ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.59 by root, Thu Jun 5 16:53:11 2008 UTC vs.
Revision 1.177 by root, Sun Aug 9 00:24:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.13;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
107=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
108 170
109This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
111 175
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
114 180
115When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
119 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
120=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
121 208
122This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
124 211
125To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
126 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
127=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
128 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
129If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
130seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
131handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
132missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
133 237
134Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
138 243
139Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
140 245
141=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
142 247
146 251
147=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
148 253
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
152 257
153For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
157isn't finished). 262isn't finished).
158 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
159=item read_size => <bytes> 290=item read_size => <bytes>
160 291
161The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
163 295
164=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
165 297
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
168considered empty. 300considered empty.
169 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
307=item linger => <seconds>
308
309If non-zero (default: C<3600>), then the destructor of the
310AnyEvent::Handle object will check whether there is still outstanding
311write data and will install a watcher that will write this data to the
312socket. No errors will be reported (this mostly matches how the operating
313system treats outstanding data at socket close time).
314
315This will not work for partial TLS data that could not be encoded
316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 330
172When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
175 337
176TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
178 342
179For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
181 346
182You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
186 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
187See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 363
189=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
190 365
191Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
195=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
196 407
197This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
198 409
199If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
201 413
202Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
204 416
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 417=back
212 418
213=cut 419=cut
214 420
215sub new { 421sub new {
216 my $class = shift; 422 my $class = shift;
217
218 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
219 424
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
221 488
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 490
224 if ($self->{tls}) { 491 $self->{_activity} =
225 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 502 if $self->{tls};
228
229 $self->{_activity} = AnyEvent->now;
230 $self->_timeout;
231 503
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 505
235 $self 506 $self->start_read
236} 507 if $self->{on_read} || @{ $self->{_queue} };
237 508
509 $self->_drain_wbuf;
510}
511
238sub _shutdown { 512#sub _shutdown {
239 my ($self) = @_; 513# my ($self) = @_;
240 514#
241 delete $self->{_tw}; 515# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
242 delete $self->{_rw}; 516# $self->{_eof} = 1; # tell starttls et. al to stop trying
243 delete $self->{_ww}; 517#
244 delete $self->{fh}; 518# &_freetls;
245 519#}
246 $self->stoptls;
247}
248 520
249sub _error { 521sub _error {
250 my ($self, $errno, $fatal) = @_; 522 my ($self, $errno, $fatal, $message) = @_;
251
252 $self->_shutdown
253 if $fatal;
254 523
255 $! = $errno; 524 $! = $errno;
525 $message ||= "$!";
256 526
257 if ($self->{on_error}) { 527 if ($self->{on_error}) {
258 $self->{on_error}($self, $fatal); 528 $self->{on_error}($self, $fatal, $message);
259 } else { 529 $self->destroy if $fatal;
530 } elsif ($self->{fh}) {
531 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught error: $!"; 532 Carp::croak "AnyEvent::Handle uncaught error: $message";
261 } 533 }
262} 534}
263 535
264=item $fh = $handle->fh 536=item $fh = $handle->fh
265 537
266This method returns the file handle of the L<AnyEvent::Handle> object. 538This method returns the file handle used to create the L<AnyEvent::Handle> object.
267 539
268=cut 540=cut
269 541
270sub fh { $_[0]{fh} } 542sub fh { $_[0]{fh} }
271 543
289 $_[0]{on_eof} = $_[1]; 561 $_[0]{on_eof} = $_[1];
290} 562}
291 563
292=item $handle->on_timeout ($cb) 564=item $handle->on_timeout ($cb)
293 565
294Replace the current C<on_timeout> callback, or disables the callback 566=item $handle->on_rtimeout ($cb)
295(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
296argument.
297 567
298=cut 568=item $handle->on_wtimeout ($cb)
299 569
300sub on_timeout { 570Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
571callback, or disables the callback (but not the timeout) if C<$cb> =
572C<undef>. See the C<timeout> constructor argument and method.
573
574=cut
575
576# see below
577
578=item $handle->autocork ($boolean)
579
580Enables or disables the current autocork behaviour (see C<autocork>
581constructor argument). Changes will only take effect on the next write.
582
583=cut
584
585sub autocork {
586 $_[0]{autocork} = $_[1];
587}
588
589=item $handle->no_delay ($boolean)
590
591Enables or disables the C<no_delay> setting (see constructor argument of
592the same name for details).
593
594=cut
595
596sub no_delay {
597 $_[0]{no_delay} = $_[1];
598
599 eval {
600 local $SIG{__DIE__};
601 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602 if $_[0]{fh};
603 };
604}
605
606=item $handle->on_starttls ($cb)
607
608Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609
610=cut
611
612sub on_starttls {
613 $_[0]{on_starttls} = $_[1];
614}
615
616=item $handle->on_stoptls ($cb)
617
618Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619
620=cut
621
622sub on_starttls {
301 $_[0]{on_timeout} = $_[1]; 623 $_[0]{on_stoptls} = $_[1];
624}
625
626=item $handle->rbuf_max ($max_octets)
627
628Configures the C<rbuf_max> setting (C<undef> disables it).
629
630=cut
631
632sub rbuf_max {
633 $_[0]{rbuf_max} = $_[1];
302} 634}
303 635
304############################################################################# 636#############################################################################
305 637
306=item $handle->timeout ($seconds) 638=item $handle->timeout ($seconds)
307 639
640=item $handle->rtimeout ($seconds)
641
642=item $handle->wtimeout ($seconds)
643
308Configures (or disables) the inactivity timeout. 644Configures (or disables) the inactivity timeout.
309 645
310=cut 646=item $handle->timeout_reset
311 647
312sub timeout { 648=item $handle->rtimeout_reset
649
650=item $handle->wtimeout_reset
651
652Reset the activity timeout, as if data was received or sent.
653
654These methods are cheap to call.
655
656=cut
657
658for my $dir ("", "r", "w") {
659 my $timeout = "${dir}timeout";
660 my $tw = "_${dir}tw";
661 my $on_timeout = "on_${dir}timeout";
662 my $activity = "_${dir}activity";
663 my $cb;
664
665 *$on_timeout = sub {
666 $_[0]{$on_timeout} = $_[1];
667 };
668
669 *$timeout = sub {
313 my ($self, $timeout) = @_; 670 my ($self, $new_value) = @_;
314 671
315 $self->{timeout} = $timeout; 672 $self->{$timeout} = $new_value;
316 $self->_timeout; 673 delete $self->{$tw}; &$cb;
317} 674 };
318 675
676 *{"${dir}timeout_reset"} = sub {
677 $_[0]{$activity} = AE::now;
678 };
679
680 # main workhorse:
319# reset the timeout watcher, as neccessary 681 # reset the timeout watcher, as neccessary
320# also check for time-outs 682 # also check for time-outs
321sub _timeout { 683 $cb = sub {
322 my ($self) = @_; 684 my ($self) = @_;
323 685
324 if ($self->{timeout}) { 686 if ($self->{$timeout} && $self->{fh}) {
325 my $NOW = AnyEvent->now; 687 my $NOW = AE::now;
326 688
327 # when would the timeout trigger? 689 # when would the timeout trigger?
328 my $after = $self->{_activity} + $self->{timeout} - $NOW; 690 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
329 691
330 # now or in the past already? 692 # now or in the past already?
331 if ($after <= 0) { 693 if ($after <= 0) {
332 $self->{_activity} = $NOW; 694 $self->{$activity} = $NOW;
333 695
334 if ($self->{on_timeout}) { 696 if ($self->{$on_timeout}) {
335 $self->{on_timeout}($self); 697 $self->{$on_timeout}($self);
336 } else { 698 } else {
337 $self->_error (&Errno::ETIMEDOUT); 699 $self->_error (Errno::ETIMEDOUT);
700 }
701
702 # callback could have changed timeout value, optimise
703 return unless $self->{$timeout};
704
705 # calculate new after
706 $after = $self->{$timeout};
338 } 707 }
339 708
340 # callback could have changed timeout value, optimise 709 Scalar::Util::weaken $self;
341 return unless $self->{timeout}; 710 return unless $self; # ->error could have destroyed $self
342 711
343 # calculate new after 712 $self->{$tw} ||= AE::timer $after, 0, sub {
344 $after = $self->{timeout}; 713 delete $self->{$tw};
714 $cb->($self);
715 };
716 } else {
717 delete $self->{$tw};
345 } 718 }
346
347 Scalar::Util::weaken $self;
348 return unless $self; # ->error could have destroyed $self
349
350 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
351 delete $self->{_tw};
352 $self->_timeout;
353 });
354 } else {
355 delete $self->{_tw};
356 } 719 }
357} 720}
358 721
359############################################################################# 722#############################################################################
360 723
384 my ($self, $cb) = @_; 747 my ($self, $cb) = @_;
385 748
386 $self->{on_drain} = $cb; 749 $self->{on_drain} = $cb;
387 750
388 $cb->($self) 751 $cb->($self)
389 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 752 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
390} 753}
391 754
392=item $handle->push_write ($data) 755=item $handle->push_write ($data)
393 756
394Queues the given scalar to be written. You can push as much data as you 757Queues the given scalar to be written. You can push as much data as you
405 Scalar::Util::weaken $self; 768 Scalar::Util::weaken $self;
406 769
407 my $cb = sub { 770 my $cb = sub {
408 my $len = syswrite $self->{fh}, $self->{wbuf}; 771 my $len = syswrite $self->{fh}, $self->{wbuf};
409 772
410 if ($len >= 0) { 773 if (defined $len) {
411 substr $self->{wbuf}, 0, $len, ""; 774 substr $self->{wbuf}, 0, $len, "";
412 775
413 $self->{_activity} = AnyEvent->now; 776 $self->{_activity} = $self->{_wactivity} = AE::now;
414 777
415 $self->{on_drain}($self) 778 $self->{on_drain}($self)
416 if $self->{low_water_mark} >= length $self->{wbuf} 779 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
417 && $self->{on_drain}; 780 && $self->{on_drain};
418 781
419 delete $self->{_ww} unless length $self->{wbuf}; 782 delete $self->{_ww} unless length $self->{wbuf};
420 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 783 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 $self->_error ($!, 1); 784 $self->_error ($!, 1);
422 } 785 }
423 }; 786 };
424 787
425 # try to write data immediately 788 # try to write data immediately
426 $cb->(); 789 $cb->() unless $self->{autocork};
427 790
428 # if still data left in wbuf, we need to poll 791 # if still data left in wbuf, we need to poll
429 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 792 $self->{_ww} = AE::io $self->{fh}, 1, $cb
430 if length $self->{wbuf}; 793 if length $self->{wbuf};
431 }; 794 };
432} 795}
433 796
434our %WH; 797our %WH;
445 808
446 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 809 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447 ->($self, @_); 810 ->($self, @_);
448 } 811 }
449 812
450 if ($self->{filter_w}) { 813 if ($self->{tls}) {
451 $self->{filter_w}($self, \$_[0]); 814 $self->{_tls_wbuf} .= $_[0];
815 &_dotls ($self) if $self->{fh};
452 } else { 816 } else {
453 $self->{wbuf} .= $_[0]; 817 $self->{wbuf} .= $_[0];
454 $self->_drain_wbuf; 818 $self->_drain_wbuf if $self->{fh};
455 } 819 }
456} 820}
457 821
458=item $handle->push_write (type => @args) 822=item $handle->push_write (type => @args)
459 823
473=cut 837=cut
474 838
475register_write_type netstring => sub { 839register_write_type netstring => sub {
476 my ($self, $string) = @_; 840 my ($self, $string) = @_;
477 841
478 sprintf "%d:%s,", (length $string), $string 842 (length $string) . ":$string,"
843};
844
845=item packstring => $format, $data
846
847An octet string prefixed with an encoded length. The encoding C<$format>
848uses the same format as a Perl C<pack> format, but must specify a single
849integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
850optional C<!>, C<< < >> or C<< > >> modifier).
851
852=cut
853
854register_write_type packstring => sub {
855 my ($self, $format, $string) = @_;
856
857 pack "$format/a*", $string
479}; 858};
480 859
481=item json => $array_or_hashref 860=item json => $array_or_hashref
482 861
483Encodes the given hash or array reference into a JSON object. Unless you 862Encodes the given hash or array reference into a JSON object. Unless you
517 896
518 $self->{json} ? $self->{json}->encode ($ref) 897 $self->{json} ? $self->{json}->encode ($ref)
519 : JSON::encode_json ($ref) 898 : JSON::encode_json ($ref)
520}; 899};
521 900
901=item storable => $reference
902
903Freezes the given reference using L<Storable> and writes it to the
904handle. Uses the C<nfreeze> format.
905
906=cut
907
908register_write_type storable => sub {
909 my ($self, $ref) = @_;
910
911 require Storable;
912
913 pack "w/a*", Storable::nfreeze ($ref)
914};
915
522=back 916=back
917
918=item $handle->push_shutdown
919
920Sometimes you know you want to close the socket after writing your data
921before it was actually written. One way to do that is to replace your
922C<on_drain> handler by a callback that shuts down the socket (and set
923C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924replaces the C<on_drain> callback with:
925
926 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927
928This simply shuts down the write side and signals an EOF condition to the
929the peer.
930
931You can rely on the normal read queue and C<on_eof> handling
932afterwards. This is the cleanest way to close a connection.
933
934=cut
935
936sub push_shutdown {
937 my ($self) = @_;
938
939 delete $self->{low_water_mark};
940 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941}
523 942
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 943=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 944
526This function (not method) lets you add your own types to C<push_write>. 945This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 946Whenever the given C<type> is used, C<push_write> will invoke the code
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 967ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 968a queue.
550 969
551In the simple case, you just install an C<on_read> callback and whenever 970In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 971new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 972enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 973leave the data there if you want to accumulate more (e.g. when only a
974partial message has been received so far).
555 975
556In the more complex case, you want to queue multiple callbacks. In this 976In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 977case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 978data arrives (also the first time it is queued) and removes it when it has
559below). 979done its job (see C<push_read>, below).
560 980
561This way you can, for example, push three line-reads, followed by reading 981This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 982a chunk of data, and AnyEvent::Handle will execute them in order.
563 983
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 984Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
577 # handle xml 997 # handle xml
578 }); 998 });
579 }); 999 });
580 }); 1000 });
581 1001
582Example 2: Implement a client for a protocol that replies either with 1002Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 1003and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 1004bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 1005just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 1006in the callbacks.
587 1007
588 # request one 1008When the first callback is called and sees an "OK" response, it will
1009C<unshift> another line-read. This line-read will be queued I<before> the
101064-byte chunk callback.
1011
1012 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 1013 $handle->push_write ("request 1\015\012");
590 1014
591 # we expect "ERROR" or "OK" as response, so push a line read 1015 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read (line => sub { 1016 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 1017 # if we got an "OK", we have to _prepend_ another line,
600 ... 1024 ...
601 }); 1025 });
602 } 1026 }
603 }); 1027 });
604 1028
605 # request two 1029 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 1030 $handle->push_write ("request 2\015\012");
607 1031
608 # simply read 64 bytes, always 1032 # simply read 64 bytes, always
609 $handle->push_read (chunk => 64, sub { 1033 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 1034 my $response = $_[1];
616=cut 1040=cut
617 1041
618sub _drain_rbuf { 1042sub _drain_rbuf {
619 my ($self) = @_; 1043 my ($self) = @_;
620 1044
1045 # avoid recursion
1046 return if $self->{_skip_drain_rbuf};
621 local $self->{_in_drain} = 1; 1047 local $self->{_skip_drain_rbuf} = 1;
622
623 if (
624 defined $self->{rbuf_max}
625 && $self->{rbuf_max} < length $self->{rbuf}
626 ) {
627 return $self->_error (&Errno::ENOSPC, 1);
628 }
629 1048
630 while () { 1049 while () {
631 no strict 'refs'; 1050 # we need to use a separate tls read buffer, as we must not receive data while
1051 # we are draining the buffer, and this can only happen with TLS.
1052 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053 if exists $self->{_tls_rbuf};
632 1054
633 my $len = length $self->{rbuf}; 1055 my $len = length $self->{rbuf};
634 1056
635 if (my $cb = shift @{ $self->{_queue} }) { 1057 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) { 1058 unless ($cb->($self)) {
1059 # no progress can be made
1060 # (not enough data and no data forthcoming)
1061 $self->_error (Errno::EPIPE, 1), return
637 if ($self->{_eof}) { 1062 if $self->{_eof};
638 # no progress can be made (not enough data and no data forthcoming)
639 return $self->_error (&Errno::EPIPE, 1);
640 }
641 1063
642 unshift @{ $self->{_queue} }, $cb; 1064 unshift @{ $self->{_queue} }, $cb;
643 last; 1065 last;
644 } 1066 }
645 } elsif ($self->{on_read}) { 1067 } elsif ($self->{on_read}) {
1068 last unless $len;
1069
646 $self->{on_read}($self); 1070 $self->{on_read}($self);
647 1071
648 if ( 1072 if (
649 $len == length $self->{rbuf} # if no data has been consumed 1073 $len == length $self->{rbuf} # if no data has been consumed
650 && !@{ $self->{_queue} } # and the queue is still empty 1074 && !@{ $self->{_queue} } # and the queue is still empty
651 && $self->{on_read} # but we still have on_read 1075 && $self->{on_read} # but we still have on_read
652 ) { 1076 ) {
653 # no further data will arrive 1077 # no further data will arrive
654 # so no progress can be made 1078 # so no progress can be made
655 return $self->_error (&Errno::EPIPE, 1) 1079 $self->_error (Errno::EPIPE, 1), return
656 if $self->{_eof}; 1080 if $self->{_eof};
657 1081
658 last; # more data might arrive 1082 last; # more data might arrive
659 } 1083 }
660 } else { 1084 } else {
661 # read side becomes idle 1085 # read side becomes idle
662 delete $self->{_rw}; 1086 delete $self->{_rw} unless $self->{tls};
663 last; 1087 last;
664 } 1088 }
665 } 1089 }
666 1090
1091 if ($self->{_eof}) {
1092 $self->{on_eof}
667 $self->{on_eof}($self) 1093 ? $self->{on_eof}($self)
668 if $self->{_eof} && $self->{on_eof}; 1094 : $self->_error (0, 1, "Unexpected end-of-file");
1095
1096 return;
1097 }
1098
1099 if (
1100 defined $self->{rbuf_max}
1101 && $self->{rbuf_max} < length $self->{rbuf}
1102 ) {
1103 $self->_error (Errno::ENOSPC, 1), return;
1104 }
669 1105
670 # may need to restart read watcher 1106 # may need to restart read watcher
671 unless ($self->{_rw}) { 1107 unless ($self->{_rw}) {
672 $self->start_read 1108 $self->start_read
673 if $self->{on_read} || @{ $self->{_queue} }; 1109 if $self->{on_read} || @{ $self->{_queue} };
684 1120
685sub on_read { 1121sub on_read {
686 my ($self, $cb) = @_; 1122 my ($self, $cb) = @_;
687 1123
688 $self->{on_read} = $cb; 1124 $self->{on_read} = $cb;
689 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1125 $self->_drain_rbuf if $cb;
690} 1126}
691 1127
692=item $handle->rbuf 1128=item $handle->rbuf
693 1129
694Returns the read buffer (as a modifiable lvalue). 1130Returns the read buffer (as a modifiable lvalue).
695 1131
696You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1132You can access the read buffer directly as the C<< ->{rbuf} >>
697you want. 1133member, if you want. However, the only operation allowed on the
1134read buffer (apart from looking at it) is removing data from its
1135beginning. Otherwise modifying or appending to it is not allowed and will
1136lead to hard-to-track-down bugs.
698 1137
699NOTE: The read buffer should only be used or modified if the C<on_read>, 1138NOTE: The read buffer should only be used or modified if the C<on_read>,
700C<push_read> or C<unshift_read> methods are used. The other read methods 1139C<push_read> or C<unshift_read> methods are used. The other read methods
701automatically manage the read buffer. 1140automatically manage the read buffer.
702 1141
743 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1182 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
744 ->($self, $cb, @_); 1183 ->($self, $cb, @_);
745 } 1184 }
746 1185
747 push @{ $self->{_queue} }, $cb; 1186 push @{ $self->{_queue} }, $cb;
748 $self->_drain_rbuf unless $self->{_in_drain}; 1187 $self->_drain_rbuf;
749} 1188}
750 1189
751sub unshift_read { 1190sub unshift_read {
752 my $self = shift; 1191 my $self = shift;
753 my $cb = pop; 1192 my $cb = pop;
759 ->($self, $cb, @_); 1198 ->($self, $cb, @_);
760 } 1199 }
761 1200
762 1201
763 unshift @{ $self->{_queue} }, $cb; 1202 unshift @{ $self->{_queue} }, $cb;
764 $self->_drain_rbuf unless $self->{_in_drain}; 1203 $self->_drain_rbuf;
765} 1204}
766 1205
767=item $handle->push_read (type => @args, $cb) 1206=item $handle->push_read (type => @args, $cb)
768 1207
769=item $handle->unshift_read (type => @args, $cb) 1208=item $handle->unshift_read (type => @args, $cb)
799 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1238 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 1 1239 1
801 } 1240 }
802}; 1241};
803 1242
804# compatibility with older API
805sub push_read_chunk {
806 $_[0]->push_read (chunk => $_[1], $_[2]);
807}
808
809sub unshift_read_chunk {
810 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811}
812
813=item line => [$eol, ]$cb->($handle, $line, $eol) 1243=item line => [$eol, ]$cb->($handle, $line, $eol)
814 1244
815The callback will be called only once a full line (including the end of 1245The callback will be called only once a full line (including the end of
816line marker, C<$eol>) has been read. This line (excluding the end of line 1246line marker, C<$eol>) has been read. This line (excluding the end of line
817marker) will be passed to the callback as second argument (C<$line>), and 1247marker) will be passed to the callback as second argument (C<$line>), and
832=cut 1262=cut
833 1263
834register_read_type line => sub { 1264register_read_type line => sub {
835 my ($self, $cb, $eol) = @_; 1265 my ($self, $cb, $eol) = @_;
836 1266
837 $eol = qr|(\015?\012)| if @_ < 3; 1267 if (@_ < 3) {
838 $eol = quotemeta $eol unless ref $eol; 1268 # this is more than twice as fast as the generic code below
839 $eol = qr|^(.*?)($eol)|s;
840
841 sub { 1269 sub {
842 $_[0]{rbuf} =~ s/$eol// or return; 1270 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
843 1271
844 $cb->($_[0], $1, $2); 1272 $cb->($_[0], $1, $2);
845 1
846 }
847};
848
849# compatibility with older API
850sub push_read_line {
851 my $self = shift;
852 $self->push_read (line => @_);
853}
854
855sub unshift_read_line {
856 my $self = shift;
857 $self->unshift_read (line => @_);
858}
859
860=item netstring => $cb->($handle, $string)
861
862A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863
864Throws an error with C<$!> set to EBADMSG on format violations.
865
866=cut
867
868register_read_type netstring => sub {
869 my ($self, $cb) = @_;
870
871 sub {
872 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873 if ($_[0]{rbuf} =~ /[^0-9]/) {
874 $self->_error (&Errno::EBADMSG);
875 } 1273 1
876 return;
877 } 1274 }
1275 } else {
1276 $eol = quotemeta $eol unless ref $eol;
1277 $eol = qr|^(.*?)($eol)|s;
878 1278
879 my $len = $1; 1279 sub {
1280 $_[0]{rbuf} =~ s/$eol// or return;
880 1281
881 $self->unshift_read (chunk => $len, sub { 1282 $cb->($_[0], $1, $2);
882 my $string = $_[1];
883 $_[0]->unshift_read (chunk => 1, sub {
884 if ($_[1] eq ",") {
885 $cb->($_[0], $string);
886 } else {
887 $self->_error (&Errno::EBADMSG);
888 }
889 }); 1283 1
890 }); 1284 }
891
892 1
893 } 1285 }
894}; 1286};
895 1287
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1288=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1289
949 return 1; 1341 return 1;
950 } 1342 }
951 1343
952 # reject 1344 # reject
953 if ($reject && $$rbuf =~ $reject) { 1345 if ($reject && $$rbuf =~ $reject) {
954 $self->_error (&Errno::EBADMSG); 1346 $self->_error (Errno::EBADMSG);
955 } 1347 }
956 1348
957 # skip 1349 # skip
958 if ($skip && $$rbuf =~ $skip) { 1350 if ($skip && $$rbuf =~ $skip) {
959 $data .= substr $$rbuf, 0, $+[0], ""; 1351 $data .= substr $$rbuf, 0, $+[0], "";
961 1353
962 () 1354 ()
963 } 1355 }
964}; 1356};
965 1357
1358=item netstring => $cb->($handle, $string)
1359
1360A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1361
1362Throws an error with C<$!> set to EBADMSG on format violations.
1363
1364=cut
1365
1366register_read_type netstring => sub {
1367 my ($self, $cb) = @_;
1368
1369 sub {
1370 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1371 if ($_[0]{rbuf} =~ /[^0-9]/) {
1372 $self->_error (Errno::EBADMSG);
1373 }
1374 return;
1375 }
1376
1377 my $len = $1;
1378
1379 $self->unshift_read (chunk => $len, sub {
1380 my $string = $_[1];
1381 $_[0]->unshift_read (chunk => 1, sub {
1382 if ($_[1] eq ",") {
1383 $cb->($_[0], $string);
1384 } else {
1385 $self->_error (Errno::EBADMSG);
1386 }
1387 });
1388 });
1389
1390 1
1391 }
1392};
1393
1394=item packstring => $format, $cb->($handle, $string)
1395
1396An octet string prefixed with an encoded length. The encoding C<$format>
1397uses the same format as a Perl C<pack> format, but must specify a single
1398integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1399optional C<!>, C<< < >> or C<< > >> modifier).
1400
1401For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402EPP uses a prefix of C<N> (4 octtes).
1403
1404Example: read a block of data prefixed by its length in BER-encoded
1405format (very efficient).
1406
1407 $handle->push_read (packstring => "w", sub {
1408 my ($handle, $data) = @_;
1409 });
1410
1411=cut
1412
1413register_read_type packstring => sub {
1414 my ($self, $cb, $format) = @_;
1415
1416 sub {
1417 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1418 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1419 or return;
1420
1421 $format = length pack $format, $len;
1422
1423 # bypass unshift if we already have the remaining chunk
1424 if ($format + $len <= length $_[0]{rbuf}) {
1425 my $data = substr $_[0]{rbuf}, $format, $len;
1426 substr $_[0]{rbuf}, 0, $format + $len, "";
1427 $cb->($_[0], $data);
1428 } else {
1429 # remove prefix
1430 substr $_[0]{rbuf}, 0, $format, "";
1431
1432 # read remaining chunk
1433 $_[0]->unshift_read (chunk => $len, $cb);
1434 }
1435
1436 1
1437 }
1438};
1439
966=item json => $cb->($handle, $hash_or_arrayref) 1440=item json => $cb->($handle, $hash_or_arrayref)
967 1441
968Reads a JSON object or array, decodes it and passes it to the callback. 1442Reads a JSON object or array, decodes it and passes it to the
1443callback. When a parse error occurs, an C<EBADMSG> error will be raised.
969 1444
970If a C<json> object was passed to the constructor, then that will be used 1445If a C<json> object was passed to the constructor, then that will be used
971for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1446for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972 1447
973This read type uses the incremental parser available with JSON version 1448This read type uses the incremental parser available with JSON version
980the C<json> write type description, above, for an actual example. 1455the C<json> write type description, above, for an actual example.
981 1456
982=cut 1457=cut
983 1458
984register_read_type json => sub { 1459register_read_type json => sub {
985 my ($self, $cb, $accept, $reject, $skip) = @_; 1460 my ($self, $cb) = @_;
986 1461
987 require JSON; 1462 my $json = $self->{json} ||=
1463 eval { require JSON::XS; JSON::XS->new->utf8 }
1464 || do { require JSON; JSON->new->utf8 };
988 1465
989 my $data; 1466 my $data;
990 my $rbuf = \$self->{rbuf}; 1467 my $rbuf = \$self->{rbuf};
991 1468
992 my $json = $self->{json} ||= JSON->new->utf8;
993
994 sub { 1469 sub {
995 my $ref = $json->incr_parse ($self->{rbuf}); 1470 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
996 1471
997 if ($ref) { 1472 if ($ref) {
998 $self->{rbuf} = $json->incr_text; 1473 $self->{rbuf} = $json->incr_text;
999 $json->incr_text = ""; 1474 $json->incr_text = "";
1000 $cb->($self, $ref); 1475 $cb->($self, $ref);
1001 1476
1002 1 1477 1
1478 } elsif ($@) {
1479 # error case
1480 $json->incr_skip;
1481
1482 $self->{rbuf} = $json->incr_text;
1483 $json->incr_text = "";
1484
1485 $self->_error (Errno::EBADMSG);
1486
1487 ()
1003 } else { 1488 } else {
1004 $self->{rbuf} = ""; 1489 $self->{rbuf} = "";
1490
1005 () 1491 ()
1006 } 1492 }
1493 }
1494};
1495
1496=item storable => $cb->($handle, $ref)
1497
1498Deserialises a L<Storable> frozen representation as written by the
1499C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1500data).
1501
1502Raises C<EBADMSG> error if the data could not be decoded.
1503
1504=cut
1505
1506register_read_type storable => sub {
1507 my ($self, $cb) = @_;
1508
1509 require Storable;
1510
1511 sub {
1512 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1513 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1514 or return;
1515
1516 my $format = length pack "w", $len;
1517
1518 # bypass unshift if we already have the remaining chunk
1519 if ($format + $len <= length $_[0]{rbuf}) {
1520 my $data = substr $_[0]{rbuf}, $format, $len;
1521 substr $_[0]{rbuf}, 0, $format + $len, "";
1522 $cb->($_[0], Storable::thaw ($data));
1523 } else {
1524 # remove prefix
1525 substr $_[0]{rbuf}, 0, $format, "";
1526
1527 # read remaining chunk
1528 $_[0]->unshift_read (chunk => $len, sub {
1529 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1530 $cb->($_[0], $ref);
1531 } else {
1532 $self->_error (Errno::EBADMSG);
1533 }
1534 });
1535 }
1536
1537 1
1007 } 1538 }
1008}; 1539};
1009 1540
1010=back 1541=back
1011 1542
1041Note that AnyEvent::Handle will automatically C<start_read> for you when 1572Note that AnyEvent::Handle will automatically C<start_read> for you when
1042you change the C<on_read> callback or push/unshift a read callback, and it 1573you change the C<on_read> callback or push/unshift a read callback, and it
1043will automatically C<stop_read> for you when neither C<on_read> is set nor 1574will automatically C<stop_read> for you when neither C<on_read> is set nor
1044there are any read requests in the queue. 1575there are any read requests in the queue.
1045 1576
1577These methods will have no effect when in TLS mode (as TLS doesn't support
1578half-duplex connections).
1579
1046=cut 1580=cut
1047 1581
1048sub stop_read { 1582sub stop_read {
1049 my ($self) = @_; 1583 my ($self) = @_;
1050 1584
1051 delete $self->{_rw}; 1585 delete $self->{_rw} unless $self->{tls};
1052} 1586}
1053 1587
1054sub start_read { 1588sub start_read {
1055 my ($self) = @_; 1589 my ($self) = @_;
1056 1590
1057 unless ($self->{_rw} || $self->{_eof}) { 1591 unless ($self->{_rw} || $self->{_eof}) {
1058 Scalar::Util::weaken $self; 1592 Scalar::Util::weaken $self;
1059 1593
1060 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1594 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1061 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1595 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1062 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1596 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1063 1597
1064 if ($len > 0) { 1598 if ($len > 0) {
1065 $self->{_activity} = AnyEvent->now; 1599 $self->{_activity} = $self->{_ractivity} = AE::now;
1066 1600
1067 $self->{filter_r} 1601 if ($self->{tls}) {
1068 ? $self->{filter_r}($self, $rbuf) 1602 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1069 : $self->{_in_drain} || $self->_drain_rbuf; 1603
1604 &_dotls ($self);
1605 } else {
1606 $self->_drain_rbuf;
1607 }
1070 1608
1071 } elsif (defined $len) { 1609 } elsif (defined $len) {
1072 delete $self->{_rw}; 1610 delete $self->{_rw};
1073 $self->{_eof} = 1; 1611 $self->{_eof} = 1;
1074 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1075 1613
1076 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1614 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1077 return $self->_error ($!, 1); 1615 return $self->_error ($!, 1);
1078 } 1616 }
1079 }); 1617 };
1080 } 1618 }
1081} 1619}
1082 1620
1621our $ERROR_SYSCALL;
1622our $ERROR_WANT_READ;
1623
1624sub _tls_error {
1625 my ($self, $err) = @_;
1626
1627 return $self->_error ($!, 1)
1628 if $err == Net::SSLeay::ERROR_SYSCALL ();
1629
1630 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631
1632 # reduce error string to look less scary
1633 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634
1635 if ($self->{_on_starttls}) {
1636 (delete $self->{_on_starttls})->($self, undef, $err);
1637 &_freetls;
1638 } else {
1639 &_freetls;
1640 $self->_error (Errno::EPROTO, 1, $err);
1641 }
1642}
1643
1644# poll the write BIO and send the data if applicable
1645# also decode read data if possible
1646# this is basiclaly our TLS state machine
1647# more efficient implementations are possible with openssl,
1648# but not with the buggy and incomplete Net::SSLeay.
1083sub _dotls { 1649sub _dotls {
1084 my ($self) = @_; 1650 my ($self) = @_;
1085 1651
1086 my $buf; 1652 my $tmp;
1087 1653
1088 if (length $self->{_tls_wbuf}) { 1654 if (length $self->{_tls_wbuf}) {
1089 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1655 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1090 substr $self->{_tls_wbuf}, 0, $len, ""; 1656 substr $self->{_tls_wbuf}, 0, $tmp, "";
1091 } 1657 }
1092 }
1093 1658
1659 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660 return $self->_tls_error ($tmp)
1661 if $tmp != $ERROR_WANT_READ
1662 && ($tmp != $ERROR_SYSCALL || $!);
1663 }
1664
1665 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666 unless (length $tmp) {
1667 $self->{_on_starttls}
1668 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 &_freetls;
1670
1671 if ($self->{on_stoptls}) {
1672 $self->{on_stoptls}($self);
1673 return;
1674 } else {
1675 # let's treat SSL-eof as we treat normal EOF
1676 delete $self->{_rw};
1677 $self->{_eof} = 1;
1678 }
1679 }
1680
1681 $self->{_tls_rbuf} .= $tmp;
1682 $self->_drain_rbuf;
1683 $self->{tls} or return; # tls session might have gone away in callback
1684 }
1685
1686 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 return $self->_tls_error ($tmp)
1688 if $tmp != $ERROR_WANT_READ
1689 && ($tmp != $ERROR_SYSCALL || $!);
1690
1094 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1691 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1095 $self->{wbuf} .= $buf; 1692 $self->{wbuf} .= $tmp;
1096 $self->_drain_wbuf; 1693 $self->_drain_wbuf;
1097 } 1694 }
1098 1695
1099 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1696 $self->{_on_starttls}
1100 if (length $buf) { 1697 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1101 $self->{rbuf} .= $buf; 1698 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1102 $self->_drain_rbuf unless $self->{_in_drain};
1103 } else {
1104 # let's treat SSL-eof as we treat normal EOF
1105 $self->{_eof} = 1;
1106 $self->_shutdown;
1107 return;
1108 }
1109 }
1110
1111 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1112
1113 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1114 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1115 return $self->_error ($!, 1);
1116 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1117 return $self->_error (&Errno::EIO, 1);
1118 }
1119
1120 # all others are fine for our purposes
1121 }
1122} 1699}
1123 1700
1124=item $handle->starttls ($tls[, $tls_ctx]) 1701=item $handle->starttls ($tls[, $tls_ctx])
1125 1702
1126Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1703Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1127object is created, you can also do that at a later time by calling 1704object is created, you can also do that at a later time by calling
1128C<starttls>. 1705C<starttls>.
1129 1706
1707Starting TLS is currently an asynchronous operation - when you push some
1708write data and then call C<< ->starttls >> then TLS negotiation will start
1709immediately, after which the queued write data is then sent.
1710
1130The first argument is the same as the C<tls> constructor argument (either 1711The first argument is the same as the C<tls> constructor argument (either
1131C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1712C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1132 1713
1133The second argument is the optional C<Net::SSLeay::CTX> object that is 1714The second argument is the optional C<AnyEvent::TLS> object that is used
1134used when AnyEvent::Handle has to create its own TLS connection object. 1715when AnyEvent::Handle has to create its own TLS connection object, or
1716a hash reference with C<< key => value >> pairs that will be used to
1717construct a new context.
1135 1718
1136The TLS connection object will end up in C<< $handle->{tls} >> after this 1719The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1137call and can be used or changed to your liking. Note that the handshake 1720context in C<< $handle->{tls_ctx} >> after this call and can be used or
1138might have already started when this function returns. 1721changed to your liking. Note that the handshake might have already started
1722when this function returns.
1139 1723
1724Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725handshakes on the same stream. Best do not attempt to use the stream after
1726stopping TLS.
1727
1140=cut 1728=cut
1729
1730our %TLS_CACHE; #TODO not yet documented, should we?
1141 1731
1142sub starttls { 1732sub starttls {
1143 my ($self, $ssl, $ctx) = @_; 1733 my ($self, $tls, $ctx) = @_;
1144 1734
1145 $self->stoptls; 1735 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736 if $self->{tls};
1146 1737
1147 if ($ssl eq "accept") { 1738 $self->{tls} = $tls;
1148 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1739 $self->{tls_ctx} = $ctx if @_ > 2;
1149 Net::SSLeay::set_accept_state ($ssl); 1740
1150 } elsif ($ssl eq "connect") { 1741 return unless $self->{fh};
1151 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1742
1152 Net::SSLeay::set_connect_state ($ssl); 1743 require Net::SSLeay;
1744
1745 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747
1748 $tls = $self->{tls};
1749 $ctx = $self->{tls_ctx};
1750
1751 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752
1753 if ("HASH" eq ref $ctx) {
1754 require AnyEvent::TLS;
1755
1756 if ($ctx->{cache}) {
1757 my $key = $ctx+0;
1758 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759 } else {
1760 $ctx = new AnyEvent::TLS %$ctx;
1761 }
1762 }
1153 } 1763
1154 1764 $self->{tls_ctx} = $ctx || TLS_CTX ();
1155 $self->{tls} = $ssl; 1765 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1156 1766
1157 # basically, this is deep magic (because SSL_read should have the same issues) 1767 # basically, this is deep magic (because SSL_read should have the same issues)
1158 # but the openssl maintainers basically said: "trust us, it just works". 1768 # but the openssl maintainers basically said: "trust us, it just works".
1159 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1769 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1160 # and mismaintained ssleay-module doesn't even offer them). 1770 # and mismaintained ssleay-module doesn't even offer them).
1161 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1771 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 #
1773 # in short: this is a mess.
1774 #
1775 # note that we do not try to keep the length constant between writes as we are required to do.
1776 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778 # have identity issues in that area.
1162 Net::SSLeay::CTX_set_mode ($self->{tls}, 1779# Net::SSLeay::CTX_set_mode ($ssl,
1163 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1780# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1164 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1781# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1165 1783
1166 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1784 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1167 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1785 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 1786
1787 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788
1169 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1789 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1170 1790
1171 $self->{filter_w} = sub { 1791 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1172 $_[0]{_tls_wbuf} .= ${$_[1]}; 1792 if $self->{on_starttls};
1173 &_dotls; 1793
1174 }; 1794 &_dotls; # need to trigger the initial handshake
1175 $self->{filter_r} = sub { 1795 $self->start_read; # make sure we actually do read
1176 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1177 &_dotls;
1178 };
1179} 1796}
1180 1797
1181=item $handle->stoptls 1798=item $handle->stoptls
1182 1799
1183Destroys the SSL connection, if any. Partial read or write data will be 1800Shuts down the SSL connection - this makes a proper EOF handshake by
1184lost. 1801sending a close notify to the other side, but since OpenSSL doesn't
1802support non-blocking shut downs, it is not guarenteed that you can re-use
1803the stream afterwards.
1185 1804
1186=cut 1805=cut
1187 1806
1188sub stoptls { 1807sub stoptls {
1189 my ($self) = @_; 1808 my ($self) = @_;
1190 1809
1191 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1810 if ($self->{tls}) {
1811 Net::SSLeay::shutdown ($self->{tls});
1192 1812
1193 delete $self->{_rbio}; 1813 &_dotls;
1194 delete $self->{_wbio}; 1814
1195 delete $self->{_tls_wbuf}; 1815# # we don't give a shit. no, we do, but we can't. no...#d#
1196 delete $self->{filter_r}; 1816# # we, we... have to use openssl :/#d#
1197 delete $self->{filter_w}; 1817# &_freetls;#d#
1818 }
1819}
1820
1821sub _freetls {
1822 my ($self) = @_;
1823
1824 return unless $self->{tls};
1825
1826 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 if $self->{tls} > 0;
1828
1829 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1198} 1830}
1199 1831
1200sub DESTROY { 1832sub DESTROY {
1201 my $self = shift; 1833 my ($self) = @_;
1202 1834
1203 $self->stoptls; 1835 &_freetls;
1836
1837 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1838
1839 if ($linger && length $self->{wbuf} && $self->{fh}) {
1840 my $fh = delete $self->{fh};
1841 my $wbuf = delete $self->{wbuf};
1842
1843 my @linger;
1844
1845 push @linger, AE::io $fh, 1, sub {
1846 my $len = syswrite $fh, $wbuf, length $wbuf;
1847
1848 if ($len > 0) {
1849 substr $wbuf, 0, $len, "";
1850 } else {
1851 @linger = (); # end
1852 }
1853 };
1854 push @linger, AE::timer $linger, 0, sub {
1855 @linger = ();
1856 };
1857 }
1858}
1859
1860=item $handle->destroy
1861
1862Shuts down the handle object as much as possible - this call ensures that
1863no further callbacks will be invoked and as many resources as possible
1864will be freed. Any method you will call on the handle object after
1865destroying it in this way will be silently ignored (and it will return the
1866empty list).
1867
1868Normally, you can just "forget" any references to an AnyEvent::Handle
1869object and it will simply shut down. This works in fatal error and EOF
1870callbacks, as well as code outside. It does I<NOT> work in a read or write
1871callback, so when you want to destroy the AnyEvent::Handle object from
1872within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873that case.
1874
1875Destroying the handle object in this way has the advantage that callbacks
1876will be removed as well, so if those are the only reference holders (as
1877is common), then one doesn't need to do anything special to break any
1878reference cycles.
1879
1880The handle might still linger in the background and write out remaining
1881data, as specified by the C<linger> option, however.
1882
1883=cut
1884
1885sub destroy {
1886 my ($self) = @_;
1887
1888 $self->DESTROY;
1889 %$self = ();
1890 bless $self, "AnyEvent::Handle::destroyed";
1891}
1892
1893sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894 #nop
1204} 1895}
1205 1896
1206=item AnyEvent::Handle::TLS_CTX 1897=item AnyEvent::Handle::TLS_CTX
1207 1898
1208This function creates and returns the Net::SSLeay::CTX object used by 1899This function creates and returns the AnyEvent::TLS object used by default
1209default for TLS mode. 1900for TLS mode.
1210 1901
1211The context is created like this: 1902The context is created by calling L<AnyEvent::TLS> without any arguments.
1212
1213 Net::SSLeay::load_error_strings;
1214 Net::SSLeay::SSLeay_add_ssl_algorithms;
1215 Net::SSLeay::randomize;
1216
1217 my $CTX = Net::SSLeay::CTX_new;
1218
1219 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1220 1903
1221=cut 1904=cut
1222 1905
1223our $TLS_CTX; 1906our $TLS_CTX;
1224 1907
1225sub TLS_CTX() { 1908sub TLS_CTX() {
1226 $TLS_CTX || do { 1909 $TLS_CTX ||= do {
1227 require Net::SSLeay; 1910 require AnyEvent::TLS;
1228 1911
1229 Net::SSLeay::load_error_strings (); 1912 new AnyEvent::TLS
1230 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1231 Net::SSLeay::randomize ();
1232
1233 $TLS_CTX = Net::SSLeay::CTX_new ();
1234
1235 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1236
1237 $TLS_CTX
1238 } 1913 }
1239} 1914}
1240 1915
1241=back 1916=back
1917
1918
1919=head1 NONFREQUENTLY ASKED QUESTIONS
1920
1921=over 4
1922
1923=item I C<undef> the AnyEvent::Handle reference inside my callback and
1924still get further invocations!
1925
1926That's because AnyEvent::Handle keeps a reference to itself when handling
1927read or write callbacks.
1928
1929It is only safe to "forget" the reference inside EOF or error callbacks,
1930from within all other callbacks, you need to explicitly call the C<<
1931->destroy >> method.
1932
1933=item I get different callback invocations in TLS mode/Why can't I pause
1934reading?
1935
1936Unlike, say, TCP, TLS connections do not consist of two independent
1937communication channels, one for each direction. Or put differently. The
1938read and write directions are not independent of each other: you cannot
1939write data unless you are also prepared to read, and vice versa.
1940
1941This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942callback invocations when you are not expecting any read data - the reason
1943is that AnyEvent::Handle always reads in TLS mode.
1944
1945During the connection, you have to make sure that you always have a
1946non-empty read-queue, or an C<on_read> watcher. At the end of the
1947connection (or when you no longer want to use it) you can call the
1948C<destroy> method.
1949
1950=item How do I read data until the other side closes the connection?
1951
1952If you just want to read your data into a perl scalar, the easiest way
1953to achieve this is by setting an C<on_read> callback that does nothing,
1954clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955will be in C<$_[0]{rbuf}>:
1956
1957 $handle->on_read (sub { });
1958 $handle->on_eof (undef);
1959 $handle->on_error (sub {
1960 my $data = delete $_[0]{rbuf};
1961 });
1962
1963The reason to use C<on_error> is that TCP connections, due to latencies
1964and packets loss, might get closed quite violently with an error, when in
1965fact, all data has been received.
1966
1967It is usually better to use acknowledgements when transferring data,
1968to make sure the other side hasn't just died and you got the data
1969intact. This is also one reason why so many internet protocols have an
1970explicit QUIT command.
1971
1972=item I don't want to destroy the handle too early - how do I wait until
1973all data has been written?
1974
1975After writing your last bits of data, set the C<on_drain> callback
1976and destroy the handle in there - with the default setting of
1977C<low_water_mark> this will be called precisely when all data has been
1978written to the socket:
1979
1980 $handle->push_write (...);
1981 $handle->on_drain (sub {
1982 warn "all data submitted to the kernel\n";
1983 undef $handle;
1984 });
1985
1986If you just want to queue some data and then signal EOF to the other side,
1987consider using C<< ->push_shutdown >> instead.
1988
1989=item I want to contact a TLS/SSL server, I don't care about security.
1990
1991If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993parameter:
1994
1995 tcp_connect $host, $port, sub {
1996 my ($fh) = @_;
1997
1998 my $handle = new AnyEvent::Handle
1999 fh => $fh,
2000 tls => "connect",
2001 on_error => sub { ... };
2002
2003 $handle->push_write (...);
2004 };
2005
2006=item I want to contact a TLS/SSL server, I do care about security.
2007
2008Then you should additionally enable certificate verification, including
2009peername verification, if the protocol you use supports it (see
2010L<AnyEvent::TLS>, C<verify_peername>).
2011
2012E.g. for HTTPS:
2013
2014 tcp_connect $host, $port, sub {
2015 my ($fh) = @_;
2016
2017 my $handle = new AnyEvent::Handle
2018 fh => $fh,
2019 peername => $host,
2020 tls => "connect",
2021 tls_ctx => { verify => 1, verify_peername => "https" },
2022 ...
2023
2024Note that you must specify the hostname you connected to (or whatever
2025"peername" the protocol needs) as the C<peername> argument, otherwise no
2026peername verification will be done.
2027
2028The above will use the system-dependent default set of trusted CA
2029certificates. If you want to check against a specific CA, add the
2030C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031
2032 tls_ctx => {
2033 verify => 1,
2034 verify_peername => "https",
2035 ca_file => "my-ca-cert.pem",
2036 },
2037
2038=item I want to create a TLS/SSL server, how do I do that?
2039
2040Well, you first need to get a server certificate and key. You have
2041three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042self-signed certificate (cheap. check the search engine of your choice,
2043there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044nice program for that purpose).
2045
2046Then create a file with your private key (in PEM format, see
2047L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048file should then look like this:
2049
2050 -----BEGIN RSA PRIVATE KEY-----
2051 ...header data
2052 ... lots of base64'y-stuff
2053 -----END RSA PRIVATE KEY-----
2054
2055 -----BEGIN CERTIFICATE-----
2056 ... lots of base64'y-stuff
2057 -----END CERTIFICATE-----
2058
2059The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060specify this file as C<cert_file>:
2061
2062 tcp_server undef, $port, sub {
2063 my ($fh) = @_;
2064
2065 my $handle = new AnyEvent::Handle
2066 fh => $fh,
2067 tls => "accept",
2068 tls_ctx => { cert_file => "my-server-keycert.pem" },
2069 ...
2070
2071When you have intermediate CA certificates that your clients might not
2072know about, just append them to the C<cert_file>.
2073
2074=back
2075
1242 2076
1243=head1 SUBCLASSING AnyEvent::Handle 2077=head1 SUBCLASSING AnyEvent::Handle
1244 2078
1245In many cases, you might want to subclass AnyEvent::Handle. 2079In many cases, you might want to subclass AnyEvent::Handle.
1246 2080
1250=over 4 2084=over 4
1251 2085
1252=item * all constructor arguments become object members. 2086=item * all constructor arguments become object members.
1253 2087
1254At least initially, when you pass a C<tls>-argument to the constructor it 2088At least initially, when you pass a C<tls>-argument to the constructor it
1255will end up in C<< $handle->{tls} >>. Those members might be changes or 2089will end up in C<< $handle->{tls} >>. Those members might be changed or
1256mutated later on (for example C<tls> will hold the TLS connection object). 2090mutated later on (for example C<tls> will hold the TLS connection object).
1257 2091
1258=item * other object member names are prefixed with an C<_>. 2092=item * other object member names are prefixed with an C<_>.
1259 2093
1260All object members not explicitly documented (internal use) are prefixed 2094All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines