ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.45 by root, Thu May 29 00:20:39 2008 UTC vs.
Revision 1.114 by root, Wed Jan 21 06:06:22 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.331;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
81 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
82While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
83otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
84waiting for data. 95waiting for data.
85 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
86=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal)
87 101
88This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
90or a read error. 104connect or a read error.
91 105
92The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 116
95On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 119
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100
101While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
103die. 122C<croak>.
104 123
105=item on_read => $cb->($handle) 124=item on_read => $cb->($handle)
106 125
107This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
109 130
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
112 133
113When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
120This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
122 143
123To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
124 145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
125=item timeout => $fractional_seconds 152=item timeout => $fractional_seconds
126 153
127If non-zero, then this enables an "inactivity" timeout: whenever this many 154If non-zero, then this enables an "inactivity" timeout: whenever this many
128seconds pass without a successful read or write on the underlying file 155seconds pass without a successful read or write on the underlying file
129handle, the C<on_timeout> callback will be invoked (and if that one is 156handle, the C<on_timeout> callback will be invoked (and if that one is
130missing, an C<ETIMEDOUT> error will be raised). 157missing, a non-fatal C<ETIMEDOUT> error will be raised).
131 158
132Note that timeout processing is also active when you currently do not have 159Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 160any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 161idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163restart the timeout.
136 164
137Zero (the default) disables this timeout. 165Zero (the default) disables this timeout.
138 166
139=item on_timeout => $cb->($handle) 167=item on_timeout => $cb->($handle)
140 168
144 172
145=item rbuf_max => <bytes> 173=item rbuf_max => <bytes>
146 174
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 175If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 176when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 177avoid some forms of denial-of-service attacks.
150 178
151For example, a server accepting connections from untrusted sources should 179For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 180be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 181(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 182amount of data without a callback ever being called as long as the line
155isn't finished). 183isn't finished).
156 184
185=item autocork => <boolean>
186
187When disabled (the default), then C<push_write> will try to immediately
188write the data to the handle, if possible. This avoids having to register
189a write watcher and wait for the next event loop iteration, but can
190be inefficient if you write multiple small chunks (on the wire, this
191disadvantage is usually avoided by your kernel's nagle algorithm, see
192C<no_delay>, but this option can save costly syscalls).
193
194When enabled, then writes will always be queued till the next event loop
195iteration. This is efficient when you do many small writes per iteration,
196but less efficient when you do a single write only per iteration (or when
197the write buffer often is full). It also increases write latency.
198
199=item no_delay => <boolean>
200
201When doing small writes on sockets, your operating system kernel might
202wait a bit for more data before actually sending it out. This is called
203the Nagle algorithm, and usually it is beneficial.
204
205In some situations you want as low a delay as possible, which can be
206accomplishd by setting this option to a true value.
207
208The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible.
210
157=item read_size => <bytes> 211=item read_size => <bytes>
158 212
159The default read block size (the amount of bytes this module will try to read 213The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 214try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>.
161 216
162=item low_water_mark => <bytes> 217=item low_water_mark => <bytes>
163 218
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 219Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 220buffer: If the write reaches this size or gets even samller it is
166considered empty. 221considered empty.
167 222
223Sometimes it can be beneficial (for performance reasons) to add data to
224the write buffer before it is fully drained, but this is a rare case, as
225the operating system kernel usually buffers data as well, so the default
226is good in almost all cases.
227
228=item linger => <seconds>
229
230If non-zero (default: C<3600>), then the destructor of the
231AnyEvent::Handle object will check whether there is still outstanding
232write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time).
235
236This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might
238help.
239
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 240=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 241
170When this parameter is given, it enables TLS (SSL) mode, that means it 242When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 243AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 244established and will transparently encrypt/decrypt data afterwards.
173 245
174TLS mode requires Net::SSLeay to be installed (it will be loaded 246TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 247automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself.
176 250
177For the TLS server side, use C<accept>, and for the TLS client side of a 251Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 252C<accept>, and for the TLS client side of a connection, use C<connect>
253mode.
179 254
180You can also provide your own TLS connection object, but you have 255You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 256to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 257or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 258AnyEvent::Handle.
184 259
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault.
264
185See the C<starttls> method if you need to start TLs negotiation later. 265See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 266
187=item tls_ctx => $ssl_ctx 267=item tls_ctx => $ssl_ctx
188 268
189Use the given Net::SSLeay::CTX object to create the new TLS connection 269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 270(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 272
193=item json => JSON or JSON::XS object 273=item json => JSON or JSON::XS object
194 274
195This is the json coder object used by the C<json> read and write types. 275This is the json coder object used by the C<json> read and write types.
196 276
197If you don't supply it, then AnyEvent::Handle will create and use a 277If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 278suitable one (on demand), which will write and expect UTF-8 encoded JSON
279texts.
199 280
200Note that you are responsible to depend on the JSON module if you want to 281Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 282use this functionality, as AnyEvent does not have a dependency itself.
202 283
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 284=back
210 285
211=cut 286=cut
212 287
213sub new { 288sub new {
217 292
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 293 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219 294
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 296
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
225 } 298 if $self->{tls};
226
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 299
232 $self->{_activity} = AnyEvent->now; 300 $self->{_activity} = AnyEvent->now;
233 $self->_timeout; 301 $self->_timeout;
234 302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305
235 $self->start_read; 306 $self->start_read
307 if $self->{on_read};
236 308
237 $self 309 $self
238} 310}
239 311
240sub _shutdown { 312sub _shutdown {
241 my ($self) = @_; 313 my ($self) = @_;
242 314
315 delete $self->{_tw};
243 delete $self->{_rw}; 316 delete $self->{_rw};
244 delete $self->{_ww}; 317 delete $self->{_ww};
245 delete $self->{fh}; 318 delete $self->{fh};
246}
247 319
320 &_freetls;
321
322 delete $self->{on_read};
323 delete $self->{_queue};
324}
325
248sub error { 326sub _error {
249 my ($self) = @_; 327 my ($self, $errno, $fatal) = @_;
250 328
251 {
252 local $!;
253 $self->_shutdown; 329 $self->_shutdown
254 } 330 if $fatal;
255 331
256 $self->{on_error}($self) 332 $! = $errno;
333
257 if $self->{on_error}; 334 if ($self->{on_error}) {
258 335 $self->{on_error}($self, $fatal);
336 } elsif ($self->{fh}) {
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 337 Carp::croak "AnyEvent::Handle uncaught error: $!";
338 }
260} 339}
261 340
262=item $fh = $handle->fh 341=item $fh = $handle->fh
263 342
264This method returns the file handle of the L<AnyEvent::Handle> object. 343This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 344
266=cut 345=cut
267 346
268sub fh { $_[0]{fh} } 347sub fh { $_[0]{fh} }
269 348
287 $_[0]{on_eof} = $_[1]; 366 $_[0]{on_eof} = $_[1];
288} 367}
289 368
290=item $handle->on_timeout ($cb) 369=item $handle->on_timeout ($cb)
291 370
292Replace the current C<on_timeout> callback, or disables the callback 371Replace the current C<on_timeout> callback, or disables the callback (but
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 372not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
294argument. 373argument and method.
295 374
296=cut 375=cut
297 376
298sub on_timeout { 377sub on_timeout {
299 $_[0]{on_timeout} = $_[1]; 378 $_[0]{on_timeout} = $_[1];
379}
380
381=item $handle->autocork ($boolean)
382
383Enables or disables the current autocork behaviour (see C<autocork>
384constructor argument). Changes will only take effect on the next write.
385
386=cut
387
388sub autocork {
389 $_[0]{autocork} = $_[1];
390}
391
392=item $handle->no_delay ($boolean)
393
394Enables or disables the C<no_delay> setting (see constructor argument of
395the same name for details).
396
397=cut
398
399sub no_delay {
400 $_[0]{no_delay} = $_[1];
401
402 eval {
403 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
405 };
300} 406}
301 407
302############################################################################# 408#############################################################################
303 409
304=item $handle->timeout ($seconds) 410=item $handle->timeout ($seconds)
328 # now or in the past already? 434 # now or in the past already?
329 if ($after <= 0) { 435 if ($after <= 0) {
330 $self->{_activity} = $NOW; 436 $self->{_activity} = $NOW;
331 437
332 if ($self->{on_timeout}) { 438 if ($self->{on_timeout}) {
333 $self->{on_timeout}->($self); 439 $self->{on_timeout}($self);
334 } else { 440 } else {
335 $! = Errno::ETIMEDOUT; 441 $self->_error (&Errno::ETIMEDOUT);
336 $self->error;
337 } 442 }
338 443
339 # callbakx could have changed timeout value, optimise 444 # callback could have changed timeout value, optimise
340 return unless $self->{timeout}; 445 return unless $self->{timeout};
341 446
342 # calculate new after 447 # calculate new after
343 $after = $self->{timeout}; 448 $after = $self->{timeout};
344 } 449 }
345 450
346 Scalar::Util::weaken $self; 451 Scalar::Util::weaken $self;
452 return unless $self; # ->error could have destroyed $self
347 453
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 454 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw}; 455 delete $self->{_tw};
350 $self->_timeout; 456 $self->_timeout;
351 }); 457 });
382 my ($self, $cb) = @_; 488 my ($self, $cb) = @_;
383 489
384 $self->{on_drain} = $cb; 490 $self->{on_drain} = $cb;
385 491
386 $cb->($self) 492 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 493 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 494}
389 495
390=item $handle->push_write ($data) 496=item $handle->push_write ($data)
391 497
392Queues the given scalar to be written. You can push as much data as you 498Queues the given scalar to be written. You can push as much data as you
409 substr $self->{wbuf}, 0, $len, ""; 515 substr $self->{wbuf}, 0, $len, "";
410 516
411 $self->{_activity} = AnyEvent->now; 517 $self->{_activity} = AnyEvent->now;
412 518
413 $self->{on_drain}($self) 519 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 520 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 521 && $self->{on_drain};
416 522
417 delete $self->{_ww} unless length $self->{wbuf}; 523 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 524 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 525 $self->_error ($!, 1);
420 } 526 }
421 }; 527 };
422 528
423 # try to write data immediately 529 # try to write data immediately
424 $cb->(); 530 $cb->() unless $self->{autocork};
425 531
426 # if still data left in wbuf, we need to poll 532 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 533 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
428 if length $self->{wbuf}; 534 if length $self->{wbuf};
429 }; 535 };
443 549
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 550 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 551 ->($self, @_);
446 } 552 }
447 553
448 if ($self->{filter_w}) { 554 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 555 $self->{_tls_wbuf} .= $_[0];
556
557 &_dotls ($self);
450 } else { 558 } else {
451 $self->{wbuf} .= $_[0]; 559 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 560 $self->_drain_wbuf;
453 } 561 }
454} 562}
455 563
456=item $handle->push_write (type => @args) 564=item $handle->push_write (type => @args)
457 565
458=item $handle->unshift_write (type => @args)
459
460Instead of formatting your data yourself, you can also let this module do 566Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 567the job by specifying a type and type-specific arguments.
462 568
463Predefined types are (if you have ideas for additional types, feel free to 569Predefined types are (if you have ideas for additional types, feel free to
464drop by and tell us): 570drop by and tell us):
468=item netstring => $string 574=item netstring => $string
469 575
470Formats the given value as netstring 576Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 577(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 578
473=back
474
475=cut 579=cut
476 580
477register_write_type netstring => sub { 581register_write_type netstring => sub {
478 my ($self, $string) = @_; 582 my ($self, $string) = @_;
479 583
480 sprintf "%d:%s,", (length $string), $string 584 (length $string) . ":$string,"
585};
586
587=item packstring => $format, $data
588
589An octet string prefixed with an encoded length. The encoding C<$format>
590uses the same format as a Perl C<pack> format, but must specify a single
591integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
592optional C<!>, C<< < >> or C<< > >> modifier).
593
594=cut
595
596register_write_type packstring => sub {
597 my ($self, $format, $string) = @_;
598
599 pack "$format/a*", $string
481}; 600};
482 601
483=item json => $array_or_hashref 602=item json => $array_or_hashref
484 603
485Encodes the given hash or array reference into a JSON object. Unless you 604Encodes the given hash or array reference into a JSON object. Unless you
519 638
520 $self->{json} ? $self->{json}->encode ($ref) 639 $self->{json} ? $self->{json}->encode ($ref)
521 : JSON::encode_json ($ref) 640 : JSON::encode_json ($ref)
522}; 641};
523 642
643=item storable => $reference
644
645Freezes the given reference using L<Storable> and writes it to the
646handle. Uses the C<nfreeze> format.
647
648=cut
649
650register_write_type storable => sub {
651 my ($self, $ref) = @_;
652
653 require Storable;
654
655 pack "w/a*", Storable::nfreeze ($ref)
656};
657
658=back
659
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 661
526This function (not method) lets you add your own types to C<push_write>. 662This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 663Whenever the given C<type> is used, C<push_write> will invoke the code
528reference with the handle object and the remaining arguments. 664reference with the handle object and the remaining arguments.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 684ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 685a queue.
550 686
551In the simple case, you just install an C<on_read> callback and whenever 687In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 688new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 689enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 690leave the data there if you want to accumulate more (e.g. when only a
691partial message has been received so far).
555 692
556In the more complex case, you want to queue multiple callbacks. In this 693In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 694case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 695data arrives (also the first time it is queued) and removes it when it has
559below). 696done its job (see C<push_read>, below).
560 697
561This way you can, for example, push three line-reads, followed by reading 698This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 699a chunk of data, and AnyEvent::Handle will execute them in order.
563 700
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 701Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 702the specified number of bytes which give an XML datagram.
566 703
567 # in the default state, expect some header bytes 704 # in the default state, expect some header bytes
568 $handle->on_read (sub { 705 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 706 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 707 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 708 # header arrived, decode
572 my $len = unpack "N", $_[1]; 709 my $len = unpack "N", $_[1];
573 710
574 # now read the payload 711 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 712 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 713 my $xml = $_[1];
577 # handle xml 714 # handle xml
578 }); 715 });
579 }); 716 });
580 }); 717 });
581 718
582Example 2: Implement a client for a protocol that replies either with 719Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 720and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 721bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 722just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 723in the callbacks.
587 724
588 # request one 725When the first callback is called and sees an "OK" response, it will
726C<unshift> another line-read. This line-read will be queued I<before> the
72764-byte chunk callback.
728
729 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 730 $handle->push_write ("request 1\015\012");
590 731
591 # we expect "ERROR" or "OK" as response, so push a line read 732 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 733 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 734 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 735 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 736 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 737 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 738 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 739 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 740 my $response = $_[1];
600 ... 741 ...
601 }); 742 });
602 } 743 }
603 }); 744 });
604 745
605 # request two 746 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 747 $handle->push_write ("request 2\015\012");
607 748
608 # simply read 64 bytes, always 749 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 750 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 751 my $response = $_[1];
611 ... 752 ...
612 }); 753 });
613 754
614=over 4 755=over 4
615 756
616=cut 757=cut
617 758
618sub _drain_rbuf { 759sub _drain_rbuf {
619 my ($self) = @_; 760 my ($self) = @_;
761
762 local $self->{_in_drain} = 1;
620 763
621 if ( 764 if (
622 defined $self->{rbuf_max} 765 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 766 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 767 ) {
625 $! = &Errno::ENOSPC; 768 $self->_error (&Errno::ENOSPC, 1), return;
626 $self->error;
627 } 769 }
628 770
629 return if $self->{in_drain}; 771 while () {
630 local $self->{in_drain} = 1;
631
632 while (my $len = length $self->{rbuf}) { 772 my $len = length $self->{rbuf};
633 no strict 'refs'; 773
634 if (my $cb = shift @{ $self->{_queue} }) { 774 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) { 775 unless ($cb->($self)) {
636 if ($self->{_eof}) { 776 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming) 777 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE; 778 $self->_error (&Errno::EPIPE, 1), return;
639 $self->error;
640 } 779 }
641 780
642 unshift @{ $self->{_queue} }, $cb; 781 unshift @{ $self->{_queue} }, $cb;
643 return; 782 last;
644 } 783 }
645 } elsif ($self->{on_read}) { 784 } elsif ($self->{on_read}) {
785 last unless $len;
786
646 $self->{on_read}($self); 787 $self->{on_read}($self);
647 788
648 if ( 789 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed 790 $len == length $self->{rbuf} # if no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty 791 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data 792 && $self->{on_read} # but we still have on_read
653 ) { 793 ) {
794 # no further data will arrive
654 # then no progress can be made 795 # so no progress can be made
655 $! = &Errno::EPIPE; 796 $self->_error (&Errno::EPIPE, 1), return
656 $self->error; 797 if $self->{_eof};
798
799 last; # more data might arrive
657 } 800 }
658 } else { 801 } else {
659 # read side becomes idle 802 # read side becomes idle
660 delete $self->{_rw}; 803 delete $self->{_rw} unless $self->{tls};
661 return; 804 last;
662 } 805 }
663 } 806 }
664 807
665 if ($self->{_eof}) { 808 if ($self->{_eof}) {
666 $self->_shutdown; 809 if ($self->{on_eof}) {
667 $self->{on_eof}($self) 810 $self->{on_eof}($self)
668 if $self->{on_eof}; 811 } else {
812 $self->_error (0, 1);
813 }
814 }
815
816 # may need to restart read watcher
817 unless ($self->{_rw}) {
818 $self->start_read
819 if $self->{on_read} || @{ $self->{_queue} };
669 } 820 }
670} 821}
671 822
672=item $handle->on_read ($cb) 823=item $handle->on_read ($cb)
673 824
679 830
680sub on_read { 831sub on_read {
681 my ($self, $cb) = @_; 832 my ($self, $cb) = @_;
682 833
683 $self->{on_read} = $cb; 834 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain};
684} 836}
685 837
686=item $handle->rbuf 838=item $handle->rbuf
687 839
688Returns the read buffer (as a modifiable lvalue). 840Returns the read buffer (as a modifiable lvalue).
737 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
738 ->($self, $cb, @_); 890 ->($self, $cb, @_);
739 } 891 }
740 892
741 push @{ $self->{_queue} }, $cb; 893 push @{ $self->{_queue} }, $cb;
742 $self->_drain_rbuf; 894 $self->_drain_rbuf unless $self->{_in_drain};
743} 895}
744 896
745sub unshift_read { 897sub unshift_read {
746 my $self = shift; 898 my $self = shift;
747 my $cb = pop; 899 my $cb = pop;
753 ->($self, $cb, @_); 905 ->($self, $cb, @_);
754 } 906 }
755 907
756 908
757 unshift @{ $self->{_queue} }, $cb; 909 unshift @{ $self->{_queue} }, $cb;
758 $self->_drain_rbuf; 910 $self->_drain_rbuf unless $self->{_in_drain};
759} 911}
760 912
761=item $handle->push_read (type => @args, $cb) 913=item $handle->push_read (type => @args, $cb)
762 914
763=item $handle->unshift_read (type => @args, $cb) 915=item $handle->unshift_read (type => @args, $cb)
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 945 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 946 1
795 } 947 }
796}; 948};
797 949
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 950=item line => [$eol, ]$cb->($handle, $line, $eol)
808 951
809The callback will be called only once a full line (including the end of 952The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 953line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 954marker) will be passed to the callback as second argument (C<$line>), and
826=cut 969=cut
827 970
828register_read_type line => sub { 971register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 972 my ($self, $cb, $eol) = @_;
830 973
831 $eol = qr|(\015?\012)| if @_ < 3; 974 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 975 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 976 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 977 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 978
838 $cb->($_[0], $1, $2); 979 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 980 1
871 return;
872 } 981 }
982 } else {
983 $eol = quotemeta $eol unless ref $eol;
984 $eol = qr|^(.*?)($eol)|s;
873 985
874 my $len = $1; 986 sub {
987 $_[0]{rbuf} =~ s/$eol// or return;
875 988
876 $self->unshift_read (chunk => $len, sub { 989 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 990 1
886 }); 991 }
887
888 1
889 } 992 }
890}; 993};
891 994
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 995=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 996
945 return 1; 1048 return 1;
946 } 1049 }
947 1050
948 # reject 1051 # reject
949 if ($reject && $$rbuf =~ $reject) { 1052 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1053 $self->_error (&Errno::EBADMSG);
951 $self->error;
952 } 1054 }
953 1055
954 # skip 1056 # skip
955 if ($skip && $$rbuf =~ $skip) { 1057 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1058 $data .= substr $$rbuf, 0, $+[0], "";
958 1060
959 () 1061 ()
960 } 1062 }
961}; 1063};
962 1064
1065=item netstring => $cb->($handle, $string)
1066
1067A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1068
1069Throws an error with C<$!> set to EBADMSG on format violations.
1070
1071=cut
1072
1073register_read_type netstring => sub {
1074 my ($self, $cb) = @_;
1075
1076 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG);
1080 }
1081 return;
1082 }
1083
1084 my $len = $1;
1085
1086 $self->unshift_read (chunk => $len, sub {
1087 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") {
1090 $cb->($_[0], $string);
1091 } else {
1092 $self->_error (&Errno::EBADMSG);
1093 }
1094 });
1095 });
1096
1097 1
1098 }
1099};
1100
1101=item packstring => $format, $cb->($handle, $string)
1102
1103An octet string prefixed with an encoded length. The encoding C<$format>
1104uses the same format as a Perl C<pack> format, but must specify a single
1105integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106optional C<!>, C<< < >> or C<< > >> modifier).
1107
1108For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1109EPP uses a prefix of C<N> (4 octtes).
1110
1111Example: read a block of data prefixed by its length in BER-encoded
1112format (very efficient).
1113
1114 $handle->push_read (packstring => "w", sub {
1115 my ($handle, $data) = @_;
1116 });
1117
1118=cut
1119
1120register_read_type packstring => sub {
1121 my ($self, $cb, $format) = @_;
1122
1123 sub {
1124 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1125 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1126 or return;
1127
1128 $format = length pack $format, $len;
1129
1130 # bypass unshift if we already have the remaining chunk
1131 if ($format + $len <= length $_[0]{rbuf}) {
1132 my $data = substr $_[0]{rbuf}, $format, $len;
1133 substr $_[0]{rbuf}, 0, $format + $len, "";
1134 $cb->($_[0], $data);
1135 } else {
1136 # remove prefix
1137 substr $_[0]{rbuf}, 0, $format, "";
1138
1139 # read remaining chunk
1140 $_[0]->unshift_read (chunk => $len, $cb);
1141 }
1142
1143 1
1144 }
1145};
1146
963=item json => $cb->($handle, $hash_or_arrayref) 1147=item json => $cb->($handle, $hash_or_arrayref)
964 1148
965Reads a JSON object or array, decodes it and passes it to the callback. 1149Reads a JSON object or array, decodes it and passes it to the
1150callback. When a parse error occurs, an C<EBADMSG> error will be raised.
966 1151
967If a C<json> object was passed to the constructor, then that will be used 1152If a C<json> object was passed to the constructor, then that will be used
968for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1153for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969 1154
970This read type uses the incremental parser available with JSON version 1155This read type uses the incremental parser available with JSON version
977the C<json> write type description, above, for an actual example. 1162the C<json> write type description, above, for an actual example.
978 1163
979=cut 1164=cut
980 1165
981register_read_type json => sub { 1166register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1167 my ($self, $cb) = @_;
983 1168
984 require JSON; 1169 require JSON;
985 1170
986 my $data; 1171 my $data;
987 my $rbuf = \$self->{rbuf}; 1172 my $rbuf = \$self->{rbuf};
988 1173
989 my $json = $self->{json} ||= JSON->new->utf8; 1174 my $json = $self->{json} ||= JSON->new->utf8;
990 1175
991 sub { 1176 sub {
992 my $ref = $json->incr_parse ($self->{rbuf}); 1177 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
993 1178
994 if ($ref) { 1179 if ($ref) {
995 $self->{rbuf} = $json->incr_text; 1180 $self->{rbuf} = $json->incr_text;
996 $json->incr_text = ""; 1181 $json->incr_text = "";
997 $cb->($self, $ref); 1182 $cb->($self, $ref);
998 1183
999 1 1184 1
1185 } elsif ($@) {
1186 # error case
1187 $json->incr_skip;
1188
1189 $self->{rbuf} = $json->incr_text;
1190 $json->incr_text = "";
1191
1192 $self->_error (&Errno::EBADMSG);
1193
1194 ()
1000 } else { 1195 } else {
1001 $self->{rbuf} = ""; 1196 $self->{rbuf} = "";
1197
1002 () 1198 ()
1003 } 1199 }
1200 }
1201};
1202
1203=item storable => $cb->($handle, $ref)
1204
1205Deserialises a L<Storable> frozen representation as written by the
1206C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1207data).
1208
1209Raises C<EBADMSG> error if the data could not be decoded.
1210
1211=cut
1212
1213register_read_type storable => sub {
1214 my ($self, $cb) = @_;
1215
1216 require Storable;
1217
1218 sub {
1219 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1220 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1221 or return;
1222
1223 my $format = length pack "w", $len;
1224
1225 # bypass unshift if we already have the remaining chunk
1226 if ($format + $len <= length $_[0]{rbuf}) {
1227 my $data = substr $_[0]{rbuf}, $format, $len;
1228 substr $_[0]{rbuf}, 0, $format + $len, "";
1229 $cb->($_[0], Storable::thaw ($data));
1230 } else {
1231 # remove prefix
1232 substr $_[0]{rbuf}, 0, $format, "";
1233
1234 # read remaining chunk
1235 $_[0]->unshift_read (chunk => $len, sub {
1236 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1237 $cb->($_[0], $ref);
1238 } else {
1239 $self->_error (&Errno::EBADMSG);
1240 }
1241 });
1242 }
1243
1244 1
1004 } 1245 }
1005}; 1246};
1006 1247
1007=back 1248=back
1008 1249
1029=item $handle->stop_read 1270=item $handle->stop_read
1030 1271
1031=item $handle->start_read 1272=item $handle->start_read
1032 1273
1033In rare cases you actually do not want to read anything from the 1274In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1275socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1276any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1277C<start_read>.
1037 1278
1279Note that AnyEvent::Handle will automatically C<start_read> for you when
1280you change the C<on_read> callback or push/unshift a read callback, and it
1281will automatically C<stop_read> for you when neither C<on_read> is set nor
1282there are any read requests in the queue.
1283
1284These methods will have no effect when in TLS mode (as TLS doesn't support
1285half-duplex connections).
1286
1038=cut 1287=cut
1039 1288
1040sub stop_read { 1289sub stop_read {
1041 my ($self) = @_; 1290 my ($self) = @_;
1042 1291
1043 delete $self->{_rw}; 1292 delete $self->{_rw} unless $self->{tls};
1044} 1293}
1045 1294
1046sub start_read { 1295sub start_read {
1047 my ($self) = @_; 1296 my ($self) = @_;
1048 1297
1049 unless ($self->{_rw} || $self->{_eof}) { 1298 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1299 Scalar::Util::weaken $self;
1051 1300
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1301 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1302 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1303 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1304
1056 if ($len > 0) { 1305 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1306 $self->{_activity} = AnyEvent->now;
1058 1307
1059 $self->{filter_r} 1308 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1309 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1061 : $self->_drain_rbuf; 1310
1311 &_dotls ($self);
1312 } else {
1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 }
1062 1315
1063 } elsif (defined $len) { 1316 } elsif (defined $len) {
1064 delete $self->{_rw}; 1317 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1318 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1319 $self->_drain_rbuf unless $self->{_in_drain};
1069 1320
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1321 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1322 return $self->_error ($!, 1);
1072 } 1323 }
1073 }); 1324 });
1074 } 1325 }
1075} 1326}
1076 1327
1328# poll the write BIO and send the data if applicable
1077sub _dotls { 1329sub _dotls {
1078 my ($self) = @_; 1330 my ($self) = @_;
1079 1331
1332 my $tmp;
1333
1080 if (length $self->{_tls_wbuf}) { 1334 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1335 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1336 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1337 }
1084 } 1338 }
1085 1339
1340 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1341 unless (length $tmp) {
1342 # let's treat SSL-eof as we treat normal EOF
1343 delete $self->{_rw};
1344 $self->{_eof} = 1;
1345 &_freetls;
1346 }
1347
1348 $self->{rbuf} .= $tmp;
1349 $self->_drain_rbuf unless $self->{_in_drain};
1350 $self->{tls} or return; # tls session might have gone away in callback
1351 }
1352
1353 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1354
1355 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1356 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1357 return $self->_error ($!, 1);
1358 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1359 return $self->_error (&Errno::EIO, 1);
1360 }
1361
1362 # all other errors are fine for our purposes
1363 }
1364
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1365 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1366 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1367 $self->_drain_wbuf;
1089 }
1090
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1092 $self->{rbuf} .= $buf;
1093 $self->_drain_rbuf;
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 } 1368 }
1108} 1369}
1109 1370
1110=item $handle->starttls ($tls[, $tls_ctx]) 1371=item $handle->starttls ($tls[, $tls_ctx])
1111 1372
1121 1382
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1383The TLS connection object will end up in C<< $handle->{tls} >> after this
1123call and can be used or changed to your liking. Note that the handshake 1384call and can be used or changed to your liking. Note that the handshake
1124might have already started when this function returns. 1385might have already started when this function returns.
1125 1386
1126=cut 1387If it an error to start a TLS handshake more than once per
1388AnyEvent::Handle object (this is due to bugs in OpenSSL).
1127 1389
1128# TODO: maybe document... 1390=cut
1391
1129sub starttls { 1392sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1393 my ($self, $ssl, $ctx) = @_;
1131 1394
1132 $self->stoptls; 1395 require Net::SSLeay;
1133 1396
1397 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1398 if $self->{tls};
1399
1134 if ($ssl eq "accept") { 1400 if ($ssl eq "accept") {
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1401 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1136 Net::SSLeay::set_accept_state ($ssl); 1402 Net::SSLeay::set_accept_state ($ssl);
1137 } elsif ($ssl eq "connect") { 1403 } elsif ($ssl eq "connect") {
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1404 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1410 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1411 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1412 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1413 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1414 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1415 #
1416 # in short: this is a mess.
1417 #
1418 # note that we do not try to keep the length constant between writes as we are required to do.
1419 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1420 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1421 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1422 Net::SSLeay::CTX_set_mode ($self->{tls},
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1423 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1424 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1152 1425
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1426 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1427 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1428
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1429 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1157 1430
1158 $self->{filter_w} = sub { 1431 &_dotls; # need to trigger the initial handshake
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1432 $self->start_read; # make sure we actually do read
1160 &_dotls;
1161 };
1162 $self->{filter_r} = sub {
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1433}
1167 1434
1168=item $handle->stoptls 1435=item $handle->stoptls
1169 1436
1170Destroys the SSL connection, if any. Partial read or write data will be 1437Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1438sending a close notify to the other side, but since OpenSSL doesn't
1439support non-blocking shut downs, it is not possible to re-use the stream
1440afterwards.
1172 1441
1173=cut 1442=cut
1174 1443
1175sub stoptls { 1444sub stoptls {
1176 my ($self) = @_; 1445 my ($self) = @_;
1177 1446
1447 if ($self->{tls}) {
1448 Net::SSLeay::shutdown ($self->{tls});
1449
1450 &_dotls;
1451
1452 # we don't give a shit. no, we do, but we can't. no...
1453 # we, we... have to use openssl :/
1454 &_freetls;
1455 }
1456}
1457
1458sub _freetls {
1459 my ($self) = @_;
1460
1461 return unless $self->{tls};
1462
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1463 Net::SSLeay::free (delete $self->{tls});
1179 1464
1180 delete $self->{_rbio}; 1465 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1181 delete $self->{_wbio};
1182 delete $self->{_tls_wbuf};
1183 delete $self->{filter_r};
1184 delete $self->{filter_w};
1185} 1466}
1186 1467
1187sub DESTROY { 1468sub DESTROY {
1188 my $self = shift; 1469 my $self = shift;
1189 1470
1190 $self->stoptls; 1471 &_freetls;
1472
1473 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1474
1475 if ($linger && length $self->{wbuf}) {
1476 my $fh = delete $self->{fh};
1477 my $wbuf = delete $self->{wbuf};
1478
1479 my @linger;
1480
1481 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1482 my $len = syswrite $fh, $wbuf, length $wbuf;
1483
1484 if ($len > 0) {
1485 substr $wbuf, 0, $len, "";
1486 } else {
1487 @linger = (); # end
1488 }
1489 });
1490 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1491 @linger = ();
1492 });
1493 }
1494}
1495
1496=item $handle->destroy
1497
1498Shuts down the handle object as much as possible - this call ensures that
1499no further callbacks will be invoked and resources will be freed as much
1500as possible. You must not call any methods on the object afterwards.
1501
1502Normally, you can just "forget" any references to an AnyEvent::Handle
1503object and it will simply shut down. This works in fatal error and EOF
1504callbacks, as well as code outside. It does I<NOT> work in a read or write
1505callback, so when you want to destroy the AnyEvent::Handle object from
1506within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1507that case.
1508
1509The handle might still linger in the background and write out remaining
1510data, as specified by the C<linger> option, however.
1511
1512=cut
1513
1514sub destroy {
1515 my ($self) = @_;
1516
1517 $self->DESTROY;
1518 %$self = ();
1191} 1519}
1192 1520
1193=item AnyEvent::Handle::TLS_CTX 1521=item AnyEvent::Handle::TLS_CTX
1194 1522
1195This function creates and returns the Net::SSLeay::CTX object used by 1523This function creates and returns the Net::SSLeay::CTX object used by
1225 } 1553 }
1226} 1554}
1227 1555
1228=back 1556=back
1229 1557
1558
1559=head1 NONFREQUENTLY ASKED QUESTIONS
1560
1561=over 4
1562
1563=item I C<undef> the AnyEvent::Handle reference inside my callback and
1564still get further invocations!
1565
1566That's because AnyEvent::Handle keeps a reference to itself when handling
1567read or write callbacks.
1568
1569It is only safe to "forget" the reference inside EOF or error callbacks,
1570from within all other callbacks, you need to explicitly call the C<<
1571->destroy >> method.
1572
1573=item I get different callback invocations in TLS mode/Why can't I pause
1574reading?
1575
1576Unlike, say, TCP, TLS connections do not consist of two independent
1577communication channels, one for each direction. Or put differently. The
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1582callback invocations when you are not expecting any read data - the reason
1583is that AnyEvent::Handle always reads in TLS mode.
1584
1585During the connection, you have to make sure that you always have a
1586non-empty read-queue, or an C<on_read> watcher. At the end of the
1587connection (or when you no longer want to use it) you can call the
1588C<destroy> method.
1589
1590=item How do I read data until the other side closes the connection?
1591
1592If you just want to read your data into a perl scalar, the easiest way
1593to achieve this is by setting an C<on_read> callback that does nothing,
1594clearing the C<on_eof> callback and in the C<on_error> callback, the data
1595will be in C<$_[0]{rbuf}>:
1596
1597 $handle->on_read (sub { });
1598 $handle->on_eof (undef);
1599 $handle->on_error (sub {
1600 my $data = delete $_[0]{rbuf};
1601 undef $handle;
1602 });
1603
1604The reason to use C<on_error> is that TCP connections, due to latencies
1605and packets loss, might get closed quite violently with an error, when in
1606fact, all data has been received.
1607
1608It is usually better to use acknowledgements when transferring data,
1609to make sure the other side hasn't just died and you got the data
1610intact. This is also one reason why so many internet protocols have an
1611explicit QUIT command.
1612
1613=item I don't want to destroy the handle too early - how do I wait until
1614all data has been written?
1615
1616After writing your last bits of data, set the C<on_drain> callback
1617and destroy the handle in there - with the default setting of
1618C<low_water_mark> this will be called precisely when all data has been
1619written to the socket:
1620
1621 $handle->push_write (...);
1622 $handle->on_drain (sub {
1623 warn "all data submitted to the kernel\n";
1624 undef $handle;
1625 });
1626
1627=back
1628
1629
1230=head1 SUBCLASSING AnyEvent::Handle 1630=head1 SUBCLASSING AnyEvent::Handle
1231 1631
1232In many cases, you might want to subclass AnyEvent::Handle. 1632In many cases, you might want to subclass AnyEvent::Handle.
1233 1633
1234To make this easier, a given version of AnyEvent::Handle uses these 1634To make this easier, a given version of AnyEvent::Handle uses these
1237=over 4 1637=over 4
1238 1638
1239=item * all constructor arguments become object members. 1639=item * all constructor arguments become object members.
1240 1640
1241At least initially, when you pass a C<tls>-argument to the constructor it 1641At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 1642will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 1643mutated later on (for example C<tls> will hold the TLS connection object).
1244 1644
1245=item * other object member names are prefixed with an C<_>. 1645=item * other object member names are prefixed with an C<_>.
1246 1646
1247All object members not explicitly documented (internal use) are prefixed 1647All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines