ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.61 by root, Fri Jun 6 10:23:50 2008 UTC vs.
Revision 1.172 by root, Wed Aug 5 20:50:27 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.14; 16our $VERSION = 4.901;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
121 184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
126 210
127To append to the write buffer, use the C<< ->push_write >> method. 211To append to the write buffer, use the C<< ->push_write >> method.
212
213This callback is useful when you don't want to put all of your write data
214into the queue at once, for example, when you want to write the contents
215of some file to the socket you might not want to read the whole file into
216memory and push it into the queue, but instead only read more data from
217the file when the write queue becomes empty.
128 218
129=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
130 220
131If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
132seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
133handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
134missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
135 225
136Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
140 231
141Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
142 233
143=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
144 235
148 239
149=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
150 241
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
154 245
155For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
159isn't finished). 250isn't finished).
160 251
252=item autocork => <boolean>
253
254When disabled (the default), then C<push_write> will try to immediately
255write the data to the handle, if possible. This avoids having to register
256a write watcher and wait for the next event loop iteration, but can
257be inefficient if you write multiple small chunks (on the wire, this
258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
260
261When enabled, then writes will always be queued till the next event loop
262iteration. This is efficient when you do many small writes per iteration,
263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
265
266=item no_delay => <boolean>
267
268When doing small writes on sockets, your operating system kernel might
269wait a bit for more data before actually sending it out. This is called
270the Nagle algorithm, and usually it is beneficial.
271
272In some situations you want as low a delay as possible, which can be
273accomplishd by setting this option to a true value.
274
275The default is your opertaing system's default behaviour (most likely
276enabled), this option explicitly enables or disables it, if possible.
277
161=item read_size => <bytes> 278=item read_size => <bytes>
162 279
163The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
165 283
166=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
167 285
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
170considered empty. 288considered empty.
171 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
295=item linger => <seconds>
296
297If non-zero (default: C<3600>), then the destructor of the
298AnyEvent::Handle object will check whether there is still outstanding
299write data and will install a watcher that will write this data to the
300socket. No errors will be reported (this mostly matches how the operating
301system treats outstanding data at socket close time).
302
303This will not work for partial TLS data that could not be encoded
304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
172=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
173 318
174When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
175will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
176data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
177 325
178TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
179automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
180 330
181For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
182connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
183 334
184You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
185to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
186or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
187AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
188 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
189See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
190 351
191=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
192 353
193Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
194(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
195missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
196 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
197=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
198 395
199This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
200 397
201If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
202suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
203 401
204Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
205use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
206 404
207=item filter_r => $cb
208
209=item filter_w => $cb
210
211These exist, but are undocumented at this time.
212
213=back 405=back
214 406
215=cut 407=cut
216 408
217sub new { 409sub new {
218 my $class = shift; 410 my $class = shift;
219
220 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
221 412
222 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
223 476
224 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
225
226 if ($self->{tls}) {
227 require Net::SSLeay;
228 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
229 }
230 478
231 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
232 $self->_timeout; 480 $self->_timeout;
233 481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
234 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
235 488
236 $self 489 $self->start_read
237} 490 if $self->{on_read} || @{ $self->{_queue} };
238 491
492 $self->_drain_wbuf;
493}
494
239sub _shutdown { 495#sub _shutdown {
240 my ($self) = @_; 496# my ($self) = @_;
241 497#
242 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
243 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
244 delete $self->{_ww}; 500#
245 delete $self->{fh}; 501# &_freetls;
246 502#}
247 $self->stoptls;
248}
249 503
250sub _error { 504sub _error {
251 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
252
253 $self->_shutdown
254 if $fatal;
255 506
256 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
257 509
258 if ($self->{on_error}) { 510 if ($self->{on_error}) {
259 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
260 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
261 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
262 } 516 }
263} 517}
264 518
265=item $fh = $handle->fh 519=item $fh = $handle->fh
266 520
267This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
268 522
269=cut 523=cut
270 524
271sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
272 526
290 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
291} 545}
292 546
293=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
294 548
295Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
296(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
297argument. 551argument and method.
298 552
299=cut 553=cut
300 554
301sub on_timeout { 555sub on_timeout {
302 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
557}
558
559=item $handle->autocork ($boolean)
560
561Enables or disables the current autocork behaviour (see C<autocork>
562constructor argument). Changes will only take effect on the next write.
563
564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
569
570=item $handle->no_delay ($boolean)
571
572Enables or disables the C<no_delay> setting (see constructor argument of
573the same name for details).
574
575=cut
576
577sub no_delay {
578 $_[0]{no_delay} = $_[1];
579
580 eval {
581 local $SIG{__DIE__};
582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
303} 615}
304 616
305############################################################################# 617#############################################################################
306 618
307=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
320# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
321# also check for time-outs 633# also check for time-outs
322sub _timeout { 634sub _timeout {
323 my ($self) = @_; 635 my ($self) = @_;
324 636
325 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
326 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
327 639
328 # when would the timeout trigger? 640 # when would the timeout trigger?
329 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
330 642
333 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
334 646
335 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
336 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
337 } else { 649 } else {
338 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
339 } 651 }
340 652
341 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
342 return unless $self->{timeout}; 654 return unless $self->{timeout};
343 655
385 my ($self, $cb) = @_; 697 my ($self, $cb) = @_;
386 698
387 $self->{on_drain} = $cb; 699 $self->{on_drain} = $cb;
388 700
389 $cb->($self) 701 $cb->($self)
390 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 702 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
391} 703}
392 704
393=item $handle->push_write ($data) 705=item $handle->push_write ($data)
394 706
395Queues the given scalar to be written. You can push as much data as you 707Queues the given scalar to be written. You can push as much data as you
406 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
407 719
408 my $cb = sub { 720 my $cb = sub {
409 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
410 722
411 if ($len >= 0) { 723 if (defined $len) {
412 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
413 725
414 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
415 727
416 $self->{on_drain}($self) 728 $self->{on_drain}($self)
417 if $self->{low_water_mark} >= length $self->{wbuf} 729 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
418 && $self->{on_drain}; 730 && $self->{on_drain};
419 731
420 delete $self->{_ww} unless length $self->{wbuf}; 732 delete $self->{_ww} unless length $self->{wbuf};
421 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 733 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
422 $self->_error ($!, 1); 734 $self->_error ($!, 1);
423 } 735 }
424 }; 736 };
425 737
426 # try to write data immediately 738 # try to write data immediately
427 $cb->(); 739 $cb->() unless $self->{autocork};
428 740
429 # if still data left in wbuf, we need to poll 741 # if still data left in wbuf, we need to poll
430 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 742 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
431 if length $self->{wbuf}; 743 if length $self->{wbuf};
432 }; 744 };
446 758
447 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 759 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
448 ->($self, @_); 760 ->($self, @_);
449 } 761 }
450 762
451 if ($self->{filter_w}) { 763 if ($self->{tls}) {
452 $self->{filter_w}($self, \$_[0]); 764 $self->{_tls_wbuf} .= $_[0];
765 &_dotls ($self) if $self->{fh};
453 } else { 766 } else {
454 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
455 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
456 } 769 }
457} 770}
458 771
459=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
460 773
474=cut 787=cut
475 788
476register_write_type netstring => sub { 789register_write_type netstring => sub {
477 my ($self, $string) = @_; 790 my ($self, $string) = @_;
478 791
479 sprintf "%d:%s,", (length $string), $string 792 (length $string) . ":$string,"
480}; 793};
481 794
482=item packstring => $format, $data 795=item packstring => $format, $data
483 796
484An octet string prefixed with an encoded length. The encoding C<$format> 797An octet string prefixed with an encoded length. The encoding C<$format>
489=cut 802=cut
490 803
491register_write_type packstring => sub { 804register_write_type packstring => sub {
492 my ($self, $format, $string) = @_; 805 my ($self, $format, $string) = @_;
493 806
494 pack "$format/a", $string 807 pack "$format/a*", $string
495}; 808};
496 809
497=item json => $array_or_hashref 810=item json => $array_or_hashref
498 811
499Encodes the given hash or array reference into a JSON object. Unless you 812Encodes the given hash or array reference into a JSON object. Unless you
533 846
534 $self->{json} ? $self->{json}->encode ($ref) 847 $self->{json} ? $self->{json}->encode ($ref)
535 : JSON::encode_json ($ref) 848 : JSON::encode_json ($ref)
536}; 849};
537 850
851=item storable => $reference
852
853Freezes the given reference using L<Storable> and writes it to the
854handle. Uses the C<nfreeze> format.
855
856=cut
857
858register_write_type storable => sub {
859 my ($self, $ref) = @_;
860
861 require Storable;
862
863 pack "w/a*", Storable::nfreeze ($ref)
864};
865
538=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
539 892
540=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
541 894
542This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
543Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
564ways, the "simple" way, using only C<on_read> and the "complex" way, using 917ways, the "simple" way, using only C<on_read> and the "complex" way, using
565a queue. 918a queue.
566 919
567In the simple case, you just install an C<on_read> callback and whenever 920In the simple case, you just install an C<on_read> callback and whenever
568new data arrives, it will be called. You can then remove some data (if 921new data arrives, it will be called. You can then remove some data (if
569enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 922enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
570or not. 923leave the data there if you want to accumulate more (e.g. when only a
924partial message has been received so far).
571 925
572In the more complex case, you want to queue multiple callbacks. In this 926In the more complex case, you want to queue multiple callbacks. In this
573case, AnyEvent::Handle will call the first queued callback each time new 927case, AnyEvent::Handle will call the first queued callback each time new
574data arrives (also the first time it is queued) and removes it when it has 928data arrives (also the first time it is queued) and removes it when it has
575done its job (see C<push_read>, below). 929done its job (see C<push_read>, below).
593 # handle xml 947 # handle xml
594 }); 948 });
595 }); 949 });
596 }); 950 });
597 951
598Example 2: Implement a client for a protocol that replies either with 952Example 2: Implement a client for a protocol that replies either with "OK"
599"OK" and another line or "ERROR" for one request, and 64 bytes for the 953and another line or "ERROR" for the first request that is sent, and 64
600second request. Due tot he availability of a full queue, we can just 954bytes for the second request. Due to the availability of a queue, we can
601pipeline sending both requests and manipulate the queue as necessary in 955just pipeline sending both requests and manipulate the queue as necessary
602the callbacks: 956in the callbacks.
603 957
604 # request one 958When the first callback is called and sees an "OK" response, it will
959C<unshift> another line-read. This line-read will be queued I<before> the
96064-byte chunk callback.
961
962 # request one, returns either "OK + extra line" or "ERROR"
605 $handle->push_write ("request 1\015\012"); 963 $handle->push_write ("request 1\015\012");
606 964
607 # we expect "ERROR" or "OK" as response, so push a line read 965 # we expect "ERROR" or "OK" as response, so push a line read
608 $handle->push_read (line => sub { 966 $handle->push_read (line => sub {
609 # if we got an "OK", we have to _prepend_ another line, 967 # if we got an "OK", we have to _prepend_ another line,
616 ... 974 ...
617 }); 975 });
618 } 976 }
619 }); 977 });
620 978
621 # request two 979 # request two, simply returns 64 octets
622 $handle->push_write ("request 2\015\012"); 980 $handle->push_write ("request 2\015\012");
623 981
624 # simply read 64 bytes, always 982 # simply read 64 bytes, always
625 $handle->push_read (chunk => 64, sub { 983 $handle->push_read (chunk => 64, sub {
626 my $response = $_[1]; 984 my $response = $_[1];
632=cut 990=cut
633 991
634sub _drain_rbuf { 992sub _drain_rbuf {
635 my ($self) = @_; 993 my ($self) = @_;
636 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
637 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
638
639 if (
640 defined $self->{rbuf_max}
641 && $self->{rbuf_max} < length $self->{rbuf}
642 ) {
643 return $self->_error (&Errno::ENOSPC, 1);
644 }
645 998
646 while () { 999 while () {
647 no strict 'refs'; 1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
648 1004
649 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
650 1006
651 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
652 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
653 if ($self->{_eof}) { 1009 # no progress can be made
654 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
655 $self->_error (&Errno::EPIPE, 1), last; 1011 $self->_error (Errno::EPIPE, 1), return
656 } 1012 if $self->{_eof};
657 1013
658 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
659 last; 1015 last;
660 } 1016 }
661 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
668 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
669 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
670 ) { 1026 ) {
671 # no further data will arrive 1027 # no further data will arrive
672 # so no progress can be made 1028 # so no progress can be made
673 $self->_error (&Errno::EPIPE, 1), last 1029 $self->_error (Errno::EPIPE, 1), return
674 if $self->{_eof}; 1030 if $self->{_eof};
675 1031
676 last; # more data might arrive 1032 last; # more data might arrive
677 } 1033 }
678 } else { 1034 } else {
679 # read side becomes idle 1035 # read side becomes idle
680 delete $self->{_rw}; 1036 delete $self->{_rw} unless $self->{tls};
681 last; 1037 last;
682 } 1038 }
683 } 1039 }
684 1040
1041 if ($self->{_eof}) {
1042 $self->{on_eof}
685 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
686 if $self->{_eof} && $self->{on_eof}; 1044 : $self->_error (0, 1, "Unexpected end-of-file");
1045
1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
1054 }
687 1055
688 # may need to restart read watcher 1056 # may need to restart read watcher
689 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
690 $self->start_read 1058 $self->start_read
691 if $self->{on_read} || @{ $self->{_queue} }; 1059 if $self->{on_read} || @{ $self->{_queue} };
702 1070
703sub on_read { 1071sub on_read {
704 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
705 1073
706 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
707 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
708} 1076}
709 1077
710=item $handle->rbuf 1078=item $handle->rbuf
711 1079
712Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
713 1081
714You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
715you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
716 1087
717NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
718C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
719automatically manage the read buffer. 1090automatically manage the read buffer.
720 1091
761 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
762 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
763 } 1134 }
764 1135
765 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
766 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
767} 1138}
768 1139
769sub unshift_read { 1140sub unshift_read {
770 my $self = shift; 1141 my $self = shift;
771 my $cb = pop; 1142 my $cb = pop;
777 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
778 } 1149 }
779 1150
780 1151
781 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
782 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
783} 1154}
784 1155
785=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
786 1157
787=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
817 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1188 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
818 1 1189 1
819 } 1190 }
820}; 1191};
821 1192
822# compatibility with older API
823sub push_read_chunk {
824 $_[0]->push_read (chunk => $_[1], $_[2]);
825}
826
827sub unshift_read_chunk {
828 $_[0]->unshift_read (chunk => $_[1], $_[2]);
829}
830
831=item line => [$eol, ]$cb->($handle, $line, $eol) 1193=item line => [$eol, ]$cb->($handle, $line, $eol)
832 1194
833The callback will be called only once a full line (including the end of 1195The callback will be called only once a full line (including the end of
834line marker, C<$eol>) has been read. This line (excluding the end of line 1196line marker, C<$eol>) has been read. This line (excluding the end of line
835marker) will be passed to the callback as second argument (C<$line>), and 1197marker) will be passed to the callback as second argument (C<$line>), and
850=cut 1212=cut
851 1213
852register_read_type line => sub { 1214register_read_type line => sub {
853 my ($self, $cb, $eol) = @_; 1215 my ($self, $cb, $eol) = @_;
854 1216
855 $eol = qr|(\015?\012)| if @_ < 3; 1217 if (@_ < 3) {
1218 # this is more than twice as fast as the generic code below
1219 sub {
1220 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1221
1222 $cb->($_[0], $1, $2);
1223 1
1224 }
1225 } else {
856 $eol = quotemeta $eol unless ref $eol; 1226 $eol = quotemeta $eol unless ref $eol;
857 $eol = qr|^(.*?)($eol)|s; 1227 $eol = qr|^(.*?)($eol)|s;
858 1228
859 sub { 1229 sub {
860 $_[0]{rbuf} =~ s/$eol// or return; 1230 $_[0]{rbuf} =~ s/$eol// or return;
861 1231
862 $cb->($_[0], $1, $2); 1232 $cb->($_[0], $1, $2);
1233 1
863 1 1234 }
864 } 1235 }
865}; 1236};
866
867# compatibility with older API
868sub push_read_line {
869 my $self = shift;
870 $self->push_read (line => @_);
871}
872
873sub unshift_read_line {
874 my $self = shift;
875 $self->unshift_read (line => @_);
876}
877 1237
878=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1238=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
879 1239
880Makes a regex match against the regex object C<$accept> and returns 1240Makes a regex match against the regex object C<$accept> and returns
881everything up to and including the match. 1241everything up to and including the match.
931 return 1; 1291 return 1;
932 } 1292 }
933 1293
934 # reject 1294 # reject
935 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
936 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
937 } 1297 }
938 1298
939 # skip 1299 # skip
940 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
941 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
957 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
958 1318
959 sub { 1319 sub {
960 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
961 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
962 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
963 } 1323 }
964 return; 1324 return;
965 } 1325 }
966 1326
967 my $len = $1; 1327 my $len = $1;
970 my $string = $_[1]; 1330 my $string = $_[1];
971 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
972 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
973 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
974 } else { 1334 } else {
975 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
976 } 1336 }
977 }); 1337 });
978 }); 1338 });
979 1339
980 1 1340 1
986An octet string prefixed with an encoded length. The encoding C<$format> 1346An octet string prefixed with an encoded length. The encoding C<$format>
987uses the same format as a Perl C<pack> format, but must specify a single 1347uses the same format as a Perl C<pack> format, but must specify a single
988integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1348integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
989optional C<!>, C<< < >> or C<< > >> modifier). 1349optional C<!>, C<< < >> or C<< > >> modifier).
990 1350
991DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1351For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1352EPP uses a prefix of C<N> (4 octtes).
992 1353
993Example: read a block of data prefixed by its length in BER-encoded 1354Example: read a block of data prefixed by its length in BER-encoded
994format (very efficient). 1355format (very efficient).
995 1356
996 $handle->push_read (packstring => "w", sub { 1357 $handle->push_read (packstring => "w", sub {
1002register_read_type packstring => sub { 1363register_read_type packstring => sub {
1003 my ($self, $cb, $format) = @_; 1364 my ($self, $cb, $format) = @_;
1004 1365
1005 sub { 1366 sub {
1006 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1367 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1007 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1368 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1008 or return; 1369 or return;
1009 1370
1371 $format = length pack $format, $len;
1372
1373 # bypass unshift if we already have the remaining chunk
1374 if ($format + $len <= length $_[0]{rbuf}) {
1375 my $data = substr $_[0]{rbuf}, $format, $len;
1376 substr $_[0]{rbuf}, 0, $format + $len, "";
1377 $cb->($_[0], $data);
1378 } else {
1010 # remove prefix 1379 # remove prefix
1011 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1380 substr $_[0]{rbuf}, 0, $format, "";
1012 1381
1013 # read rest 1382 # read remaining chunk
1014 $_[0]->unshift_read (chunk => $len, $cb); 1383 $_[0]->unshift_read (chunk => $len, $cb);
1384 }
1015 1385
1016 1 1386 1
1017 } 1387 }
1018}; 1388};
1019 1389
1020=item json => $cb->($handle, $hash_or_arrayref) 1390=item json => $cb->($handle, $hash_or_arrayref)
1021 1391
1022Reads a JSON object or array, decodes it and passes it to the callback. 1392Reads a JSON object or array, decodes it and passes it to the
1393callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1023 1394
1024If a C<json> object was passed to the constructor, then that will be used 1395If a C<json> object was passed to the constructor, then that will be used
1025for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1396for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1026 1397
1027This read type uses the incremental parser available with JSON version 1398This read type uses the incremental parser available with JSON version
1034the C<json> write type description, above, for an actual example. 1405the C<json> write type description, above, for an actual example.
1035 1406
1036=cut 1407=cut
1037 1408
1038register_read_type json => sub { 1409register_read_type json => sub {
1039 my ($self, $cb, $accept, $reject, $skip) = @_; 1410 my ($self, $cb) = @_;
1040 1411
1041 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1042 1415
1043 my $data; 1416 my $data;
1044 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1045 1418
1046 my $json = $self->{json} ||= JSON->new->utf8;
1047
1048 sub { 1419 sub {
1049 my $ref = $json->incr_parse ($self->{rbuf}); 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1050 1421
1051 if ($ref) { 1422 if ($ref) {
1052 $self->{rbuf} = $json->incr_text; 1423 $self->{rbuf} = $json->incr_text;
1053 $json->incr_text = ""; 1424 $json->incr_text = "";
1054 $cb->($self, $ref); 1425 $cb->($self, $ref);
1055 1426
1056 1 1427 1
1428 } elsif ($@) {
1429 # error case
1430 $json->incr_skip;
1431
1432 $self->{rbuf} = $json->incr_text;
1433 $json->incr_text = "";
1434
1435 $self->_error (Errno::EBADMSG);
1436
1437 ()
1057 } else { 1438 } else {
1058 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1440
1059 () 1441 ()
1060 } 1442 }
1443 }
1444};
1445
1446=item storable => $cb->($handle, $ref)
1447
1448Deserialises a L<Storable> frozen representation as written by the
1449C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1450data).
1451
1452Raises C<EBADMSG> error if the data could not be decoded.
1453
1454=cut
1455
1456register_read_type storable => sub {
1457 my ($self, $cb) = @_;
1458
1459 require Storable;
1460
1461 sub {
1462 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1463 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1464 or return;
1465
1466 my $format = length pack "w", $len;
1467
1468 # bypass unshift if we already have the remaining chunk
1469 if ($format + $len <= length $_[0]{rbuf}) {
1470 my $data = substr $_[0]{rbuf}, $format, $len;
1471 substr $_[0]{rbuf}, 0, $format + $len, "";
1472 $cb->($_[0], Storable::thaw ($data));
1473 } else {
1474 # remove prefix
1475 substr $_[0]{rbuf}, 0, $format, "";
1476
1477 # read remaining chunk
1478 $_[0]->unshift_read (chunk => $len, sub {
1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1480 $cb->($_[0], $ref);
1481 } else {
1482 $self->_error (Errno::EBADMSG);
1483 }
1484 });
1485 }
1486
1487 1
1061 } 1488 }
1062}; 1489};
1063 1490
1064=back 1491=back
1065 1492
1095Note that AnyEvent::Handle will automatically C<start_read> for you when 1522Note that AnyEvent::Handle will automatically C<start_read> for you when
1096you change the C<on_read> callback or push/unshift a read callback, and it 1523you change the C<on_read> callback or push/unshift a read callback, and it
1097will automatically C<stop_read> for you when neither C<on_read> is set nor 1524will automatically C<stop_read> for you when neither C<on_read> is set nor
1098there are any read requests in the queue. 1525there are any read requests in the queue.
1099 1526
1527These methods will have no effect when in TLS mode (as TLS doesn't support
1528half-duplex connections).
1529
1100=cut 1530=cut
1101 1531
1102sub stop_read { 1532sub stop_read {
1103 my ($self) = @_; 1533 my ($self) = @_;
1104 1534
1105 delete $self->{_rw}; 1535 delete $self->{_rw} unless $self->{tls};
1106} 1536}
1107 1537
1108sub start_read { 1538sub start_read {
1109 my ($self) = @_; 1539 my ($self) = @_;
1110 1540
1111 unless ($self->{_rw} || $self->{_eof}) { 1541 unless ($self->{_rw} || $self->{_eof}) {
1112 Scalar::Util::weaken $self; 1542 Scalar::Util::weaken $self;
1113 1543
1114 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1544 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1115 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1545 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1116 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1546 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1117 1547
1118 if ($len > 0) { 1548 if ($len > 0) {
1119 $self->{_activity} = AnyEvent->now; 1549 $self->{_activity} = AnyEvent->now;
1120 1550
1121 $self->{filter_r} 1551 if ($self->{tls}) {
1122 ? $self->{filter_r}($self, $rbuf) 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1123 : $self->{_in_drain} || $self->_drain_rbuf; 1553
1554 &_dotls ($self);
1555 } else {
1556 $self->_drain_rbuf;
1557 }
1124 1558
1125 } elsif (defined $len) { 1559 } elsif (defined $len) {
1126 delete $self->{_rw}; 1560 delete $self->{_rw};
1127 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1128 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1129 1563
1130 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1131 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1132 } 1566 }
1133 }); 1567 });
1134 } 1568 }
1135} 1569}
1136 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1137sub _dotls { 1599sub _dotls {
1138 my ($self) = @_; 1600 my ($self) = @_;
1139 1601
1140 my $buf; 1602 my $tmp;
1141 1603
1142 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1143 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1144 substr $self->{_tls_wbuf}, 0, $len, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1145 } 1607 }
1146 }
1147 1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1613 }
1614
1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1616 unless (length $tmp) {
1617 $self->{_on_starttls}
1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1629 }
1630
1631 $self->{_tls_rbuf} .= $tmp;
1632 $self->_drain_rbuf;
1633 $self->{tls} or return; # tls session might have gone away in callback
1634 }
1635
1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1637 return $self->_tls_error ($tmp)
1638 if $tmp != $ERROR_WANT_READ
1639 && ($tmp != $ERROR_SYSCALL || $!);
1640
1148 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1149 $self->{wbuf} .= $buf; 1642 $self->{wbuf} .= $tmp;
1150 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1151 } 1644 }
1152 1645
1153 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1646 $self->{_on_starttls}
1154 if (length $buf) { 1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1155 $self->{rbuf} .= $buf; 1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1156 $self->_drain_rbuf unless $self->{_in_drain};
1157 } else {
1158 # let's treat SSL-eof as we treat normal EOF
1159 $self->{_eof} = 1;
1160 $self->_shutdown;
1161 return;
1162 }
1163 }
1164
1165 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1166
1167 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1168 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1169 return $self->_error ($!, 1);
1170 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1171 return $self->_error (&Errno::EIO, 1);
1172 }
1173
1174 # all others are fine for our purposes
1175 }
1176} 1649}
1177 1650
1178=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1179 1652
1180Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1181object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1182C<starttls>. 1655C<starttls>.
1183 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1184The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1185C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1186 1663
1187The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1188used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1189 1668
1190The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1191call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1192might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1193 1673
1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1677
1194=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1195 1681
1196sub starttls { 1682sub starttls {
1197 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1198 1684
1199 $self->stoptls; 1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1200 1687
1201 if ($ssl eq "accept") { 1688 $self->{tls} = $tls;
1202 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1689 $self->{tls_ctx} = $ctx if @_ > 2;
1203 Net::SSLeay::set_accept_state ($ssl); 1690
1204 } elsif ($ssl eq "connect") { 1691 return unless $self->{fh};
1205 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1692
1206 Net::SSLeay::set_connect_state ($ssl); 1693 require Net::SSLeay;
1694
1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1207 } 1713
1208 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1209 $self->{tls} = $ssl; 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1210 1716
1211 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1212 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1213 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1214 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1215 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1721 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1722 #
1723 # in short: this is a mess.
1724 #
1725 # note that we do not try to keep the length constant between writes as we are required to do.
1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1728 # have identity issues in that area.
1216 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1217 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1218 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1219 1733
1220 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1221 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1222 1736
1737 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1738
1223 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1739 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1224 1740
1225 $self->{filter_w} = sub { 1741 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1226 $_[0]{_tls_wbuf} .= ${$_[1]}; 1742 if $self->{on_starttls};
1227 &_dotls; 1743
1228 }; 1744 &_dotls; # need to trigger the initial handshake
1229 $self->{filter_r} = sub { 1745 $self->start_read; # make sure we actually do read
1230 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1231 &_dotls;
1232 };
1233} 1746}
1234 1747
1235=item $handle->stoptls 1748=item $handle->stoptls
1236 1749
1237Destroys the SSL connection, if any. Partial read or write data will be 1750Shuts down the SSL connection - this makes a proper EOF handshake by
1238lost. 1751sending a close notify to the other side, but since OpenSSL doesn't
1752support non-blocking shut downs, it is not guarenteed that you can re-use
1753the stream afterwards.
1239 1754
1240=cut 1755=cut
1241 1756
1242sub stoptls { 1757sub stoptls {
1243 my ($self) = @_; 1758 my ($self) = @_;
1244 1759
1245 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1760 if ($self->{tls}) {
1761 Net::SSLeay::shutdown ($self->{tls});
1246 1762
1247 delete $self->{_rbio}; 1763 &_dotls;
1248 delete $self->{_wbio}; 1764
1249 delete $self->{_tls_wbuf}; 1765# # we don't give a shit. no, we do, but we can't. no...#d#
1250 delete $self->{filter_r}; 1766# # we, we... have to use openssl :/#d#
1251 delete $self->{filter_w}; 1767# &_freetls;#d#
1768 }
1769}
1770
1771sub _freetls {
1772 my ($self) = @_;
1773
1774 return unless $self->{tls};
1775
1776 $self->{tls_ctx}->_put_session (delete $self->{tls})
1777 if $self->{tls} > 0;
1778
1779 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1252} 1780}
1253 1781
1254sub DESTROY { 1782sub DESTROY {
1255 my $self = shift; 1783 my ($self) = @_;
1256 1784
1257 $self->stoptls; 1785 &_freetls;
1786
1787 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1788
1789 if ($linger && length $self->{wbuf} && $self->{fh}) {
1790 my $fh = delete $self->{fh};
1791 my $wbuf = delete $self->{wbuf};
1792
1793 my @linger;
1794
1795 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1796 my $len = syswrite $fh, $wbuf, length $wbuf;
1797
1798 if ($len > 0) {
1799 substr $wbuf, 0, $len, "";
1800 } else {
1801 @linger = (); # end
1802 }
1803 });
1804 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1805 @linger = ();
1806 });
1807 }
1808}
1809
1810=item $handle->destroy
1811
1812Shuts down the handle object as much as possible - this call ensures that
1813no further callbacks will be invoked and as many resources as possible
1814will be freed. Any method you will call on the handle object after
1815destroying it in this way will be silently ignored (and it will return the
1816empty list).
1817
1818Normally, you can just "forget" any references to an AnyEvent::Handle
1819object and it will simply shut down. This works in fatal error and EOF
1820callbacks, as well as code outside. It does I<NOT> work in a read or write
1821callback, so when you want to destroy the AnyEvent::Handle object from
1822within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1823that case.
1824
1825Destroying the handle object in this way has the advantage that callbacks
1826will be removed as well, so if those are the only reference holders (as
1827is common), then one doesn't need to do anything special to break any
1828reference cycles.
1829
1830The handle might still linger in the background and write out remaining
1831data, as specified by the C<linger> option, however.
1832
1833=cut
1834
1835sub destroy {
1836 my ($self) = @_;
1837
1838 $self->DESTROY;
1839 %$self = ();
1840 bless $self, "AnyEvent::Handle::destroyed";
1841}
1842
1843sub AnyEvent::Handle::destroyed::AUTOLOAD {
1844 #nop
1258} 1845}
1259 1846
1260=item AnyEvent::Handle::TLS_CTX 1847=item AnyEvent::Handle::TLS_CTX
1261 1848
1262This function creates and returns the Net::SSLeay::CTX object used by 1849This function creates and returns the AnyEvent::TLS object used by default
1263default for TLS mode. 1850for TLS mode.
1264 1851
1265The context is created like this: 1852The context is created by calling L<AnyEvent::TLS> without any arguments.
1266
1267 Net::SSLeay::load_error_strings;
1268 Net::SSLeay::SSLeay_add_ssl_algorithms;
1269 Net::SSLeay::randomize;
1270
1271 my $CTX = Net::SSLeay::CTX_new;
1272
1273 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1274 1853
1275=cut 1854=cut
1276 1855
1277our $TLS_CTX; 1856our $TLS_CTX;
1278 1857
1279sub TLS_CTX() { 1858sub TLS_CTX() {
1280 $TLS_CTX || do { 1859 $TLS_CTX ||= do {
1281 require Net::SSLeay; 1860 require AnyEvent::TLS;
1282 1861
1283 Net::SSLeay::load_error_strings (); 1862 new AnyEvent::TLS
1284 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1285 Net::SSLeay::randomize ();
1286
1287 $TLS_CTX = Net::SSLeay::CTX_new ();
1288
1289 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1290
1291 $TLS_CTX
1292 } 1863 }
1293} 1864}
1294 1865
1295=back 1866=back
1867
1868
1869=head1 NONFREQUENTLY ASKED QUESTIONS
1870
1871=over 4
1872
1873=item I C<undef> the AnyEvent::Handle reference inside my callback and
1874still get further invocations!
1875
1876That's because AnyEvent::Handle keeps a reference to itself when handling
1877read or write callbacks.
1878
1879It is only safe to "forget" the reference inside EOF or error callbacks,
1880from within all other callbacks, you need to explicitly call the C<<
1881->destroy >> method.
1882
1883=item I get different callback invocations in TLS mode/Why can't I pause
1884reading?
1885
1886Unlike, say, TCP, TLS connections do not consist of two independent
1887communication channels, one for each direction. Or put differently. The
1888read and write directions are not independent of each other: you cannot
1889write data unless you are also prepared to read, and vice versa.
1890
1891This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1892callback invocations when you are not expecting any read data - the reason
1893is that AnyEvent::Handle always reads in TLS mode.
1894
1895During the connection, you have to make sure that you always have a
1896non-empty read-queue, or an C<on_read> watcher. At the end of the
1897connection (or when you no longer want to use it) you can call the
1898C<destroy> method.
1899
1900=item How do I read data until the other side closes the connection?
1901
1902If you just want to read your data into a perl scalar, the easiest way
1903to achieve this is by setting an C<on_read> callback that does nothing,
1904clearing the C<on_eof> callback and in the C<on_error> callback, the data
1905will be in C<$_[0]{rbuf}>:
1906
1907 $handle->on_read (sub { });
1908 $handle->on_eof (undef);
1909 $handle->on_error (sub {
1910 my $data = delete $_[0]{rbuf};
1911 });
1912
1913The reason to use C<on_error> is that TCP connections, due to latencies
1914and packets loss, might get closed quite violently with an error, when in
1915fact, all data has been received.
1916
1917It is usually better to use acknowledgements when transferring data,
1918to make sure the other side hasn't just died and you got the data
1919intact. This is also one reason why so many internet protocols have an
1920explicit QUIT command.
1921
1922=item I don't want to destroy the handle too early - how do I wait until
1923all data has been written?
1924
1925After writing your last bits of data, set the C<on_drain> callback
1926and destroy the handle in there - with the default setting of
1927C<low_water_mark> this will be called precisely when all data has been
1928written to the socket:
1929
1930 $handle->push_write (...);
1931 $handle->on_drain (sub {
1932 warn "all data submitted to the kernel\n";
1933 undef $handle;
1934 });
1935
1936If you just want to queue some data and then signal EOF to the other side,
1937consider using C<< ->push_shutdown >> instead.
1938
1939=item I want to contact a TLS/SSL server, I don't care about security.
1940
1941If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1942simply connect to it and then create the AnyEvent::Handle with the C<tls>
1943parameter:
1944
1945 tcp_connect $host, $port, sub {
1946 my ($fh) = @_;
1947
1948 my $handle = new AnyEvent::Handle
1949 fh => $fh,
1950 tls => "connect",
1951 on_error => sub { ... };
1952
1953 $handle->push_write (...);
1954 };
1955
1956=item I want to contact a TLS/SSL server, I do care about security.
1957
1958Then you should additionally enable certificate verification, including
1959peername verification, if the protocol you use supports it (see
1960L<AnyEvent::TLS>, C<verify_peername>).
1961
1962E.g. for HTTPS:
1963
1964 tcp_connect $host, $port, sub {
1965 my ($fh) = @_;
1966
1967 my $handle = new AnyEvent::Handle
1968 fh => $fh,
1969 peername => $host,
1970 tls => "connect",
1971 tls_ctx => { verify => 1, verify_peername => "https" },
1972 ...
1973
1974Note that you must specify the hostname you connected to (or whatever
1975"peername" the protocol needs) as the C<peername> argument, otherwise no
1976peername verification will be done.
1977
1978The above will use the system-dependent default set of trusted CA
1979certificates. If you want to check against a specific CA, add the
1980C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1981
1982 tls_ctx => {
1983 verify => 1,
1984 verify_peername => "https",
1985 ca_file => "my-ca-cert.pem",
1986 },
1987
1988=item I want to create a TLS/SSL server, how do I do that?
1989
1990Well, you first need to get a server certificate and key. You have
1991three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1992self-signed certificate (cheap. check the search engine of your choice,
1993there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1994nice program for that purpose).
1995
1996Then create a file with your private key (in PEM format, see
1997L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1998file should then look like this:
1999
2000 -----BEGIN RSA PRIVATE KEY-----
2001 ...header data
2002 ... lots of base64'y-stuff
2003 -----END RSA PRIVATE KEY-----
2004
2005 -----BEGIN CERTIFICATE-----
2006 ... lots of base64'y-stuff
2007 -----END CERTIFICATE-----
2008
2009The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2010specify this file as C<cert_file>:
2011
2012 tcp_server undef, $port, sub {
2013 my ($fh) = @_;
2014
2015 my $handle = new AnyEvent::Handle
2016 fh => $fh,
2017 tls => "accept",
2018 tls_ctx => { cert_file => "my-server-keycert.pem" },
2019 ...
2020
2021When you have intermediate CA certificates that your clients might not
2022know about, just append them to the C<cert_file>.
2023
2024=back
2025
1296 2026
1297=head1 SUBCLASSING AnyEvent::Handle 2027=head1 SUBCLASSING AnyEvent::Handle
1298 2028
1299In many cases, you might want to subclass AnyEvent::Handle. 2029In many cases, you might want to subclass AnyEvent::Handle.
1300 2030
1304=over 4 2034=over 4
1305 2035
1306=item * all constructor arguments become object members. 2036=item * all constructor arguments become object members.
1307 2037
1308At least initially, when you pass a C<tls>-argument to the constructor it 2038At least initially, when you pass a C<tls>-argument to the constructor it
1309will end up in C<< $handle->{tls} >>. Those members might be changes or 2039will end up in C<< $handle->{tls} >>. Those members might be changed or
1310mutated later on (for example C<tls> will hold the TLS connection object). 2040mutated later on (for example C<tls> will hold the TLS connection object).
1311 2041
1312=item * other object member names are prefixed with an C<_>. 2042=item * other object member names are prefixed with an C<_>.
1313 2043
1314All object members not explicitly documented (internal use) are prefixed 2044All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines