && length $self->{wbuf}) {
1568 my $fh = delete $self->{fh};
1569 my $wbuf = delete $self->{wbuf};
1570
1571 my @linger;
1572
1573 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1574 my $len = syswrite $fh, $wbuf, length $wbuf;
1575
1576 if ($len > 0) {
1577 substr $wbuf, 0, $len, "";
1578 } else {
1579 @linger = (); # end
1580 }
1581 });
1582 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1583 @linger = ();
1584 });
1585 }
1586}
1587
1588=item $handle->destroy
1589
1590Shuts down the handle object as much as possible - this call ensures that
1591no further callbacks will be invoked and resources will be freed as much
1592as possible. You must not call any methods on the object afterwards.
1593
1594Normally, you can just "forget" any references to an AnyEvent::Handle
1595object and it will simply shut down. This works in fatal error and EOF
1596callbacks, as well as code outside. It does I<NOT> work in a read or write
1597callback, so when you want to destroy the AnyEvent::Handle object from
1598within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1599that case.
1600
1601The handle might still linger in the background and write out remaining
1602data, as specified by the C<linger> option, however.
1603
1604=cut
1605
1606sub destroy {
1607 my ($self) = @_;
1608
1609 $self->DESTROY;
1610 %$self = ();
1191} 1611}
1192 1612
1193=item AnyEvent::Handle::TLS_CTX 1613=item AnyEvent::Handle::TLS_CTX
1194 1614
1195This function creates and returns the Net::SSLeay::CTX object used by 1615This function creates and returns the AnyEvent::TLS object used by default
1196default for TLS mode. 1616for TLS mode.
1197 1617
1198The context is created like this: 1618The context is created by calling L<AnyEvent::TLS> without any arguments.
1199
1200 Net::SSLeay::load_error_strings;
1201 Net::SSLeay::SSLeay_add_ssl_algorithms;
1202 Net::SSLeay::randomize;
1203
1204 my $CTX = Net::SSLeay::CTX_new;
1205
1206 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1207 1619
1208=cut 1620=cut
1209 1621
1210our $TLS_CTX; 1622our $TLS_CTX;
1211 1623
1212sub TLS_CTX() { 1624sub TLS_CTX() {
1213 $TLS_CTX || do { 1625 $TLS_CTX ||= do {
1214 require Net::SSLeay; 1626 require AnyEvent::TLS;
1215 1627
1216 Net::SSLeay::load_error_strings (); 1628 new AnyEvent::TLS
1217 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1218 Net::SSLeay::randomize ();
1219
1220 $TLS_CTX = Net::SSLeay::CTX_new ();
1221
1222 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1223
1224 $TLS_CTX
1225 } 1629 }
1226} 1630}
1227 1631
1228=back 1632=back
1633
1634
1635=head1 NONFREQUENTLY ASKED QUESTIONS
1636
1637=over 4
1638
1639=item I C<undef> the AnyEvent::Handle reference inside my callback and
1640still get further invocations!
1641
1642That's because AnyEvent::Handle keeps a reference to itself when handling
1643read or write callbacks.
1644
1645It is only safe to "forget" the reference inside EOF or error callbacks,
1646from within all other callbacks, you need to explicitly call the C<<
1647->destroy >> method.
1648
1649=item I get different callback invocations in TLS mode/Why can't I pause
1650reading?
1651
1652Unlike, say, TCP, TLS connections do not consist of two independent
1653communication channels, one for each direction. Or put differently. The
1654read and write directions are not independent of each other: you cannot
1655write data unless you are also prepared to read, and vice versa.
1656
1657This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1658callback invocations when you are not expecting any read data - the reason
1659is that AnyEvent::Handle always reads in TLS mode.
1660
1661During the connection, you have to make sure that you always have a
1662non-empty read-queue, or an C<on_read> watcher. At the end of the
1663connection (or when you no longer want to use it) you can call the
1664C<destroy> method.
1665
1666=item How do I read data until the other side closes the connection?
1667
1668If you just want to read your data into a perl scalar, the easiest way
1669to achieve this is by setting an C<on_read> callback that does nothing,
1670clearing the C<on_eof> callback and in the C<on_error> callback, the data
1671will be in C<$_[0]{rbuf}>:
1672
1673 $handle->on_read (sub { });
1674 $handle->on_eof (undef);
1675 $handle->on_error (sub {
1676 my $data = delete $_[0]{rbuf};
1677 undef $handle;
1678 });
1679
1680The reason to use C<on_error> is that TCP connections, due to latencies
1681and packets loss, might get closed quite violently with an error, when in
1682fact, all data has been received.
1683
1684It is usually better to use acknowledgements when transferring data,
1685to make sure the other side hasn't just died and you got the data
1686intact. This is also one reason why so many internet protocols have an
1687explicit QUIT command.
1688
1689=item I don't want to destroy the handle too early - how do I wait until
1690all data has been written?
1691
1692After writing your last bits of data, set the C<on_drain> callback
1693and destroy the handle in there - with the default setting of
1694C<low_water_mark> this will be called precisely when all data has been
1695written to the socket:
1696
1697 $handle->push_write (...);
1698 $handle->on_drain (sub {
1699 warn "all data submitted to the kernel\n";
1700 undef $handle;
1701 });
1702
1703=back
1704
1229 1705
1230=head1 SUBCLASSING AnyEvent::Handle 1706=head1 SUBCLASSING AnyEvent::Handle
1231 1707
1232In many cases, you might want to subclass AnyEvent::Handle. 1708In many cases, you might want to subclass AnyEvent::Handle.
1233 1709
1237=over 4 1713=over 4
1238 1714
1239=item * all constructor arguments become object members. 1715=item * all constructor arguments become object members.
1240 1716
1241At least initially, when you pass a C<tls>-argument to the constructor it 1717At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 1718will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 1719mutated later on (for example C<tls> will hold the TLS connection object).
1244 1720
1245=item * other object member names are prefixed with an C<_>. 1721=item * other object member names are prefixed with an C<_>.
1246 1722
1247All object members not explicitly documented (internal use) are prefixed 1723All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines