ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.45 by root, Thu May 29 00:20:39 2008 UTC vs.
Revision 1.152 by root, Fri Jul 17 14:57:03 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.83;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 my ($hdl, $fatal, $msg) = @_;
33 }, 32 warn "got error $msg\n";
33 $hdl->destroy;
34 $cv->send;
34 ); 35 );
35 36
36 # send some request line 37 # send some request line
37 $handle->push_write ("getinfo\015\012"); 38 $hdl->push_write ("getinfo\015\012");
38 39
39 # read the response line 40 # read the response line
40 $handle->push_read (line => sub { 41 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 42 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 43 warn "got line <$line>\n";
43 $cv->send; 44 $cv->send;
44 }); 45 });
45 46
46 $cv->recv; 47 $cv->recv;
47 48
49 50
50This module is a helper module to make it easier to do event-based I/O on 51This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 52filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 53on sockets see L<AnyEvent::Util>.
53 54
55The L<AnyEvent::Intro> tutorial contains some well-documented
56AnyEvent::Handle examples.
57
54In the following, when the documentation refers to of "bytes" then this 58In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 59means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 60treatment of characters applies to this module as well.
57 61
58All callbacks will be invoked with the handle object as their first 62All callbacks will be invoked with the handle object as their first
60 64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74 78
75NOTE: The filehandle will be set to non-blocking (using 79NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 80C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
81that mode.
77 82
78=item on_eof => $cb->($handle) 83=item on_eof => $cb->($handle)
79 84
80Set the callback to be called on EOF. 85Set the callback to be called when an end-of-file condition is detected,
86i.e. in the case of a socket, when the other side has closed the
87connection cleanly, and there are no outstanding read requests in the
88queue (if there are read requests, then an EOF counts as an unexpected
89connection close and will be flagged as an error).
81 90
82While not mandatory, it is highly recommended to set an eof callback, 91For sockets, this just means that the other side has stopped sending data,
83otherwise you might end up with a closed socket while you are still 92you can still try to write data, and, in fact, one can return from the EOF
84waiting for data. 93callback and continue writing data, as only the read part has been shut
94down.
85 95
96If an EOF condition has been detected but no C<on_eof> callback has been
97set, then a fatal error will be raised with C<$!> set to <0>.
98
86=item on_error => $cb->($handle) 99=item on_error => $cb->($handle, $fatal, $message)
87 100
88This is the fatal error callback, that is called when, well, a fatal error 101This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 102occured, such as not being able to resolve the hostname, failure to
90or a read error. 103connect or a read error.
91 104
92The object will not be in a usable state when this callback has been 105Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 106fatal errors the handle object will be destroyed (by a call to C<< ->
107destroy >>) after invoking the error callback (which means you are free to
108examine the handle object). Examples of fatal errors are an EOF condition
109with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110
111AnyEvent::Handle tries to find an appropriate error code for you to check
112against, but in some cases (TLS errors), this does not work well. It is
113recommended to always output the C<$message> argument in human-readable
114error messages (it's usually the same as C<"$!">).
115
116Non-fatal errors can be retried by simply returning, but it is recommended
117to simply ignore this parameter and instead abondon the handle object
118when this callback is invoked. Examples of non-fatal errors are timeouts
119C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 120
95On callback entrance, the value of C<$!> contains the operating system 121On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 122error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 123C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 124
101While not mandatory, it is I<highly> recommended to set this callback, as 125While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 126you will not be notified of errors otherwise. The default simply calls
103die. 127C<croak>.
104 128
105=item on_read => $cb->($handle) 129=item on_read => $cb->($handle)
106 130
107This sets the default read callback, which is called when data arrives 131This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 132and no read request is in the queue (unlike read queue callbacks, this
133callback will only be called when at least one octet of data is in the
134read buffer).
109 135
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 136To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 137method or access the C<< $handle->{rbuf} >> member directly. Note that you
138must not enlarge or modify the read buffer, you can only remove data at
139the beginning from it.
112 140
113When an EOF condition is detected then AnyEvent::Handle will first try to 141When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 142feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 143calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 144error will be raised (with C<$!> set to C<EPIPE>).
117 145
146Note that, unlike requests in the read queue, an C<on_read> callback
147doesn't mean you I<require> some data: if there is an EOF and there
148are outstanding read requests then an error will be flagged. With an
149C<on_read> callback, the C<on_eof> callback will be invoked.
150
118=item on_drain => $cb->($handle) 151=item on_drain => $cb->($handle)
119 152
120This sets the callback that is called when the write buffer becomes empty 153This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 154(or when the callback is set and the buffer is empty already).
122 155
123To append to the write buffer, use the C<< ->push_write >> method. 156To append to the write buffer, use the C<< ->push_write >> method.
157
158This callback is useful when you don't want to put all of your write data
159into the queue at once, for example, when you want to write the contents
160of some file to the socket you might not want to read the whole file into
161memory and push it into the queue, but instead only read more data from
162the file when the write queue becomes empty.
124 163
125=item timeout => $fractional_seconds 164=item timeout => $fractional_seconds
126 165
127If non-zero, then this enables an "inactivity" timeout: whenever this many 166If non-zero, then this enables an "inactivity" timeout: whenever this many
128seconds pass without a successful read or write on the underlying file 167seconds pass without a successful read or write on the underlying file
129handle, the C<on_timeout> callback will be invoked (and if that one is 168handle, the C<on_timeout> callback will be invoked (and if that one is
130missing, an C<ETIMEDOUT> error will be raised). 169missing, a non-fatal C<ETIMEDOUT> error will be raised).
131 170
132Note that timeout processing is also active when you currently do not have 171Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 172any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 173idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 174in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
175restart the timeout.
136 176
137Zero (the default) disables this timeout. 177Zero (the default) disables this timeout.
138 178
139=item on_timeout => $cb->($handle) 179=item on_timeout => $cb->($handle)
140 180
144 184
145=item rbuf_max => <bytes> 185=item rbuf_max => <bytes>
146 186
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 187If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 188when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 189avoid some forms of denial-of-service attacks.
150 190
151For example, a server accepting connections from untrusted sources should 191For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 192be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 193(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 194amount of data without a callback ever being called as long as the line
155isn't finished). 195isn't finished).
156 196
197=item autocork => <boolean>
198
199When disabled (the default), then C<push_write> will try to immediately
200write the data to the handle, if possible. This avoids having to register
201a write watcher and wait for the next event loop iteration, but can
202be inefficient if you write multiple small chunks (on the wire, this
203disadvantage is usually avoided by your kernel's nagle algorithm, see
204C<no_delay>, but this option can save costly syscalls).
205
206When enabled, then writes will always be queued till the next event loop
207iteration. This is efficient when you do many small writes per iteration,
208but less efficient when you do a single write only per iteration (or when
209the write buffer often is full). It also increases write latency.
210
211=item no_delay => <boolean>
212
213When doing small writes on sockets, your operating system kernel might
214wait a bit for more data before actually sending it out. This is called
215the Nagle algorithm, and usually it is beneficial.
216
217In some situations you want as low a delay as possible, which can be
218accomplishd by setting this option to a true value.
219
220The default is your opertaing system's default behaviour (most likely
221enabled), this option explicitly enables or disables it, if possible.
222
157=item read_size => <bytes> 223=item read_size => <bytes>
158 224
159The default read block size (the amount of bytes this module will try to read 225The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 226try to read during each loop iteration, which affects memory
227requirements). Default: C<8192>.
161 228
162=item low_water_mark => <bytes> 229=item low_water_mark => <bytes>
163 230
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 231Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 232buffer: If the write reaches this size or gets even samller it is
166considered empty. 233considered empty.
167 234
235Sometimes it can be beneficial (for performance reasons) to add data to
236the write buffer before it is fully drained, but this is a rare case, as
237the operating system kernel usually buffers data as well, so the default
238is good in almost all cases.
239
240=item linger => <seconds>
241
242If non-zero (default: C<3600>), then the destructor of the
243AnyEvent::Handle object will check whether there is still outstanding
244write data and will install a watcher that will write this data to the
245socket. No errors will be reported (this mostly matches how the operating
246system treats outstanding data at socket close time).
247
248This will not work for partial TLS data that could not be encoded
249yet. This data will be lost. Calling the C<stoptls> method in time might
250help.
251
252=item peername => $string
253
254A string used to identify the remote site - usually the DNS hostname
255(I<not> IDN!) used to create the connection, rarely the IP address.
256
257Apart from being useful in error messages, this string is also used in TLS
258peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
259verification will be skipped when C<peername> is not specified or
260C<undef>.
261
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 262=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 263
170When this parameter is given, it enables TLS (SSL) mode, that means it 264When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 265AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 266established and will transparently encrypt/decrypt data afterwards.
267
268All TLS protocol errors will be signalled as C<EPROTO>, with an
269appropriate error message.
173 270
174TLS mode requires Net::SSLeay to be installed (it will be loaded 271TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 272automatically when you try to create a TLS handle): this module doesn't
273have a dependency on that module, so if your module requires it, you have
274to add the dependency yourself.
176 275
177For the TLS server side, use C<accept>, and for the TLS client side of a 276Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 277C<accept>, and for the TLS client side of a connection, use C<connect>
278mode.
179 279
180You can also provide your own TLS connection object, but you have 280You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 281to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 282or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 283AnyEvent::Handle. Also, this module will take ownership of this connection
284object.
184 285
286At some future point, AnyEvent::Handle might switch to another TLS
287implementation, then the option to use your own session object will go
288away.
289
290B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
291passing in the wrong integer will lead to certain crash. This most often
292happens when one uses a stylish C<< tls => 1 >> and is surprised about the
293segmentation fault.
294
185See the C<starttls> method if you need to start TLs negotiation later. 295See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 296
187=item tls_ctx => $ssl_ctx 297=item tls_ctx => $anyevent_tls
188 298
189Use the given Net::SSLeay::CTX object to create the new TLS connection 299Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 300(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 301missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 302
303Instead of an object, you can also specify a hash reference with C<< key
304=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
305new TLS context object.
306
307=item on_starttls => $cb->($handle, $success[, $error_message])
308
309This callback will be invoked when the TLS/SSL handshake has finished. If
310C<$success> is true, then the TLS handshake succeeded, otherwise it failed
311(C<on_stoptls> will not be called in this case).
312
313The session in C<< $handle->{tls} >> can still be examined in this
314callback, even when the handshake was not successful.
315
316TLS handshake failures will not cause C<on_error> to be invoked when this
317callback is in effect, instead, the error message will be passed to C<on_starttls>.
318
319Without this callback, handshake failures lead to C<on_error> being
320called, as normal.
321
322Note that you cannot call C<starttls> right again in this callback. If you
323need to do that, start an zero-second timer instead whose callback can
324then call C<< ->starttls >> again.
325
326=item on_stoptls => $cb->($handle)
327
328When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
329set, then it will be invoked after freeing the TLS session. If it is not,
330then a TLS shutdown condition will be treated like a normal EOF condition
331on the handle.
332
333The session in C<< $handle->{tls} >> can still be examined in this
334callback.
335
336This callback will only be called on TLS shutdowns, not when the
337underlying handle signals EOF.
338
193=item json => JSON or JSON::XS object 339=item json => JSON or JSON::XS object
194 340
195This is the json coder object used by the C<json> read and write types. 341This is the json coder object used by the C<json> read and write types.
196 342
197If you don't supply it, then AnyEvent::Handle will create and use a 343If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 344suitable one (on demand), which will write and expect UTF-8 encoded JSON
345texts.
199 346
200Note that you are responsible to depend on the JSON module if you want to 347Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 348use this functionality, as AnyEvent does not have a dependency itself.
202 349
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 350=back
210 351
211=cut 352=cut
212 353
213sub new { 354sub new {
214 my $class = shift; 355 my $class = shift;
215
216 my $self = bless { @_ }, $class; 356 my $self = bless { @_ }, $class;
217 357
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 358 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219 359
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 360 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225 }
226
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 361
232 $self->{_activity} = AnyEvent->now; 362 $self->{_activity} = AnyEvent->now;
233 $self->_timeout; 363 $self->_timeout;
234 364
365 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
366
367 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
368 if $self->{tls};
369
370 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
371
235 $self->start_read; 372 $self->start_read
373 if $self->{on_read};
236 374
237 $self 375 $self->{fh} && $self
238} 376}
239 377
240sub _shutdown { 378#sub _shutdown {
241 my ($self) = @_; 379# my ($self) = @_;
380#
381# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
382# $self->{_eof} = 1; # tell starttls et. al to stop trying
383#
384# &_freetls;
385#}
242 386
243 delete $self->{_rw};
244 delete $self->{_ww};
245 delete $self->{fh};
246}
247
248sub error { 387sub _error {
249 my ($self) = @_; 388 my ($self, $errno, $fatal, $message) = @_;
250 389
251 { 390 $! = $errno;
252 local $!; 391 $message ||= "$!";
253 $self->_shutdown;
254 }
255 392
256 $self->{on_error}($self)
257 if $self->{on_error}; 393 if ($self->{on_error}) {
258 394 $self->{on_error}($self, $fatal, $message);
395 $self->destroy if $fatal;
396 } elsif ($self->{fh}) {
397 $self->destroy;
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 398 Carp::croak "AnyEvent::Handle uncaught error: $message";
399 }
260} 400}
261 401
262=item $fh = $handle->fh 402=item $fh = $handle->fh
263 403
264This method returns the file handle of the L<AnyEvent::Handle> object. 404This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 405
266=cut 406=cut
267 407
268sub fh { $_[0]{fh} } 408sub fh { $_[0]{fh} }
269 409
287 $_[0]{on_eof} = $_[1]; 427 $_[0]{on_eof} = $_[1];
288} 428}
289 429
290=item $handle->on_timeout ($cb) 430=item $handle->on_timeout ($cb)
291 431
292Replace the current C<on_timeout> callback, or disables the callback 432Replace the current C<on_timeout> callback, or disables the callback (but
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 433not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
294argument. 434argument and method.
295 435
296=cut 436=cut
297 437
298sub on_timeout { 438sub on_timeout {
299 $_[0]{on_timeout} = $_[1]; 439 $_[0]{on_timeout} = $_[1];
440}
441
442=item $handle->autocork ($boolean)
443
444Enables or disables the current autocork behaviour (see C<autocork>
445constructor argument). Changes will only take effect on the next write.
446
447=cut
448
449sub autocork {
450 $_[0]{autocork} = $_[1];
451}
452
453=item $handle->no_delay ($boolean)
454
455Enables or disables the C<no_delay> setting (see constructor argument of
456the same name for details).
457
458=cut
459
460sub no_delay {
461 $_[0]{no_delay} = $_[1];
462
463 eval {
464 local $SIG{__DIE__};
465 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
466 };
467}
468
469=item $handle->on_starttls ($cb)
470
471Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
472
473=cut
474
475sub on_starttls {
476 $_[0]{on_starttls} = $_[1];
477}
478
479=item $handle->on_stoptls ($cb)
480
481Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
482
483=cut
484
485sub on_starttls {
486 $_[0]{on_stoptls} = $_[1];
300} 487}
301 488
302############################################################################# 489#############################################################################
303 490
304=item $handle->timeout ($seconds) 491=item $handle->timeout ($seconds)
328 # now or in the past already? 515 # now or in the past already?
329 if ($after <= 0) { 516 if ($after <= 0) {
330 $self->{_activity} = $NOW; 517 $self->{_activity} = $NOW;
331 518
332 if ($self->{on_timeout}) { 519 if ($self->{on_timeout}) {
333 $self->{on_timeout}->($self); 520 $self->{on_timeout}($self);
334 } else { 521 } else {
335 $! = Errno::ETIMEDOUT; 522 $self->_error (Errno::ETIMEDOUT);
336 $self->error;
337 } 523 }
338 524
339 # callbakx could have changed timeout value, optimise 525 # callback could have changed timeout value, optimise
340 return unless $self->{timeout}; 526 return unless $self->{timeout};
341 527
342 # calculate new after 528 # calculate new after
343 $after = $self->{timeout}; 529 $after = $self->{timeout};
344 } 530 }
345 531
346 Scalar::Util::weaken $self; 532 Scalar::Util::weaken $self;
533 return unless $self; # ->error could have destroyed $self
347 534
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 535 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw}; 536 delete $self->{_tw};
350 $self->_timeout; 537 $self->_timeout;
351 }); 538 });
382 my ($self, $cb) = @_; 569 my ($self, $cb) = @_;
383 570
384 $self->{on_drain} = $cb; 571 $self->{on_drain} = $cb;
385 572
386 $cb->($self) 573 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 574 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 575}
389 576
390=item $handle->push_write ($data) 577=item $handle->push_write ($data)
391 578
392Queues the given scalar to be written. You can push as much data as you 579Queues the given scalar to be written. You can push as much data as you
403 Scalar::Util::weaken $self; 590 Scalar::Util::weaken $self;
404 591
405 my $cb = sub { 592 my $cb = sub {
406 my $len = syswrite $self->{fh}, $self->{wbuf}; 593 my $len = syswrite $self->{fh}, $self->{wbuf};
407 594
408 if ($len >= 0) { 595 if (defined $len) {
409 substr $self->{wbuf}, 0, $len, ""; 596 substr $self->{wbuf}, 0, $len, "";
410 597
411 $self->{_activity} = AnyEvent->now; 598 $self->{_activity} = AnyEvent->now;
412 599
413 $self->{on_drain}($self) 600 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 601 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 602 && $self->{on_drain};
416 603
417 delete $self->{_ww} unless length $self->{wbuf}; 604 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 605 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 606 $self->_error ($!, 1);
420 } 607 }
421 }; 608 };
422 609
423 # try to write data immediately 610 # try to write data immediately
424 $cb->(); 611 $cb->() unless $self->{autocork};
425 612
426 # if still data left in wbuf, we need to poll 613 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 614 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
428 if length $self->{wbuf}; 615 if length $self->{wbuf};
429 }; 616 };
443 630
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 631 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 632 ->($self, @_);
446 } 633 }
447 634
448 if ($self->{filter_w}) { 635 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 636 $self->{_tls_wbuf} .= $_[0];
637
638 &_dotls ($self);
450 } else { 639 } else {
451 $self->{wbuf} .= $_[0]; 640 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 641 $self->_drain_wbuf;
453 } 642 }
454} 643}
455 644
456=item $handle->push_write (type => @args) 645=item $handle->push_write (type => @args)
457 646
458=item $handle->unshift_write (type => @args)
459
460Instead of formatting your data yourself, you can also let this module do 647Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 648the job by specifying a type and type-specific arguments.
462 649
463Predefined types are (if you have ideas for additional types, feel free to 650Predefined types are (if you have ideas for additional types, feel free to
464drop by and tell us): 651drop by and tell us):
468=item netstring => $string 655=item netstring => $string
469 656
470Formats the given value as netstring 657Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 658(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 659
473=back
474
475=cut 660=cut
476 661
477register_write_type netstring => sub { 662register_write_type netstring => sub {
478 my ($self, $string) = @_; 663 my ($self, $string) = @_;
479 664
480 sprintf "%d:%s,", (length $string), $string 665 (length $string) . ":$string,"
666};
667
668=item packstring => $format, $data
669
670An octet string prefixed with an encoded length. The encoding C<$format>
671uses the same format as a Perl C<pack> format, but must specify a single
672integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
673optional C<!>, C<< < >> or C<< > >> modifier).
674
675=cut
676
677register_write_type packstring => sub {
678 my ($self, $format, $string) = @_;
679
680 pack "$format/a*", $string
481}; 681};
482 682
483=item json => $array_or_hashref 683=item json => $array_or_hashref
484 684
485Encodes the given hash or array reference into a JSON object. Unless you 685Encodes the given hash or array reference into a JSON object. Unless you
519 719
520 $self->{json} ? $self->{json}->encode ($ref) 720 $self->{json} ? $self->{json}->encode ($ref)
521 : JSON::encode_json ($ref) 721 : JSON::encode_json ($ref)
522}; 722};
523 723
724=item storable => $reference
725
726Freezes the given reference using L<Storable> and writes it to the
727handle. Uses the C<nfreeze> format.
728
729=cut
730
731register_write_type storable => sub {
732 my ($self, $ref) = @_;
733
734 require Storable;
735
736 pack "w/a*", Storable::nfreeze ($ref)
737};
738
739=back
740
741=item $handle->push_shutdown
742
743Sometimes you know you want to close the socket after writing your data
744before it was actually written. One way to do that is to replace your
745C<on_drain> handler by a callback that shuts down the socket (and set
746C<low_water_mark> to C<0>). This method is a shorthand for just that, and
747replaces the C<on_drain> callback with:
748
749 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
750
751This simply shuts down the write side and signals an EOF condition to the
752the peer.
753
754You can rely on the normal read queue and C<on_eof> handling
755afterwards. This is the cleanest way to close a connection.
756
757=cut
758
759sub push_shutdown {
760 my ($self) = @_;
761
762 delete $self->{low_water_mark};
763 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
764}
765
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 766=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 767
526This function (not method) lets you add your own types to C<push_write>. 768This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 769Whenever the given C<type> is used, C<push_write> will invoke the code
528reference with the handle object and the remaining arguments. 770reference with the handle object and the remaining arguments.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 790ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 791a queue.
550 792
551In the simple case, you just install an C<on_read> callback and whenever 793In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 794new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 795enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 796leave the data there if you want to accumulate more (e.g. when only a
797partial message has been received so far).
555 798
556In the more complex case, you want to queue multiple callbacks. In this 799In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 800case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 801data arrives (also the first time it is queued) and removes it when it has
559below). 802done its job (see C<push_read>, below).
560 803
561This way you can, for example, push three line-reads, followed by reading 804This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 805a chunk of data, and AnyEvent::Handle will execute them in order.
563 806
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 807Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 808the specified number of bytes which give an XML datagram.
566 809
567 # in the default state, expect some header bytes 810 # in the default state, expect some header bytes
568 $handle->on_read (sub { 811 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 812 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 813 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 814 # header arrived, decode
572 my $len = unpack "N", $_[1]; 815 my $len = unpack "N", $_[1];
573 816
574 # now read the payload 817 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 818 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 819 my $xml = $_[1];
577 # handle xml 820 # handle xml
578 }); 821 });
579 }); 822 });
580 }); 823 });
581 824
582Example 2: Implement a client for a protocol that replies either with 825Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 826and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 827bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 828just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 829in the callbacks.
587 830
588 # request one 831When the first callback is called and sees an "OK" response, it will
832C<unshift> another line-read. This line-read will be queued I<before> the
83364-byte chunk callback.
834
835 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 836 $handle->push_write ("request 1\015\012");
590 837
591 # we expect "ERROR" or "OK" as response, so push a line read 838 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 839 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 840 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 841 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 842 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 843 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 844 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 845 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 846 my $response = $_[1];
600 ... 847 ...
601 }); 848 });
602 } 849 }
603 }); 850 });
604 851
605 # request two 852 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 853 $handle->push_write ("request 2\015\012");
607 854
608 # simply read 64 bytes, always 855 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 856 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 857 my $response = $_[1];
611 ... 858 ...
612 }); 859 });
613 860
614=over 4 861=over 4
615 862
616=cut 863=cut
617 864
618sub _drain_rbuf { 865sub _drain_rbuf {
619 my ($self) = @_; 866 my ($self) = @_;
867
868 local $self->{_in_drain} = 1;
620 869
621 if ( 870 if (
622 defined $self->{rbuf_max} 871 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 872 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 873 ) {
625 $! = &Errno::ENOSPC; 874 $self->_error (Errno::ENOSPC, 1), return;
626 $self->error;
627 } 875 }
628 876
629 return if $self->{in_drain}; 877 while () {
630 local $self->{in_drain} = 1; 878 # we need to use a separate tls read buffer, as we must not receive data while
879 # we are draining the buffer, and this can only happen with TLS.
880 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
631 881
632 while (my $len = length $self->{rbuf}) { 882 my $len = length $self->{rbuf};
633 no strict 'refs'; 883
634 if (my $cb = shift @{ $self->{_queue} }) { 884 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) { 885 unless ($cb->($self)) {
636 if ($self->{_eof}) { 886 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming) 887 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE; 888 $self->_error (Errno::EPIPE, 1), return;
639 $self->error;
640 } 889 }
641 890
642 unshift @{ $self->{_queue} }, $cb; 891 unshift @{ $self->{_queue} }, $cb;
643 return; 892 last;
644 } 893 }
645 } elsif ($self->{on_read}) { 894 } elsif ($self->{on_read}) {
895 last unless $len;
896
646 $self->{on_read}($self); 897 $self->{on_read}($self);
647 898
648 if ( 899 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed 900 $len == length $self->{rbuf} # if no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty 901 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data 902 && $self->{on_read} # but we still have on_read
653 ) { 903 ) {
904 # no further data will arrive
654 # then no progress can be made 905 # so no progress can be made
655 $! = &Errno::EPIPE; 906 $self->_error (Errno::EPIPE, 1), return
656 $self->error; 907 if $self->{_eof};
908
909 last; # more data might arrive
657 } 910 }
658 } else { 911 } else {
659 # read side becomes idle 912 # read side becomes idle
660 delete $self->{_rw}; 913 delete $self->{_rw} unless $self->{tls};
661 return; 914 last;
662 } 915 }
663 } 916 }
664 917
665 if ($self->{_eof}) { 918 if ($self->{_eof}) {
666 $self->_shutdown; 919 if ($self->{on_eof}) {
667 $self->{on_eof}($self) 920 $self->{on_eof}($self)
668 if $self->{on_eof}; 921 } else {
922 $self->_error (0, 1, "Unexpected end-of-file");
923 }
924 }
925
926 # may need to restart read watcher
927 unless ($self->{_rw}) {
928 $self->start_read
929 if $self->{on_read} || @{ $self->{_queue} };
669 } 930 }
670} 931}
671 932
672=item $handle->on_read ($cb) 933=item $handle->on_read ($cb)
673 934
679 940
680sub on_read { 941sub on_read {
681 my ($self, $cb) = @_; 942 my ($self, $cb) = @_;
682 943
683 $self->{on_read} = $cb; 944 $self->{on_read} = $cb;
945 $self->_drain_rbuf if $cb && !$self->{_in_drain};
684} 946}
685 947
686=item $handle->rbuf 948=item $handle->rbuf
687 949
688Returns the read buffer (as a modifiable lvalue). 950Returns the read buffer (as a modifiable lvalue).
689 951
690You can access the read buffer directly as the C<< ->{rbuf} >> member, if 952You can access the read buffer directly as the C<< ->{rbuf} >>
691you want. 953member, if you want. However, the only operation allowed on the
954read buffer (apart from looking at it) is removing data from its
955beginning. Otherwise modifying or appending to it is not allowed and will
956lead to hard-to-track-down bugs.
692 957
693NOTE: The read buffer should only be used or modified if the C<on_read>, 958NOTE: The read buffer should only be used or modified if the C<on_read>,
694C<push_read> or C<unshift_read> methods are used. The other read methods 959C<push_read> or C<unshift_read> methods are used. The other read methods
695automatically manage the read buffer. 960automatically manage the read buffer.
696 961
737 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1002 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
738 ->($self, $cb, @_); 1003 ->($self, $cb, @_);
739 } 1004 }
740 1005
741 push @{ $self->{_queue} }, $cb; 1006 push @{ $self->{_queue} }, $cb;
742 $self->_drain_rbuf; 1007 $self->_drain_rbuf unless $self->{_in_drain};
743} 1008}
744 1009
745sub unshift_read { 1010sub unshift_read {
746 my $self = shift; 1011 my $self = shift;
747 my $cb = pop; 1012 my $cb = pop;
753 ->($self, $cb, @_); 1018 ->($self, $cb, @_);
754 } 1019 }
755 1020
756 1021
757 unshift @{ $self->{_queue} }, $cb; 1022 unshift @{ $self->{_queue} }, $cb;
758 $self->_drain_rbuf; 1023 $self->_drain_rbuf unless $self->{_in_drain};
759} 1024}
760 1025
761=item $handle->push_read (type => @args, $cb) 1026=item $handle->push_read (type => @args, $cb)
762 1027
763=item $handle->unshift_read (type => @args, $cb) 1028=item $handle->unshift_read (type => @args, $cb)
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1058 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 1059 1
795 } 1060 }
796}; 1061};
797 1062
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 1063=item line => [$eol, ]$cb->($handle, $line, $eol)
808 1064
809The callback will be called only once a full line (including the end of 1065The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 1066line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 1067marker) will be passed to the callback as second argument (C<$line>), and
826=cut 1082=cut
827 1083
828register_read_type line => sub { 1084register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 1085 my ($self, $cb, $eol) = @_;
830 1086
831 $eol = qr|(\015?\012)| if @_ < 3; 1087 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 1088 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 1089 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 1090 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 1091
838 $cb->($_[0], $1, $2); 1092 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 1093 1
871 return;
872 } 1094 }
1095 } else {
1096 $eol = quotemeta $eol unless ref $eol;
1097 $eol = qr|^(.*?)($eol)|s;
873 1098
874 my $len = $1; 1099 sub {
1100 $_[0]{rbuf} =~ s/$eol// or return;
875 1101
876 $self->unshift_read (chunk => $len, sub { 1102 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 1103 1
886 }); 1104 }
887
888 1
889 } 1105 }
890}; 1106};
891 1107
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1108=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 1109
945 return 1; 1161 return 1;
946 } 1162 }
947 1163
948 # reject 1164 # reject
949 if ($reject && $$rbuf =~ $reject) { 1165 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1166 $self->_error (Errno::EBADMSG);
951 $self->error;
952 } 1167 }
953 1168
954 # skip 1169 # skip
955 if ($skip && $$rbuf =~ $skip) { 1170 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1171 $data .= substr $$rbuf, 0, $+[0], "";
958 1173
959 () 1174 ()
960 } 1175 }
961}; 1176};
962 1177
1178=item netstring => $cb->($handle, $string)
1179
1180A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1181
1182Throws an error with C<$!> set to EBADMSG on format violations.
1183
1184=cut
1185
1186register_read_type netstring => sub {
1187 my ($self, $cb) = @_;
1188
1189 sub {
1190 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1191 if ($_[0]{rbuf} =~ /[^0-9]/) {
1192 $self->_error (Errno::EBADMSG);
1193 }
1194 return;
1195 }
1196
1197 my $len = $1;
1198
1199 $self->unshift_read (chunk => $len, sub {
1200 my $string = $_[1];
1201 $_[0]->unshift_read (chunk => 1, sub {
1202 if ($_[1] eq ",") {
1203 $cb->($_[0], $string);
1204 } else {
1205 $self->_error (Errno::EBADMSG);
1206 }
1207 });
1208 });
1209
1210 1
1211 }
1212};
1213
1214=item packstring => $format, $cb->($handle, $string)
1215
1216An octet string prefixed with an encoded length. The encoding C<$format>
1217uses the same format as a Perl C<pack> format, but must specify a single
1218integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1219optional C<!>, C<< < >> or C<< > >> modifier).
1220
1221For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1222EPP uses a prefix of C<N> (4 octtes).
1223
1224Example: read a block of data prefixed by its length in BER-encoded
1225format (very efficient).
1226
1227 $handle->push_read (packstring => "w", sub {
1228 my ($handle, $data) = @_;
1229 });
1230
1231=cut
1232
1233register_read_type packstring => sub {
1234 my ($self, $cb, $format) = @_;
1235
1236 sub {
1237 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1238 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1239 or return;
1240
1241 $format = length pack $format, $len;
1242
1243 # bypass unshift if we already have the remaining chunk
1244 if ($format + $len <= length $_[0]{rbuf}) {
1245 my $data = substr $_[0]{rbuf}, $format, $len;
1246 substr $_[0]{rbuf}, 0, $format + $len, "";
1247 $cb->($_[0], $data);
1248 } else {
1249 # remove prefix
1250 substr $_[0]{rbuf}, 0, $format, "";
1251
1252 # read remaining chunk
1253 $_[0]->unshift_read (chunk => $len, $cb);
1254 }
1255
1256 1
1257 }
1258};
1259
963=item json => $cb->($handle, $hash_or_arrayref) 1260=item json => $cb->($handle, $hash_or_arrayref)
964 1261
965Reads a JSON object or array, decodes it and passes it to the callback. 1262Reads a JSON object or array, decodes it and passes it to the
1263callback. When a parse error occurs, an C<EBADMSG> error will be raised.
966 1264
967If a C<json> object was passed to the constructor, then that will be used 1265If a C<json> object was passed to the constructor, then that will be used
968for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1266for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969 1267
970This read type uses the incremental parser available with JSON version 1268This read type uses the incremental parser available with JSON version
977the C<json> write type description, above, for an actual example. 1275the C<json> write type description, above, for an actual example.
978 1276
979=cut 1277=cut
980 1278
981register_read_type json => sub { 1279register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1280 my ($self, $cb) = @_;
983 1281
984 require JSON; 1282 my $json = $self->{json} ||=
1283 eval { require JSON::XS; JSON::XS->new->utf8 }
1284 || do { require JSON; JSON->new->utf8 };
985 1285
986 my $data; 1286 my $data;
987 my $rbuf = \$self->{rbuf}; 1287 my $rbuf = \$self->{rbuf};
988 1288
989 my $json = $self->{json} ||= JSON->new->utf8;
990
991 sub { 1289 sub {
992 my $ref = $json->incr_parse ($self->{rbuf}); 1290 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
993 1291
994 if ($ref) { 1292 if ($ref) {
995 $self->{rbuf} = $json->incr_text; 1293 $self->{rbuf} = $json->incr_text;
996 $json->incr_text = ""; 1294 $json->incr_text = "";
997 $cb->($self, $ref); 1295 $cb->($self, $ref);
998 1296
999 1 1297 1
1298 } elsif ($@) {
1299 # error case
1300 $json->incr_skip;
1301
1302 $self->{rbuf} = $json->incr_text;
1303 $json->incr_text = "";
1304
1305 $self->_error (Errno::EBADMSG);
1306
1307 ()
1000 } else { 1308 } else {
1001 $self->{rbuf} = ""; 1309 $self->{rbuf} = "";
1310
1002 () 1311 ()
1003 } 1312 }
1313 }
1314};
1315
1316=item storable => $cb->($handle, $ref)
1317
1318Deserialises a L<Storable> frozen representation as written by the
1319C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1320data).
1321
1322Raises C<EBADMSG> error if the data could not be decoded.
1323
1324=cut
1325
1326register_read_type storable => sub {
1327 my ($self, $cb) = @_;
1328
1329 require Storable;
1330
1331 sub {
1332 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1333 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1334 or return;
1335
1336 my $format = length pack "w", $len;
1337
1338 # bypass unshift if we already have the remaining chunk
1339 if ($format + $len <= length $_[0]{rbuf}) {
1340 my $data = substr $_[0]{rbuf}, $format, $len;
1341 substr $_[0]{rbuf}, 0, $format + $len, "";
1342 $cb->($_[0], Storable::thaw ($data));
1343 } else {
1344 # remove prefix
1345 substr $_[0]{rbuf}, 0, $format, "";
1346
1347 # read remaining chunk
1348 $_[0]->unshift_read (chunk => $len, sub {
1349 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1350 $cb->($_[0], $ref);
1351 } else {
1352 $self->_error (Errno::EBADMSG);
1353 }
1354 });
1355 }
1356
1357 1
1004 } 1358 }
1005}; 1359};
1006 1360
1007=back 1361=back
1008 1362
1029=item $handle->stop_read 1383=item $handle->stop_read
1030 1384
1031=item $handle->start_read 1385=item $handle->start_read
1032 1386
1033In rare cases you actually do not want to read anything from the 1387In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1388socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1389any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1390C<start_read>.
1037 1391
1392Note that AnyEvent::Handle will automatically C<start_read> for you when
1393you change the C<on_read> callback or push/unshift a read callback, and it
1394will automatically C<stop_read> for you when neither C<on_read> is set nor
1395there are any read requests in the queue.
1396
1397These methods will have no effect when in TLS mode (as TLS doesn't support
1398half-duplex connections).
1399
1038=cut 1400=cut
1039 1401
1040sub stop_read { 1402sub stop_read {
1041 my ($self) = @_; 1403 my ($self) = @_;
1042 1404
1043 delete $self->{_rw}; 1405 delete $self->{_rw} unless $self->{tls};
1044} 1406}
1045 1407
1046sub start_read { 1408sub start_read {
1047 my ($self) = @_; 1409 my ($self) = @_;
1048 1410
1049 unless ($self->{_rw} || $self->{_eof}) { 1411 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1412 Scalar::Util::weaken $self;
1051 1413
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1414 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1415 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1416 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1417
1056 if ($len > 0) { 1418 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1419 $self->{_activity} = AnyEvent->now;
1058 1420
1059 $self->{filter_r} 1421 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1422 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1061 : $self->_drain_rbuf; 1423
1424 &_dotls ($self);
1425 } else {
1426 $self->_drain_rbuf unless $self->{_in_drain};
1427 }
1062 1428
1063 } elsif (defined $len) { 1429 } elsif (defined $len) {
1064 delete $self->{_rw}; 1430 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1431 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1432 $self->_drain_rbuf unless $self->{_in_drain};
1069 1433
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1434 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1435 return $self->_error ($!, 1);
1072 } 1436 }
1073 }); 1437 });
1074 } 1438 }
1075} 1439}
1076 1440
1441our $ERROR_SYSCALL;
1442our $ERROR_WANT_READ;
1443
1444sub _tls_error {
1445 my ($self, $err) = @_;
1446
1447 return $self->_error ($!, 1)
1448 if $err == Net::SSLeay::ERROR_SYSCALL ();
1449
1450 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1451
1452 # reduce error string to look less scary
1453 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1454
1455 if ($self->{_on_starttls}) {
1456 (delete $self->{_on_starttls})->($self, undef, $err);
1457 &_freetls;
1458 } else {
1459 &_freetls;
1460 $self->_error (Errno::EPROTO, 1, $err);
1461 }
1462}
1463
1464# poll the write BIO and send the data if applicable
1465# also decode read data if possible
1466# this is basiclaly our TLS state machine
1467# more efficient implementations are possible with openssl,
1468# but not with the buggy and incomplete Net::SSLeay.
1077sub _dotls { 1469sub _dotls {
1078 my ($self) = @_; 1470 my ($self) = @_;
1079 1471
1472 my $tmp;
1473
1080 if (length $self->{_tls_wbuf}) { 1474 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1475 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1476 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1477 }
1084 }
1085 1478
1479 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1480 return $self->_tls_error ($tmp)
1481 if $tmp != $ERROR_WANT_READ
1482 && ($tmp != $ERROR_SYSCALL || $!);
1483 }
1484
1485 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1486 unless (length $tmp) {
1487 $self->{_on_starttls}
1488 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1489 &_freetls;
1490
1491 if ($self->{on_stoptls}) {
1492 $self->{on_stoptls}($self);
1493 return;
1494 } else {
1495 # let's treat SSL-eof as we treat normal EOF
1496 delete $self->{_rw};
1497 $self->{_eof} = 1;
1498 }
1499 }
1500
1501 $self->{_tls_rbuf} .= $tmp;
1502 $self->_drain_rbuf unless $self->{_in_drain};
1503 $self->{tls} or return; # tls session might have gone away in callback
1504 }
1505
1506 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1507 return $self->_tls_error ($tmp)
1508 if $tmp != $ERROR_WANT_READ
1509 && ($tmp != $ERROR_SYSCALL || $!);
1510
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1511 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1512 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1513 $self->_drain_wbuf;
1089 } 1514 }
1090 1515
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1516 $self->{_on_starttls}
1092 $self->{rbuf} .= $buf; 1517 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1093 $self->_drain_rbuf; 1518 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 }
1108} 1519}
1109 1520
1110=item $handle->starttls ($tls[, $tls_ctx]) 1521=item $handle->starttls ($tls[, $tls_ctx])
1111 1522
1112Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1523Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1114C<starttls>. 1525C<starttls>.
1115 1526
1116The first argument is the same as the C<tls> constructor argument (either 1527The first argument is the same as the C<tls> constructor argument (either
1117C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1528C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118 1529
1119The second argument is the optional C<Net::SSLeay::CTX> object that is 1530The second argument is the optional C<AnyEvent::TLS> object that is used
1120used when AnyEvent::Handle has to create its own TLS connection object. 1531when AnyEvent::Handle has to create its own TLS connection object, or
1532a hash reference with C<< key => value >> pairs that will be used to
1533construct a new context.
1121 1534
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1535The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1123call and can be used or changed to your liking. Note that the handshake 1536context in C<< $handle->{tls_ctx} >> after this call and can be used or
1124might have already started when this function returns. 1537changed to your liking. Note that the handshake might have already started
1538when this function returns.
1125 1539
1126=cut 1540If it an error to start a TLS handshake more than once per
1541AnyEvent::Handle object (this is due to bugs in OpenSSL).
1127 1542
1128# TODO: maybe document... 1543=cut
1544
1545our %TLS_CACHE; #TODO not yet documented, should we?
1546
1129sub starttls { 1547sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1548 my ($self, $ssl, $ctx) = @_;
1131 1549
1132 $self->stoptls; 1550 require Net::SSLeay;
1133 1551
1134 if ($ssl eq "accept") { 1552 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 if $self->{tls};
1136 Net::SSLeay::set_accept_state ($ssl); 1554
1137 } elsif ($ssl eq "connect") { 1555 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1556 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1139 Net::SSLeay::set_connect_state ($ssl); 1557
1558 $ctx ||= $self->{tls_ctx};
1559
1560 if ("HASH" eq ref $ctx) {
1561 require AnyEvent::TLS;
1562
1563 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1564
1565 if ($ctx->{cache}) {
1566 my $key = $ctx+0;
1567 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1568 } else {
1569 $ctx = new AnyEvent::TLS %$ctx;
1570 }
1571 }
1140 } 1572
1141 1573 $self->{tls_ctx} = $ctx || TLS_CTX ();
1142 $self->{tls} = $ssl; 1574 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1143 1575
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1576 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1577 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1578 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1579 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1580 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1581 #
1582 # in short: this is a mess.
1583 #
1584 # note that we do not try to keep the length constant between writes as we are required to do.
1585 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1586 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1587 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1588# Net::SSLeay::CTX_set_mode ($ssl,
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1589# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1590# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1591 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1152 1592
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1593 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1594 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1595
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1596 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1157 1597
1158 $self->{filter_w} = sub { 1598 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1599 if $self->{on_starttls};
1160 &_dotls; 1600
1161 }; 1601 &_dotls; # need to trigger the initial handshake
1162 $self->{filter_r} = sub { 1602 $self->start_read; # make sure we actually do read
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1603}
1167 1604
1168=item $handle->stoptls 1605=item $handle->stoptls
1169 1606
1170Destroys the SSL connection, if any. Partial read or write data will be 1607Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1608sending a close notify to the other side, but since OpenSSL doesn't
1609support non-blocking shut downs, it is not possible to re-use the stream
1610afterwards.
1172 1611
1173=cut 1612=cut
1174 1613
1175sub stoptls { 1614sub stoptls {
1176 my ($self) = @_; 1615 my ($self) = @_;
1177 1616
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1617 if ($self->{tls}) {
1618 Net::SSLeay::shutdown ($self->{tls});
1179 1619
1180 delete $self->{_rbio}; 1620 &_dotls;
1181 delete $self->{_wbio}; 1621
1182 delete $self->{_tls_wbuf}; 1622# # we don't give a shit. no, we do, but we can't. no...#d#
1183 delete $self->{filter_r}; 1623# # we, we... have to use openssl :/#d#
1184 delete $self->{filter_w}; 1624# &_freetls;#d#
1625 }
1626}
1627
1628sub _freetls {
1629 my ($self) = @_;
1630
1631 return unless $self->{tls};
1632
1633 $self->{tls_ctx}->_put_session (delete $self->{tls});
1634
1635 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1185} 1636}
1186 1637
1187sub DESTROY { 1638sub DESTROY {
1188 my $self = shift; 1639 my ($self) = @_;
1189 1640
1190 $self->stoptls; 1641 &_freetls;
1642
1643 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1644
1645 if ($linger && length $self->{wbuf}) {
1646 my $fh = delete $self->{fh};
1647 my $wbuf = delete $self->{wbuf};
1648
1649 my @linger;
1650
1651 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1652 my $len = syswrite $fh, $wbuf, length $wbuf;
1653
1654 if ($len > 0) {
1655 substr $wbuf, 0, $len, "";
1656 } else {
1657 @linger = (); # end
1658 }
1659 });
1660 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1661 @linger = ();
1662 });
1663 }
1664}
1665
1666=item $handle->destroy
1667
1668Shuts down the handle object as much as possible - this call ensures that
1669no further callbacks will be invoked and as many resources as possible
1670will be freed. You must not call any methods on the object afterwards.
1671
1672Normally, you can just "forget" any references to an AnyEvent::Handle
1673object and it will simply shut down. This works in fatal error and EOF
1674callbacks, as well as code outside. It does I<NOT> work in a read or write
1675callback, so when you want to destroy the AnyEvent::Handle object from
1676within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1677that case.
1678
1679Destroying the handle object in this way has the advantage that callbacks
1680will be removed as well, so if those are the only reference holders (as
1681is common), then one doesn't need to do anything special to break any
1682reference cycles.
1683
1684The handle might still linger in the background and write out remaining
1685data, as specified by the C<linger> option, however.
1686
1687=cut
1688
1689sub destroy {
1690 my ($self) = @_;
1691
1692 $self->DESTROY;
1693 %$self = ();
1191} 1694}
1192 1695
1193=item AnyEvent::Handle::TLS_CTX 1696=item AnyEvent::Handle::TLS_CTX
1194 1697
1195This function creates and returns the Net::SSLeay::CTX object used by 1698This function creates and returns the AnyEvent::TLS object used by default
1196default for TLS mode. 1699for TLS mode.
1197 1700
1198The context is created like this: 1701The context is created by calling L<AnyEvent::TLS> without any arguments.
1199
1200 Net::SSLeay::load_error_strings;
1201 Net::SSLeay::SSLeay_add_ssl_algorithms;
1202 Net::SSLeay::randomize;
1203
1204 my $CTX = Net::SSLeay::CTX_new;
1205
1206 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1207 1702
1208=cut 1703=cut
1209 1704
1210our $TLS_CTX; 1705our $TLS_CTX;
1211 1706
1212sub TLS_CTX() { 1707sub TLS_CTX() {
1213 $TLS_CTX || do { 1708 $TLS_CTX ||= do {
1214 require Net::SSLeay; 1709 require AnyEvent::TLS;
1215 1710
1216 Net::SSLeay::load_error_strings (); 1711 new AnyEvent::TLS
1217 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1218 Net::SSLeay::randomize ();
1219
1220 $TLS_CTX = Net::SSLeay::CTX_new ();
1221
1222 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1223
1224 $TLS_CTX
1225 } 1712 }
1226} 1713}
1227 1714
1228=back 1715=back
1716
1717
1718=head1 NONFREQUENTLY ASKED QUESTIONS
1719
1720=over 4
1721
1722=item I C<undef> the AnyEvent::Handle reference inside my callback and
1723still get further invocations!
1724
1725That's because AnyEvent::Handle keeps a reference to itself when handling
1726read or write callbacks.
1727
1728It is only safe to "forget" the reference inside EOF or error callbacks,
1729from within all other callbacks, you need to explicitly call the C<<
1730->destroy >> method.
1731
1732=item I get different callback invocations in TLS mode/Why can't I pause
1733reading?
1734
1735Unlike, say, TCP, TLS connections do not consist of two independent
1736communication channels, one for each direction. Or put differently. The
1737read and write directions are not independent of each other: you cannot
1738write data unless you are also prepared to read, and vice versa.
1739
1740This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1741callback invocations when you are not expecting any read data - the reason
1742is that AnyEvent::Handle always reads in TLS mode.
1743
1744During the connection, you have to make sure that you always have a
1745non-empty read-queue, or an C<on_read> watcher. At the end of the
1746connection (or when you no longer want to use it) you can call the
1747C<destroy> method.
1748
1749=item How do I read data until the other side closes the connection?
1750
1751If you just want to read your data into a perl scalar, the easiest way
1752to achieve this is by setting an C<on_read> callback that does nothing,
1753clearing the C<on_eof> callback and in the C<on_error> callback, the data
1754will be in C<$_[0]{rbuf}>:
1755
1756 $handle->on_read (sub { });
1757 $handle->on_eof (undef);
1758 $handle->on_error (sub {
1759 my $data = delete $_[0]{rbuf};
1760 });
1761
1762The reason to use C<on_error> is that TCP connections, due to latencies
1763and packets loss, might get closed quite violently with an error, when in
1764fact, all data has been received.
1765
1766It is usually better to use acknowledgements when transferring data,
1767to make sure the other side hasn't just died and you got the data
1768intact. This is also one reason why so many internet protocols have an
1769explicit QUIT command.
1770
1771=item I don't want to destroy the handle too early - how do I wait until
1772all data has been written?
1773
1774After writing your last bits of data, set the C<on_drain> callback
1775and destroy the handle in there - with the default setting of
1776C<low_water_mark> this will be called precisely when all data has been
1777written to the socket:
1778
1779 $handle->push_write (...);
1780 $handle->on_drain (sub {
1781 warn "all data submitted to the kernel\n";
1782 undef $handle;
1783 });
1784
1785If you just want to queue some data and then signal EOF to the other side,
1786consider using C<< ->push_shutdown >> instead.
1787
1788=item I want to contact a TLS/SSL server, I don't care about security.
1789
1790If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1791simply connect to it and then create the AnyEvent::Handle with the C<tls>
1792parameter:
1793
1794 tcp_connect $host, $port, sub {
1795 my ($fh) = @_;
1796
1797 my $handle = new AnyEvent::Handle
1798 fh => $fh,
1799 tls => "connect",
1800 on_error => sub { ... };
1801
1802 $handle->push_write (...);
1803 };
1804
1805=item I want to contact a TLS/SSL server, I do care about security.
1806
1807Then you should additionally enable certificate verification, including
1808peername verification, if the protocol you use supports it (see
1809L<AnyEvent::TLS>, C<verify_peername>).
1810
1811E.g. for HTTPS:
1812
1813 tcp_connect $host, $port, sub {
1814 my ($fh) = @_;
1815
1816 my $handle = new AnyEvent::Handle
1817 fh => $fh,
1818 peername => $host,
1819 tls => "connect",
1820 tls_ctx => { verify => 1, verify_peername => "https" },
1821 ...
1822
1823Note that you must specify the hostname you connected to (or whatever
1824"peername" the protocol needs) as the C<peername> argument, otherwise no
1825peername verification will be done.
1826
1827The above will use the system-dependent default set of trusted CA
1828certificates. If you want to check against a specific CA, add the
1829C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1830
1831 tls_ctx => {
1832 verify => 1,
1833 verify_peername => "https",
1834 ca_file => "my-ca-cert.pem",
1835 },
1836
1837=item I want to create a TLS/SSL server, how do I do that?
1838
1839Well, you first need to get a server certificate and key. You have
1840three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1841self-signed certificate (cheap. check the search engine of your choice,
1842there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1843nice program for that purpose).
1844
1845Then create a file with your private key (in PEM format, see
1846L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1847file should then look like this:
1848
1849 -----BEGIN RSA PRIVATE KEY-----
1850 ...header data
1851 ... lots of base64'y-stuff
1852 -----END RSA PRIVATE KEY-----
1853
1854 -----BEGIN CERTIFICATE-----
1855 ... lots of base64'y-stuff
1856 -----END CERTIFICATE-----
1857
1858The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1859specify this file as C<cert_file>:
1860
1861 tcp_server undef, $port, sub {
1862 my ($fh) = @_;
1863
1864 my $handle = new AnyEvent::Handle
1865 fh => $fh,
1866 tls => "accept",
1867 tls_ctx => { cert_file => "my-server-keycert.pem" },
1868 ...
1869
1870When you have intermediate CA certificates that your clients might not
1871know about, just append them to the C<cert_file>.
1872
1873=back
1874
1229 1875
1230=head1 SUBCLASSING AnyEvent::Handle 1876=head1 SUBCLASSING AnyEvent::Handle
1231 1877
1232In many cases, you might want to subclass AnyEvent::Handle. 1878In many cases, you might want to subclass AnyEvent::Handle.
1233 1879
1237=over 4 1883=over 4
1238 1884
1239=item * all constructor arguments become object members. 1885=item * all constructor arguments become object members.
1240 1886
1241At least initially, when you pass a C<tls>-argument to the constructor it 1887At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 1888will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 1889mutated later on (for example C<tls> will hold the TLS connection object).
1244 1890
1245=item * other object member names are prefixed with an C<_>. 1891=item * other object member names are prefixed with an C<_>.
1246 1892
1247All object members not explicitly documented (internal use) are prefixed 1893All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines