ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.6 by elmex, Mon Apr 28 09:27:47 2008 UTC vs.
Revision 1.83 by root, Thu Aug 21 19:11:37 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent; 6use AnyEvent ();
7use IO::Handle; 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
8use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
9 12
10=head1 NAME 13=head1 NAME
11 14
12AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 16
14=head1 VERSION
15
16Version 0.01
17
18=cut 17=cut
19 18
20our $VERSION = '0.01'; 19our $VERSION = 4.232;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
26 25
27 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
28 27
29 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
30
31 $ae_fh->on_eof (sub { $cv->broadcast });
32
33 $ae_fh->readlines (sub {
34 my ($ae_fh, @lines) = @_;
35 for (@lines) {
36 chomp;
37 print "Line: $_";
38 }
39 });
40
41 # or use the constructor to pass the callback:
42
43 my $ae_fh2 =
44 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
45 fh => \*STDIN, 30 fh => \*STDIN,
46 on_eof => sub { 31 on_eof => sub {
47 $cv->broadcast; 32 $cv->broadcast;
48 }, 33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48=head1 DESCRIPTION
49
50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>.
53
54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well.
57
58All callbacks will be invoked with the handle object as their first
59argument.
60
61=head1 METHODS
62
63=over 4
64
65=item B<new (%args)>
66
67The constructor supports these arguments (all as key => value pairs).
68
69=over 4
70
71=item fh => $filehandle [MANDATORY]
72
73The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking mode (using
76C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
77that mode.
78
79=item on_eof => $cb->($handle)
80
81Set the callback to be called when an end-of-file condition is detected,
82i.e. in the case of a socket, when the other side has closed the
83connection cleanly.
84
85For sockets, this just means that the other side has stopped sending data,
86you can still try to write data, and, in fact, one can return from the eof
87callback and continue writing data, as only the read part has been shut
88down.
89
90While not mandatory, it is I<highly> recommended to set an eof callback,
91otherwise you might end up with a closed socket while you are still
92waiting for data.
93
94If an EOF condition has been detected but no C<on_eof> callback has been
95set, then a fatal error will be raised with C<$!> set to <0>.
96
97=item on_error => $cb->($handle, $fatal)
98
99This is the error callback, which is called when, well, some error
100occured, such as not being able to resolve the hostname, failure to
101connect or a read error.
102
103Some errors are fatal (which is indicated by C<$fatal> being true). On
104fatal errors the handle object will be shut down and will not be usable
105(but you are free to look at the current C< ->rbuf >). Examples of fatal
106errors are an EOF condition with active (but unsatisifable) read watchers
107(C<EPIPE>) or I/O errors.
108
109Non-fatal errors can be retried by simply returning, but it is recommended
110to simply ignore this parameter and instead abondon the handle object
111when this callback is invoked. Examples of non-fatal errors are timeouts
112C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
113
114On callback entrance, the value of C<$!> contains the operating system
115error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
116
117While not mandatory, it is I<highly> recommended to set this callback, as
118you will not be notified of errors otherwise. The default simply calls
119C<croak>.
120
121=item on_read => $cb->($handle)
122
123This sets the default read callback, which is called when data arrives
124and no read request is in the queue (unlike read queue callbacks, this
125callback will only be called when at least one octet of data is in the
126read buffer).
127
128To access (and remove data from) the read buffer, use the C<< ->rbuf >>
129method or access the C<$handle->{rbuf}> member directly.
130
131When an EOF condition is detected then AnyEvent::Handle will first try to
132feed all the remaining data to the queued callbacks and C<on_read> before
133calling the C<on_eof> callback. If no progress can be made, then a fatal
134error will be raised (with C<$!> set to C<EPIPE>).
135
136=item on_drain => $cb->($handle)
137
138This sets the callback that is called when the write buffer becomes empty
139(or when the callback is set and the buffer is empty already).
140
141To append to the write buffer, use the C<< ->push_write >> method.
142
143This callback is useful when you don't want to put all of your write data
144into the queue at once, for example, when you want to write the contents
145of some file to the socket you might not want to read the whole file into
146memory and push it into the queue, but instead only read more data from
147the file when the write queue becomes empty.
148
149=item timeout => $fractional_seconds
150
151If non-zero, then this enables an "inactivity" timeout: whenever this many
152seconds pass without a successful read or write on the underlying file
153handle, the C<on_timeout> callback will be invoked (and if that one is
154missing, an C<ETIMEDOUT> error will be raised).
155
156Note that timeout processing is also active when you currently do not have
157any outstanding read or write requests: If you plan to keep the connection
158idle then you should disable the timout temporarily or ignore the timeout
159in the C<on_timeout> callback.
160
161Zero (the default) disables this timeout.
162
163=item on_timeout => $cb->($handle)
164
165Called whenever the inactivity timeout passes. If you return from this
166callback, then the timeout will be reset as if some activity had happened,
167so this condition is not fatal in any way.
168
169=item rbuf_max => <bytes>
170
171If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
172when the read buffer ever (strictly) exceeds this size. This is useful to
173avoid denial-of-service attacks.
174
175For example, a server accepting connections from untrusted sources should
176be configured to accept only so-and-so much data that it cannot act on
177(for example, when expecting a line, an attacker could send an unlimited
178amount of data without a callback ever being called as long as the line
179isn't finished).
180
181=item autocork => <boolean>
182
183When disabled (the default), then C<push_write> will try to immediately
184write the data to the handle if possible. This avoids having to register
185a write watcher and wait for the next event loop iteration, but can be
186inefficient if you write multiple small chunks (this disadvantage is
187usually avoided by your kernel's nagle algorithm, see C<low_delay>).
188
189When enabled, then writes will always be queued till the next event loop
190iteration. This is efficient when you do many small writes per iteration,
191but less efficient when you do a single write only.
192
193=item no_delay => <boolean>
194
195When doing small writes on sockets, your operating system kernel might
196wait a bit for more data before actually sending it out. This is called
197the Nagle algorithm, and usually it is beneficial.
198
199In some situations you want as low a delay as possible, which cna be
200accomplishd by setting this option to true.
201
202The default is your opertaing system's default behaviour, this option
203explicitly enables or disables it, if possible.
204
205=item read_size => <bytes>
206
207The default read block size (the amount of bytes this module will try to read
208during each (loop iteration). Default: C<8192>.
209
210=item low_water_mark => <bytes>
211
212Sets the amount of bytes (default: C<0>) that make up an "empty" write
213buffer: If the write reaches this size or gets even samller it is
214considered empty.
215
216=item linger => <seconds>
217
218If non-zero (default: C<3600>), then the destructor of the
219AnyEvent::Handle object will check wether there is still outstanding write
220data and will install a watcher that will write out this data. No errors
221will be reported (this mostly matches how the operating system treats
222outstanding data at socket close time).
223
224This will not work for partial TLS data that could not yet been
225encoded. This data will be lost.
226
227=item tls => "accept" | "connect" | Net::SSLeay::SSL object
228
229When this parameter is given, it enables TLS (SSL) mode, that means it
230will start making tls handshake and will transparently encrypt/decrypt
231data.
232
233TLS mode requires Net::SSLeay to be installed (it will be loaded
234automatically when you try to create a TLS handle).
235
236For the TLS server side, use C<accept>, and for the TLS client side of a
237connection, use C<connect> mode.
238
239You can also provide your own TLS connection object, but you have
240to make sure that you call either C<Net::SSLeay::set_connect_state>
241or C<Net::SSLeay::set_accept_state> on it before you pass it to
242AnyEvent::Handle.
243
244See the C<starttls> method if you need to start TLS negotiation later.
245
246=item tls_ctx => $ssl_ctx
247
248Use the given Net::SSLeay::CTX object to create the new TLS connection
249(unless a connection object was specified directly). If this parameter is
250missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
251
252=item json => JSON or JSON::XS object
253
254This is the json coder object used by the C<json> read and write types.
255
256If you don't supply it, then AnyEvent::Handle will create and use a
257suitable one, which will write and expect UTF-8 encoded JSON texts.
258
259Note that you are responsible to depend on the JSON module if you want to
260use this functionality, as AnyEvent does not have a dependency itself.
261
262=item filter_r => $cb
263
264=item filter_w => $cb
265
266These exist, but are undocumented at this time.
267
268=back
269
270=cut
271
272sub new {
273 my $class = shift;
274
275 my $self = bless { @_ }, $class;
276
277 $self->{fh} or Carp::croak "mandatory argument fh is missing";
278
279 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
280
281 if ($self->{tls}) {
282 require Net::SSLeay;
283 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
284 }
285
286 $self->{_activity} = AnyEvent->now;
287 $self->_timeout;
288
289 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
290 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291
292 $self->start_read
293 if $self->{on_read};
294
295 $self
296}
297
298sub _shutdown {
299 my ($self) = @_;
300
301 delete $self->{_tw};
302 delete $self->{_rw};
303 delete $self->{_ww};
304 delete $self->{fh};
305
306 $self->stoptls;
307
308 delete $self->{on_read};
309 delete $self->{_queue};
310}
311
312sub _error {
313 my ($self, $errno, $fatal) = @_;
314
315 $self->_shutdown
316 if $fatal;
317
318 $! = $errno;
319
320 if ($self->{on_error}) {
321 $self->{on_error}($self, $fatal);
322 } else {
323 Carp::croak "AnyEvent::Handle uncaught error: $!";
324 }
325}
326
327=item $fh = $handle->fh
328
329This method returns the file handle of the L<AnyEvent::Handle> object.
330
331=cut
332
333sub fh { $_[0]{fh} }
334
335=item $handle->on_error ($cb)
336
337Replace the current C<on_error> callback (see the C<on_error> constructor argument).
338
339=cut
340
341sub on_error {
342 $_[0]{on_error} = $_[1];
343}
344
345=item $handle->on_eof ($cb)
346
347Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
348
349=cut
350
351sub on_eof {
352 $_[0]{on_eof} = $_[1];
353}
354
355=item $handle->on_timeout ($cb)
356
357Replace the current C<on_timeout> callback, or disables the callback
358(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
359argument.
360
361=cut
362
363sub on_timeout {
364 $_[0]{on_timeout} = $_[1];
365}
366
367=item $handle->autocork ($boolean)
368
369Enables or disables the current autocork behaviour (see C<autocork>
370constructor argument).
371
372=cut
373
374=item $handle->no_delay ($boolean)
375
376Enables or disables the C<no_delay> setting (see constructor argument of
377the same name for details).
378
379=cut
380
381sub no_delay {
382 $_[0]{no_delay} = $_[1];
383
384 eval {
385 local $SIG{__DIE__};
386 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
387 };
388}
389
390#############################################################################
391
392=item $handle->timeout ($seconds)
393
394Configures (or disables) the inactivity timeout.
395
396=cut
397
398sub timeout {
399 my ($self, $timeout) = @_;
400
401 $self->{timeout} = $timeout;
402 $self->_timeout;
403}
404
405# reset the timeout watcher, as neccessary
406# also check for time-outs
407sub _timeout {
408 my ($self) = @_;
409
410 if ($self->{timeout}) {
411 my $NOW = AnyEvent->now;
412
413 # when would the timeout trigger?
414 my $after = $self->{_activity} + $self->{timeout} - $NOW;
415
416 # now or in the past already?
417 if ($after <= 0) {
418 $self->{_activity} = $NOW;
419
420 if ($self->{on_timeout}) {
421 $self->{on_timeout}($self);
422 } else {
423 $self->_error (&Errno::ETIMEDOUT);
424 }
425
426 # callback could have changed timeout value, optimise
427 return unless $self->{timeout};
428
429 # calculate new after
430 $after = $self->{timeout};
431 }
432
433 Scalar::Util::weaken $self;
434 return unless $self; # ->error could have destroyed $self
435
436 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
437 delete $self->{_tw};
438 $self->_timeout;
439 });
440 } else {
441 delete $self->{_tw};
442 }
443}
444
445#############################################################################
446
447=back
448
449=head2 WRITE QUEUE
450
451AnyEvent::Handle manages two queues per handle, one for writing and one
452for reading.
453
454The write queue is very simple: you can add data to its end, and
455AnyEvent::Handle will automatically try to get rid of it for you.
456
457When data could be written and the write buffer is shorter then the low
458water mark, the C<on_drain> callback will be invoked.
459
460=over 4
461
462=item $handle->on_drain ($cb)
463
464Sets the C<on_drain> callback or clears it (see the description of
465C<on_drain> in the constructor).
466
467=cut
468
469sub on_drain {
470 my ($self, $cb) = @_;
471
472 $self->{on_drain} = $cb;
473
474 $cb->($self)
475 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
476}
477
478=item $handle->push_write ($data)
479
480Queues the given scalar to be written. You can push as much data as you
481want (only limited by the available memory), as C<AnyEvent::Handle>
482buffers it independently of the kernel.
483
484=cut
485
486sub _drain_wbuf {
487 my ($self) = @_;
488
489 if (!$self->{_ww} && length $self->{wbuf}) {
490
491 Scalar::Util::weaken $self;
492
493 my $cb = sub {
494 my $len = syswrite $self->{fh}, $self->{wbuf};
495
496 if ($len >= 0) {
497 substr $self->{wbuf}, 0, $len, "";
498
499 $self->{_activity} = AnyEvent->now;
500
501 $self->{on_drain}($self)
502 if $self->{low_water_mark} >= length $self->{wbuf}
503 && $self->{on_drain};
504
505 delete $self->{_ww} unless length $self->{wbuf};
506 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
507 $self->_error ($!, 1);
508 }
509 };
510
511 # try to write data immediately
512 $cb->() unless $self->{autocork};
513
514 # if still data left in wbuf, we need to poll
515 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
516 if length $self->{wbuf};
517 };
518}
519
520our %WH;
521
522sub register_write_type($$) {
523 $WH{$_[0]} = $_[1];
524}
525
526sub push_write {
527 my $self = shift;
528
529 if (@_ > 1) {
530 my $type = shift;
531
532 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
533 ->($self, @_);
534 }
535
536 if ($self->{filter_w}) {
537 $self->{filter_w}($self, \$_[0]);
538 } else {
539 $self->{wbuf} .= $_[0];
540 $self->_drain_wbuf;
541 }
542}
543
544=item $handle->push_write (type => @args)
545
546Instead of formatting your data yourself, you can also let this module do
547the job by specifying a type and type-specific arguments.
548
549Predefined types are (if you have ideas for additional types, feel free to
550drop by and tell us):
551
552=over 4
553
554=item netstring => $string
555
556Formats the given value as netstring
557(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
558
559=cut
560
561register_write_type netstring => sub {
562 my ($self, $string) = @_;
563
564 sprintf "%d:%s,", (length $string), $string
565};
566
567=item packstring => $format, $data
568
569An octet string prefixed with an encoded length. The encoding C<$format>
570uses the same format as a Perl C<pack> format, but must specify a single
571integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
572optional C<!>, C<< < >> or C<< > >> modifier).
573
574=cut
575
576register_write_type packstring => sub {
577 my ($self, $format, $string) = @_;
578
579 pack "$format/a*", $string
580};
581
582=item json => $array_or_hashref
583
584Encodes the given hash or array reference into a JSON object. Unless you
585provide your own JSON object, this means it will be encoded to JSON text
586in UTF-8.
587
588JSON objects (and arrays) are self-delimiting, so you can write JSON at
589one end of a handle and read them at the other end without using any
590additional framing.
591
592The generated JSON text is guaranteed not to contain any newlines: While
593this module doesn't need delimiters after or between JSON texts to be
594able to read them, many other languages depend on that.
595
596A simple RPC protocol that interoperates easily with others is to send
597JSON arrays (or objects, although arrays are usually the better choice as
598they mimic how function argument passing works) and a newline after each
599JSON text:
600
601 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
602 $handle->push_write ("\012");
603
604An AnyEvent::Handle receiver would simply use the C<json> read type and
605rely on the fact that the newline will be skipped as leading whitespace:
606
607 $handle->push_read (json => sub { my $array = $_[1]; ... });
608
609Other languages could read single lines terminated by a newline and pass
610this line into their JSON decoder of choice.
611
612=cut
613
614register_write_type json => sub {
615 my ($self, $ref) = @_;
616
617 require JSON;
618
619 $self->{json} ? $self->{json}->encode ($ref)
620 : JSON::encode_json ($ref)
621};
622
623=item storable => $reference
624
625Freezes the given reference using L<Storable> and writes it to the
626handle. Uses the C<nfreeze> format.
627
628=cut
629
630register_write_type storable => sub {
631 my ($self, $ref) = @_;
632
633 require Storable;
634
635 pack "w/a*", Storable::nfreeze ($ref)
636};
637
638=back
639
640=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
641
642This function (not method) lets you add your own types to C<push_write>.
643Whenever the given C<type> is used, C<push_write> will invoke the code
644reference with the handle object and the remaining arguments.
645
646The code reference is supposed to return a single octet string that will
647be appended to the write buffer.
648
649Note that this is a function, and all types registered this way will be
650global, so try to use unique names.
651
652=cut
653
654#############################################################################
655
656=back
657
658=head2 READ QUEUE
659
660AnyEvent::Handle manages two queues per handle, one for writing and one
661for reading.
662
663The read queue is more complex than the write queue. It can be used in two
664ways, the "simple" way, using only C<on_read> and the "complex" way, using
665a queue.
666
667In the simple case, you just install an C<on_read> callback and whenever
668new data arrives, it will be called. You can then remove some data (if
669enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
670leave the data there if you want to accumulate more (e.g. when only a
671partial message has been received so far).
672
673In the more complex case, you want to queue multiple callbacks. In this
674case, AnyEvent::Handle will call the first queued callback each time new
675data arrives (also the first time it is queued) and removes it when it has
676done its job (see C<push_read>, below).
677
678This way you can, for example, push three line-reads, followed by reading
679a chunk of data, and AnyEvent::Handle will execute them in order.
680
681Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
682the specified number of bytes which give an XML datagram.
683
684 # in the default state, expect some header bytes
685 $handle->on_read (sub {
686 # some data is here, now queue the length-header-read (4 octets)
687 shift->unshift_read (chunk => 4, sub {
688 # header arrived, decode
689 my $len = unpack "N", $_[1];
690
691 # now read the payload
692 shift->unshift_read (chunk => $len, sub {
693 my $xml = $_[1];
694 # handle xml
695 });
696 });
697 });
698
699Example 2: Implement a client for a protocol that replies either with "OK"
700and another line or "ERROR" for the first request that is sent, and 64
701bytes for the second request. Due to the availability of a queue, we can
702just pipeline sending both requests and manipulate the queue as necessary
703in the callbacks.
704
705When the first callback is called and sees an "OK" response, it will
706C<unshift> another line-read. This line-read will be queued I<before> the
70764-byte chunk callback.
708
709 # request one, returns either "OK + extra line" or "ERROR"
710 $handle->push_write ("request 1\015\012");
711
712 # we expect "ERROR" or "OK" as response, so push a line read
713 $handle->push_read (line => sub {
714 # if we got an "OK", we have to _prepend_ another line,
715 # so it will be read before the second request reads its 64 bytes
716 # which are already in the queue when this callback is called
717 # we don't do this in case we got an error
718 if ($_[1] eq "OK") {
49 on_readline => sub { 719 $_[0]->unshift_read (line => sub {
50 my ($ae_fh, @lines) = @_; 720 my $response = $_[1];
51 for (@lines) { 721 ...
52 chomp; 722 });
53 print "Line: $_"; 723 }
724 });
725
726 # request two, simply returns 64 octets
727 $handle->push_write ("request 2\015\012");
728
729 # simply read 64 bytes, always
730 $handle->push_read (chunk => 64, sub {
731 my $response = $_[1];
732 ...
733 });
734
735=over 4
736
737=cut
738
739sub _drain_rbuf {
740 my ($self) = @_;
741
742 local $self->{_in_drain} = 1;
743
744 if (
745 defined $self->{rbuf_max}
746 && $self->{rbuf_max} < length $self->{rbuf}
747 ) {
748 $self->_error (&Errno::ENOSPC, 1), return;
749 }
750
751 while () {
752 my $len = length $self->{rbuf};
753
754 if (my $cb = shift @{ $self->{_queue} }) {
755 unless ($cb->($self)) {
756 if ($self->{_eof}) {
757 # no progress can be made (not enough data and no data forthcoming)
758 $self->_error (&Errno::EPIPE, 1), return;
54 } 759 }
760
761 unshift @{ $self->{_queue} }, $cb;
762 last;
55 } 763 }
56 );
57
58 $cv->wait;
59
60=head1 DESCRIPTION
61
62This module is a helper module to make it easier to do non-blocking I/O
63on filehandles (and sockets, see L<AnyEvent::Socket>).
64
65The event loop is provided by L<AnyEvent>.
66
67=head1 METHODS
68
69=over 4
70
71=item B<new (%args)>
72
73The constructor has these arguments:
74
75=over 4
76
77=item fh => $filehandle
78
79The filehandle this L<AnyEvent::Handle> object will operate on.
80
81NOTE: The filehandle will be set to non-blocking.
82
83=item read_block_size => $size
84
85The default read block size use for reads via the C<on_read>
86method.
87
88=item on_read => $cb
89
90=item on_eof => $cb
91
92=item on_error => $cb
93
94These are shortcuts, that will call the corresponding method and set the callback to C<$cb>.
95
96=item on_readline => $cb
97
98The C<readlines> method is called with the default seperator and C<$cb> as callback
99for you.
100
101=back
102
103=cut
104
105sub new {
106 my $this = shift;
107 my $class = ref($this) || $this;
108 my $self = {
109 read_block_size => 4096,
110 rbuf => '',
111 @_
112 };
113 bless $self, $class;
114
115 $self->{fh}->blocking (0) if $self->{fh};
116
117 if ($self->{on_read}) {
118 $self->on_read ($self->{on_read});
119
120 } elsif ($self->{on_readline}) { 764 } elsif ($self->{on_read}) {
121 $self->readlines ($self->{on_readline}); 765 last unless $len;
122 766
767 $self->{on_read}($self);
768
769 if (
770 $len == length $self->{rbuf} # if no data has been consumed
771 && !@{ $self->{_queue} } # and the queue is still empty
772 && $self->{on_read} # but we still have on_read
773 ) {
774 # no further data will arrive
775 # so no progress can be made
776 $self->_error (&Errno::EPIPE, 1), return
777 if $self->{_eof};
778
779 last; # more data might arrive
780 }
781 } else {
782 # read side becomes idle
783 delete $self->{_rw};
784 last;
785 }
786 }
787
123 } elsif ($self->{on_eof}) { 788 if ($self->{_eof}) {
124 $self->on_eof ($self->{on_eof});
125
126 } elsif ($self->{on_error}) { 789 if ($self->{on_eof}) {
127 $self->on_eof ($self->{on_error}); 790 $self->{on_eof}($self)
791 } else {
792 $self->_error (0, 1);
793 }
128 } 794 }
129 795
130 return $self 796 # may need to restart read watcher
797 unless ($self->{_rw}) {
798 $self->start_read
799 if $self->{on_read} || @{ $self->{_queue} };
800 }
131} 801}
132 802
133=item B<fh> 803=item $handle->on_read ($cb)
134 804
135This method returns the filehandle of the L<AnyEvent::Handle> object. 805This replaces the currently set C<on_read> callback, or clears it (when
136 806the new callback is C<undef>). See the description of C<on_read> in the
137=cut 807constructor.
138
139sub fh { $_[0]->{fh} }
140
141=item B<on_read ($callback)>
142
143This method installs a C<$callback> that will be called
144when new data arrived. You can access the read buffer via the C<rbuf>
145method (see below).
146
147The first argument of the C<$callback> will be the L<AnyEvent::Handle> object.
148 808
149=cut 809=cut
150 810
151sub on_read { 811sub on_read {
152 my ($self, $cb) = @_; 812 my ($self, $cb) = @_;
813
153 $self->{on_read} = $cb; 814 $self->{on_read} = $cb;
815 $self->_drain_rbuf if $cb && !$self->{_in_drain};
816}
154 817
155 unless (defined $self->{on_read}) { 818=item $handle->rbuf
156 delete $self->{on_read_w}; 819
820Returns the read buffer (as a modifiable lvalue).
821
822You can access the read buffer directly as the C<< ->{rbuf} >> member, if
823you want.
824
825NOTE: The read buffer should only be used or modified if the C<on_read>,
826C<push_read> or C<unshift_read> methods are used. The other read methods
827automatically manage the read buffer.
828
829=cut
830
831sub rbuf : lvalue {
832 $_[0]{rbuf}
833}
834
835=item $handle->push_read ($cb)
836
837=item $handle->unshift_read ($cb)
838
839Append the given callback to the end of the queue (C<push_read>) or
840prepend it (C<unshift_read>).
841
842The callback is called each time some additional read data arrives.
843
844It must check whether enough data is in the read buffer already.
845
846If not enough data is available, it must return the empty list or a false
847value, in which case it will be called repeatedly until enough data is
848available (or an error condition is detected).
849
850If enough data was available, then the callback must remove all data it is
851interested in (which can be none at all) and return a true value. After returning
852true, it will be removed from the queue.
853
854=cut
855
856our %RH;
857
858sub register_read_type($$) {
859 $RH{$_[0]} = $_[1];
860}
861
862sub push_read {
863 my $self = shift;
864 my $cb = pop;
865
866 if (@_) {
867 my $type = shift;
868
869 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
870 ->($self, $cb, @_);
871 }
872
873 push @{ $self->{_queue} }, $cb;
874 $self->_drain_rbuf unless $self->{_in_drain};
875}
876
877sub unshift_read {
878 my $self = shift;
879 my $cb = pop;
880
881 if (@_) {
882 my $type = shift;
883
884 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
885 ->($self, $cb, @_);
886 }
887
888
889 unshift @{ $self->{_queue} }, $cb;
890 $self->_drain_rbuf unless $self->{_in_drain};
891}
892
893=item $handle->push_read (type => @args, $cb)
894
895=item $handle->unshift_read (type => @args, $cb)
896
897Instead of providing a callback that parses the data itself you can chose
898between a number of predefined parsing formats, for chunks of data, lines
899etc.
900
901Predefined types are (if you have ideas for additional types, feel free to
902drop by and tell us):
903
904=over 4
905
906=item chunk => $octets, $cb->($handle, $data)
907
908Invoke the callback only once C<$octets> bytes have been read. Pass the
909data read to the callback. The callback will never be called with less
910data.
911
912Example: read 2 bytes.
913
914 $handle->push_read (chunk => 2, sub {
915 warn "yay ", unpack "H*", $_[1];
916 });
917
918=cut
919
920register_read_type chunk => sub {
921 my ($self, $cb, $len) = @_;
922
923 sub {
924 $len <= length $_[0]{rbuf} or return;
925 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
926 1
927 }
928};
929
930=item line => [$eol, ]$cb->($handle, $line, $eol)
931
932The callback will be called only once a full line (including the end of
933line marker, C<$eol>) has been read. This line (excluding the end of line
934marker) will be passed to the callback as second argument (C<$line>), and
935the end of line marker as the third argument (C<$eol>).
936
937The end of line marker, C<$eol>, can be either a string, in which case it
938will be interpreted as a fixed record end marker, or it can be a regex
939object (e.g. created by C<qr>), in which case it is interpreted as a
940regular expression.
941
942The end of line marker argument C<$eol> is optional, if it is missing (NOT
943undef), then C<qr|\015?\012|> is used (which is good for most internet
944protocols).
945
946Partial lines at the end of the stream will never be returned, as they are
947not marked by the end of line marker.
948
949=cut
950
951register_read_type line => sub {
952 my ($self, $cb, $eol) = @_;
953
954 if (@_ < 3) {
955 # this is more than twice as fast as the generic code below
956 sub {
957 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
958
959 $cb->($_[0], $1, $2);
960 1
961 }
962 } else {
963 $eol = quotemeta $eol unless ref $eol;
964 $eol = qr|^(.*?)($eol)|s;
965
966 sub {
967 $_[0]{rbuf} =~ s/$eol// or return;
968
969 $cb->($_[0], $1, $2);
970 1
971 }
972 }
973};
974
975=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
976
977Makes a regex match against the regex object C<$accept> and returns
978everything up to and including the match.
979
980Example: read a single line terminated by '\n'.
981
982 $handle->push_read (regex => qr<\n>, sub { ... });
983
984If C<$reject> is given and not undef, then it determines when the data is
985to be rejected: it is matched against the data when the C<$accept> regex
986does not match and generates an C<EBADMSG> error when it matches. This is
987useful to quickly reject wrong data (to avoid waiting for a timeout or a
988receive buffer overflow).
989
990Example: expect a single decimal number followed by whitespace, reject
991anything else (not the use of an anchor).
992
993 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
994
995If C<$skip> is given and not C<undef>, then it will be matched against
996the receive buffer when neither C<$accept> nor C<$reject> match,
997and everything preceding and including the match will be accepted
998unconditionally. This is useful to skip large amounts of data that you
999know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1000have to start matching from the beginning. This is purely an optimisation
1001and is usually worth only when you expect more than a few kilobytes.
1002
1003Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1004expect the header to be very large (it isn't in practise, but...), we use
1005a skip regex to skip initial portions. The skip regex is tricky in that
1006it only accepts something not ending in either \015 or \012, as these are
1007required for the accept regex.
1008
1009 $handle->push_read (regex =>
1010 qr<\015\012\015\012>,
1011 undef, # no reject
1012 qr<^.*[^\015\012]>,
1013 sub { ... });
1014
1015=cut
1016
1017register_read_type regex => sub {
1018 my ($self, $cb, $accept, $reject, $skip) = @_;
1019
1020 my $data;
1021 my $rbuf = \$self->{rbuf};
1022
1023 sub {
1024 # accept
1025 if ($$rbuf =~ $accept) {
1026 $data .= substr $$rbuf, 0, $+[0], "";
1027 $cb->($self, $data);
157 return; 1028 return 1;
1029 }
1030
1031 # reject
1032 if ($reject && $$rbuf =~ $reject) {
1033 $self->_error (&Errno::EBADMSG);
1034 }
1035
1036 # skip
1037 if ($skip && $$rbuf =~ $skip) {
1038 $data .= substr $$rbuf, 0, $+[0], "";
1039 }
1040
1041 ()
158 } 1042 }
159 1043};
160 $self->{on_read_w} = 1044
161 AnyEvent->io (poll => 'r', fh => $self->{fh}, cb => sub { 1045=item netstring => $cb->($handle, $string)
162 #d# warn "READ:[$self->{read_size}] $self->{read_block_size} : ".length ($self->{rbuf})."\n"; 1046
163 my $rbuf_len = length $self->{rbuf}; 1047A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
164 my $l; 1048
165 if (defined $self->{read_size}) { 1049Throws an error with C<$!> set to EBADMSG on format violations.
166 $l = sysread $self->{fh}, $self->{rbuf}, 1050
167 ($self->{read_size} - $rbuf_len), $rbuf_len; 1051=cut
168 } else { 1052
169 $l = sysread $self->{fh}, $self->{rbuf}, $self->{read_block_size}, $rbuf_len; 1053register_read_type netstring => sub {
1054 my ($self, $cb) = @_;
1055
1056 sub {
1057 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058 if ($_[0]{rbuf} =~ /[^0-9]/) {
1059 $self->_error (&Errno::EBADMSG);
170 } 1060 }
171 #d# warn "READL $l [$self->{rbuf}]\n"; 1061 return;
1062 }
172 1063
173 if (not defined $l) { 1064 my $len = $1;
174 return if $! == EAGAIN || $! == EINTR;
175 $self->{on_error}->($self) if $self->{on_error};
176 delete $self->{on_read_w};
177 1065
178 } elsif ($l == 0) { 1066 $self->unshift_read (chunk => $len, sub {
179 $self->{on_eof}->($self) if $self->{on_eof}; 1067 my $string = $_[1];
180 delete $self->{on_read_w}; 1068 $_[0]->unshift_read (chunk => 1, sub {
181 1069 if ($_[1] eq ",") {
1070 $cb->($_[0], $string);
182 } else { 1071 } else {
183 $self->{on_read}->($self); 1072 $self->_error (&Errno::EBADMSG);
1073 }
1074 });
1075 });
1076
1077 1
1078 }
1079};
1080
1081=item packstring => $format, $cb->($handle, $string)
1082
1083An octet string prefixed with an encoded length. The encoding C<$format>
1084uses the same format as a Perl C<pack> format, but must specify a single
1085integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086optional C<!>, C<< < >> or C<< > >> modifier).
1087
1088DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1089
1090Example: read a block of data prefixed by its length in BER-encoded
1091format (very efficient).
1092
1093 $handle->push_read (packstring => "w", sub {
1094 my ($handle, $data) = @_;
1095 });
1096
1097=cut
1098
1099register_read_type packstring => sub {
1100 my ($self, $cb, $format) = @_;
1101
1102 sub {
1103 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1104 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1105 or return;
1106
1107 $format = length pack $format, $len;
1108
1109 # bypass unshift if we already have the remaining chunk
1110 if ($format + $len <= length $_[0]{rbuf}) {
1111 my $data = substr $_[0]{rbuf}, $format, $len;
1112 substr $_[0]{rbuf}, 0, $format + $len, "";
1113 $cb->($_[0], $data);
1114 } else {
1115 # remove prefix
1116 substr $_[0]{rbuf}, 0, $format, "";
1117
1118 # read remaining chunk
1119 $_[0]->unshift_read (chunk => $len, $cb);
1120 }
1121
1122 1
1123 }
1124};
1125
1126=item json => $cb->($handle, $hash_or_arrayref)
1127
1128Reads a JSON object or array, decodes it and passes it to the callback.
1129
1130If a C<json> object was passed to the constructor, then that will be used
1131for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132
1133This read type uses the incremental parser available with JSON version
11342.09 (and JSON::XS version 2.2) and above. You have to provide a
1135dependency on your own: this module will load the JSON module, but
1136AnyEvent does not depend on it itself.
1137
1138Since JSON texts are fully self-delimiting, the C<json> read and write
1139types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1140the C<json> write type description, above, for an actual example.
1141
1142=cut
1143
1144register_read_type json => sub {
1145 my ($self, $cb) = @_;
1146
1147 require JSON;
1148
1149 my $data;
1150 my $rbuf = \$self->{rbuf};
1151
1152 my $json = $self->{json} ||= JSON->new->utf8;
1153
1154 sub {
1155 my $ref = $json->incr_parse ($self->{rbuf});
1156
1157 if ($ref) {
1158 $self->{rbuf} = $json->incr_text;
1159 $json->incr_text = "";
1160 $cb->($self, $ref);
1161
1162 1
1163 } else {
1164 $self->{rbuf} = "";
1165 ()
1166 }
1167 }
1168};
1169
1170=item storable => $cb->($handle, $ref)
1171
1172Deserialises a L<Storable> frozen representation as written by the
1173C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1174data).
1175
1176Raises C<EBADMSG> error if the data could not be decoded.
1177
1178=cut
1179
1180register_read_type storable => sub {
1181 my ($self, $cb) = @_;
1182
1183 require Storable;
1184
1185 sub {
1186 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1187 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1188 or return;
1189
1190 my $format = length pack "w", $len;
1191
1192 # bypass unshift if we already have the remaining chunk
1193 if ($format + $len <= length $_[0]{rbuf}) {
1194 my $data = substr $_[0]{rbuf}, $format, $len;
1195 substr $_[0]{rbuf}, 0, $format + $len, "";
1196 $cb->($_[0], Storable::thaw ($data));
1197 } else {
1198 # remove prefix
1199 substr $_[0]{rbuf}, 0, $format, "";
1200
1201 # read remaining chunk
1202 $_[0]->unshift_read (chunk => $len, sub {
1203 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204 $cb->($_[0], $ref);
1205 } else {
1206 $self->_error (&Errno::EBADMSG);
1207 }
1208 });
1209 }
1210
1211 1
1212 }
1213};
1214
1215=back
1216
1217=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1218
1219This function (not method) lets you add your own types to C<push_read>.
1220
1221Whenever the given C<type> is used, C<push_read> will invoke the code
1222reference with the handle object, the callback and the remaining
1223arguments.
1224
1225The code reference is supposed to return a callback (usually a closure)
1226that works as a plain read callback (see C<< ->push_read ($cb) >>).
1227
1228It should invoke the passed callback when it is done reading (remember to
1229pass C<$handle> as first argument as all other callbacks do that).
1230
1231Note that this is a function, and all types registered this way will be
1232global, so try to use unique names.
1233
1234For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1235search for C<register_read_type>)).
1236
1237=item $handle->stop_read
1238
1239=item $handle->start_read
1240
1241In rare cases you actually do not want to read anything from the
1242socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1243any queued callbacks will be executed then. To start reading again, call
1244C<start_read>.
1245
1246Note that AnyEvent::Handle will automatically C<start_read> for you when
1247you change the C<on_read> callback or push/unshift a read callback, and it
1248will automatically C<stop_read> for you when neither C<on_read> is set nor
1249there are any read requests in the queue.
1250
1251=cut
1252
1253sub stop_read {
1254 my ($self) = @_;
1255
1256 delete $self->{_rw};
1257}
1258
1259sub start_read {
1260 my ($self) = @_;
1261
1262 unless ($self->{_rw} || $self->{_eof}) {
1263 Scalar::Util::weaken $self;
1264
1265 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1266 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1267 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1268
1269 if ($len > 0) {
1270 $self->{_activity} = AnyEvent->now;
1271
1272 $self->{filter_r}
1273 ? $self->{filter_r}($self, $rbuf)
1274 : $self->{_in_drain} || $self->_drain_rbuf;
1275
1276 } elsif (defined $len) {
1277 delete $self->{_rw};
1278 $self->{_eof} = 1;
1279 $self->_drain_rbuf unless $self->{_in_drain};
1280
1281 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1282 return $self->_error ($!, 1);
184 } 1283 }
185 }); 1284 });
1285 }
186} 1286}
187 1287
188=item B<on_error ($callback)> 1288sub _dotls {
189
190Whenever a read or write operation resulted in an error the C<$callback>
191will be called.
192
193The first argument of C<$callback> will be the L<AnyEvent::Handle> object itself.
194The error is given as errno in C<$!>.
195
196=cut
197
198sub on_error {
199 $_[0]->{on_error} = $_[1];
200}
201
202=item B<on_eof ($callback)>
203
204Installs the C<$callback> that will be called when the end of file is
205encountered in a read operation this C<$callback> will be called. The first
206argument will be the L<AnyEvent::Handle> object itself.
207
208=cut
209
210sub on_eof {
211 $_[0]->{on_eof} = $_[1];
212}
213
214=item B<rbuf>
215
216Returns a reference to the read buffer.
217
218NOTE: The read buffer should only be used or modified if the C<on_read>
219method is used directly. The C<read> and C<readlines> methods will provide
220the read data to their callbacks.
221
222=cut
223
224sub rbuf : lvalue {
225 $_[0]->{rbuf}
226}
227
228=item B<read ($len, $callback)>
229
230Will read exactly C<$len> bytes from the filehandle and call the C<$callback>
231if done so. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
232object itself and the second argument the read data.
233
234NOTE: This method will override any callbacks installed via the C<on_read> method.
235
236=cut
237
238sub read {
239 my ($self, $len, $cb) = @_; 1289 my ($self) = @_;
240 1290
241 $self->{read_cb} = $cb; 1291 my $buf;
242 my $old_blk_size = $self->{read_block_size};
243 $self->{read_block_size} = $len;
244 1292
245 $self->on_read (sub { 1293 if (length $self->{_tls_wbuf}) {
246 #d# warn "OFOFO $len || ".length($_[0]->{rbuf})."||\n"; 1294 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
247 1295 substr $self->{_tls_wbuf}, 0, $len, "";
248 if ($len == length $_[0]->{rbuf}) {
249 $_[0]->{read_block_size} = $old_blk_size;
250 $_[0]->on_read (undef);
251 $_[0]->{read_cb}->($_[0], (substr $self->{rbuf}, 0, $len, ''));
252 } 1296 }
253 }); 1297 }
254}
255 1298
256=item B<readlines ($callback)> 1299 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
257 1300 $self->{wbuf} .= $buf;
258=item B<readlines ($sep, $callback)> 1301 $self->_drain_wbuf;
259
260This method will read lines from the filehandle, seperated by C<$sep> or C<"\n">
261if C<$sep> is not provided. C<$sep> will be used as "line" seperator.
262
263The C<$callback> will be called when at least one
264line could be read. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
265object itself and the rest of the arguments will be the read lines.
266
267NOTE: This method will override any callbacks installed via the C<on_read> method.
268
269=cut
270
271sub readlines {
272 my ($self, $sep, $cb) = @_;
273
274 if (ref $sep) {
275 $cb = $sep;
276 $sep = "\n";
277
278 } elsif (not defined $sep) {
279 $sep = "\n";
280 } 1302 }
281 1303
282 my $sep_len = length $sep; 1304 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
283 1305 if (length $buf) {
284 $self->{on_readline} = $cb; 1306 $self->{rbuf} .= $buf;
285 1307 $self->_drain_rbuf unless $self->{_in_drain};
286 $self->on_read (sub { 1308 } else {
287 my @lines; 1309 # let's treat SSL-eof as we treat normal EOF
288 my $rb = \$_[0]->{rbuf}; 1310 $self->{_eof} = 1;
289 my $pos; 1311 $self->_shutdown;
290 while (($pos = index ($$rb, $sep)) >= 0) { 1312 return;
291 push @lines, substr $$rb, 0, $pos + $sep_len, '';
292 } 1313 }
293 $self->{on_readline}->($_[0], @lines); 1314 }
1315
1316 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317
1318 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 return $self->_error ($!, 1);
1321 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 return $self->_error (&Errno::EIO, 1);
1323 }
1324
1325 # all others are fine for our purposes
1326 }
1327}
1328
1329=item $handle->starttls ($tls[, $tls_ctx])
1330
1331Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332object is created, you can also do that at a later time by calling
1333C<starttls>.
1334
1335The first argument is the same as the C<tls> constructor argument (either
1336C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337
1338The second argument is the optional C<Net::SSLeay::CTX> object that is
1339used when AnyEvent::Handle has to create its own TLS connection object.
1340
1341The TLS connection object will end up in C<< $handle->{tls} >> after this
1342call and can be used or changed to your liking. Note that the handshake
1343might have already started when this function returns.
1344
1345=cut
1346
1347sub starttls {
1348 my ($self, $ssl, $ctx) = @_;
1349
1350 $self->stoptls;
1351
1352 if ($ssl eq "accept") {
1353 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1354 Net::SSLeay::set_accept_state ($ssl);
1355 } elsif ($ssl eq "connect") {
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357 Net::SSLeay::set_connect_state ($ssl);
1358 }
1359
1360 $self->{tls} = $ssl;
1361
1362 # basically, this is deep magic (because SSL_read should have the same issues)
1363 # but the openssl maintainers basically said: "trust us, it just works".
1364 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365 # and mismaintained ssleay-module doesn't even offer them).
1366 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1367 Net::SSLeay::CTX_set_mode ($self->{tls},
1368 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1370
1371 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373
1374 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1375
1376 $self->{filter_w} = sub {
1377 $_[0]{_tls_wbuf} .= ${$_[1]};
1378 &_dotls;
294 }); 1379 };
1380 $self->{filter_r} = sub {
1381 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 &_dotls;
1383 };
295} 1384}
296 1385
297=item B<write ($data)> 1386=item $handle->stoptls
298 1387
299=item B<write ($callback)> 1388Destroys the SSL connection, if any. Partial read or write data will be
1389lost.
300 1390
301=item B<write ($data, $callback)>
302
303This method will write C<$data> to the filehandle and call the C<$callback>
304afterwards. If only C<$callback> is provided it will be called when the
305write buffer becomes empty the next time (or immediately if it already is empty).
306
307=cut 1391=cut
308 1392
309sub write { 1393sub stoptls {
310 my ($self, $data, $cb) = @_;
311 if (ref $data) { $cb = $data; undef $data }
312 push @{$self->{write_bufs}}, [$data, $cb];
313 $self->_check_writer;
314}
315
316sub _check_writer {
317 my ($self) = @_; 1394 my ($self) = @_;
318 1395
319 if ($self->{write_w}) { 1396 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
320 unless ($self->{write_cb}) {
321 while (@{$self->{write_bufs}} && not defined $self->{write_bufs}->[0]->[1]) {
322 my $wba = shift @{$self->{write_bufs}};
323 $self->{wbuf} .= $wba->[0];
324 }
325 }
326 return;
327 }
328 1397
329 my $wba = shift @{$self->{write_bufs}} 1398 delete $self->{_rbio};
330 or return; 1399 delete $self->{_wbio};
1400 delete $self->{_tls_wbuf};
1401 delete $self->{filter_r};
1402 delete $self->{filter_w};
1403}
331 1404
332 unless (defined $wba->[0]) { 1405sub DESTROY {
333 $wba->[1]->($self) if $wba->[1]; 1406 my $self = shift;
334 $self->_check_writer;
335 return;
336 }
337 1407
338 $self->{wbuf} = $wba->[0]; 1408 $self->stoptls;
339 $self->{write_cb} = $wba->[1];
340 1409
341 $self->{write_w} = 1410 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
342 AnyEvent->io (poll => 'w', fh => $self->{fh}, cb => sub { 1411
1412 if ($linger && length $self->{wbuf}) {
1413 my $fh = delete $self->{fh};
1414 my $wbuf = delete $self->{wbuf};
1415
1416 my @linger;
1417
1418 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
343 my $l = syswrite $self->{fh}, $self->{wbuf}, length $self->{wbuf}; 1419 my $len = syswrite $fh, $wbuf, length $wbuf;
344 1420
345 if (not defined $l) { 1421 if ($len > 0) {
346 return if $! == EAGAIN || $! == EINTR; 1422 substr $wbuf, 0, $len, "";
347 delete $self->{write_w};
348 $self->{on_error}->($self) if $self->{on_error};
349
350 } else { 1423 } else {
351 substr $self->{wbuf}, 0, $l, ''; 1424 @linger = (); # end
352
353 if (length ($self->{wbuf}) == 0) {
354 $self->{write_cb}->($self) if $self->{write_cb};
355
356 delete $self->{write_w};
357 delete $self->{wbuf};
358 delete $self->{write_cb};
359
360 $self->_check_writer;
361 }
362 } 1425 }
363 }); 1426 });
1427 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1428 @linger = ();
1429 });
1430 }
1431}
1432
1433=item AnyEvent::Handle::TLS_CTX
1434
1435This function creates and returns the Net::SSLeay::CTX object used by
1436default for TLS mode.
1437
1438The context is created like this:
1439
1440 Net::SSLeay::load_error_strings;
1441 Net::SSLeay::SSLeay_add_ssl_algorithms;
1442 Net::SSLeay::randomize;
1443
1444 my $CTX = Net::SSLeay::CTX_new;
1445
1446 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447
1448=cut
1449
1450our $TLS_CTX;
1451
1452sub TLS_CTX() {
1453 $TLS_CTX || do {
1454 require Net::SSLeay;
1455
1456 Net::SSLeay::load_error_strings ();
1457 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458 Net::SSLeay::randomize ();
1459
1460 $TLS_CTX = Net::SSLeay::CTX_new ();
1461
1462 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463
1464 $TLS_CTX
1465 }
364} 1466}
365 1467
366=back 1468=back
367 1469
1470=head1 SUBCLASSING AnyEvent::Handle
1471
1472In many cases, you might want to subclass AnyEvent::Handle.
1473
1474To make this easier, a given version of AnyEvent::Handle uses these
1475conventions:
1476
1477=over 4
1478
1479=item * all constructor arguments become object members.
1480
1481At least initially, when you pass a C<tls>-argument to the constructor it
1482will end up in C<< $handle->{tls} >>. Those members might be changed or
1483mutated later on (for example C<tls> will hold the TLS connection object).
1484
1485=item * other object member names are prefixed with an C<_>.
1486
1487All object members not explicitly documented (internal use) are prefixed
1488with an underscore character, so the remaining non-C<_>-namespace is free
1489for use for subclasses.
1490
1491=item * all members not documented here and not prefixed with an underscore
1492are free to use in subclasses.
1493
1494Of course, new versions of AnyEvent::Handle may introduce more "public"
1495member variables, but thats just life, at least it is documented.
1496
1497=back
1498
368=head1 AUTHOR 1499=head1 AUTHOR
369 1500
370Robin Redeker, C<< <elmex at ta-sa.org> >> 1501Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
371 1502
372=cut 1503=cut
373 1504
3741; # End of AnyEvent::Handle 15051; # End of AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines