ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.61 by root, Fri Jun 6 10:23:50 2008 UTC vs.
Revision 1.180 by root, Thu Aug 20 22:58:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.14;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
121 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
126 211
127To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
128 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
129=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
130 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
131If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 237
136Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
140 243
141Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
142 245
143=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
144 247
148 251
149=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
150 253
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
154 257
155For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
159isn't finished). 262isn't finished).
160 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
161=item read_size => <bytes> 290=item read_size => <bytes>
162 291
163The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
165 295
166=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
167 297
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
170considered empty. 300considered empty.
171 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
307=item linger => <seconds>
308
309If non-zero (default: C<3600>), then the destructor of the
310AnyEvent::Handle object will check whether there is still outstanding
311write data and will install a watcher that will write this data to the
312socket. No errors will be reported (this mostly matches how the operating
313system treats outstanding data at socket close time).
314
315This will not work for partial TLS data that could not be encoded
316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
172=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
173 330
174When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
175will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
176data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
177 337
178TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
179automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
180 342
181For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
182connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
183 346
184You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
185to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
186or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
187AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
188 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
189See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
190 363
191=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
192 365
193Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
194(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
195missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
196 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
197=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
198 407
199This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
200 409
201If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
202suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
203 413
204Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
205use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
206 416
207=item filter_r => $cb
208
209=item filter_w => $cb
210
211These exist, but are undocumented at this time.
212
213=back 417=back
214 418
215=cut 419=cut
216 420
217sub new { 421sub new {
218 my $class = shift; 422 my $class = shift;
219
220 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
221 424
222 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
223 488
224 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
225 490
226 if ($self->{tls}) { 491 $self->{_activity} =
227 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
228 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
229 } 502 if $self->{tls};
230
231 $self->{_activity} = AnyEvent->now;
232 $self->_timeout;
233 503
234 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
235 505
236 $self 506 $self->start_read
237} 507 if $self->{on_read} || @{ $self->{_queue} };
238 508
239sub _shutdown { 509 $self->_drain_wbuf;
240 my ($self) = @_;
241
242 delete $self->{_tw};
243 delete $self->{_rw};
244 delete $self->{_ww};
245 delete $self->{fh};
246
247 $self->stoptls;
248} 510}
249 511
250sub _error { 512sub _error {
251 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
252
253 $self->_shutdown
254 if $fatal;
255 514
256 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
257 517
258 if ($self->{on_error}) { 518 if ($self->{on_error}) {
259 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
260 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
261 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
262 } 524 }
263} 525}
264 526
265=item $fh = $handle->fh 527=item $fh = $handle->fh
266 528
267This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
268 530
269=cut 531=cut
270 532
271sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
272 534
290 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
291} 553}
292 554
293=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
294 556
295Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
296(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
297argument.
298 558
299=cut 559=item $handle->on_wtimeout ($cb)
300 560
301sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
302 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
303} 625}
304 626
305############################################################################# 627#############################################################################
306 628
307=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
308 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
309Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
310 636
311=cut 637=item $handle->timeout_reset
312 638
313sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
314 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
315 662
316 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
317 $self->_timeout; 664 delete $self->{$tw}; &$cb;
318} 665 };
319 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
320# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
321# also check for time-outs 673 # also check for time-outs
322sub _timeout { 674 $cb = sub {
323 my ($self) = @_; 675 my ($self) = @_;
324 676
325 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
326 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
327 679
328 # when would the timeout trigger? 680 # when would the timeout trigger?
329 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
330 682
331 # now or in the past already? 683 # now or in the past already?
332 if ($after <= 0) { 684 if ($after <= 0) {
333 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
334 686
335 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
336 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
337 } else { 689 } else {
338 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
339 } 698 }
340 699
341 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
342 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
343 702
344 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
345 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
346 } 709 }
347
348 Scalar::Util::weaken $self;
349 return unless $self; # ->error could have destroyed $self
350
351 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
352 delete $self->{_tw};
353 $self->_timeout;
354 });
355 } else {
356 delete $self->{_tw};
357 } 710 }
358} 711}
359 712
360############################################################################# 713#############################################################################
361 714
385 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
386 739
387 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
388 741
389 $cb->($self) 742 $cb->($self)
390 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
391} 744}
392 745
393=item $handle->push_write ($data) 746=item $handle->push_write ($data)
394 747
395Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
406 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
407 760
408 my $cb = sub { 761 my $cb = sub {
409 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
410 763
411 if ($len >= 0) { 764 if (defined $len) {
412 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
413 766
414 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
415 768
416 $self->{on_drain}($self) 769 $self->{on_drain}($self)
417 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
418 && $self->{on_drain}; 771 && $self->{on_drain};
419 772
420 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
421 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
422 $self->_error ($!, 1); 775 $self->_error ($!, 1);
423 } 776 }
424 }; 777 };
425 778
426 # try to write data immediately 779 # try to write data immediately
427 $cb->(); 780 $cb->() unless $self->{autocork};
428 781
429 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
430 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
431 if length $self->{wbuf}; 784 if length $self->{wbuf};
432 }; 785 };
433} 786}
434 787
435our %WH; 788our %WH;
446 799
447 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
448 ->($self, @_); 801 ->($self, @_);
449 } 802 }
450 803
451 if ($self->{filter_w}) { 804 if ($self->{tls}) {
452 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
453 } else { 807 } else {
454 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
455 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
456 } 810 }
457} 811}
458 812
459=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
460 814
474=cut 828=cut
475 829
476register_write_type netstring => sub { 830register_write_type netstring => sub {
477 my ($self, $string) = @_; 831 my ($self, $string) = @_;
478 832
479 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
480}; 834};
481 835
482=item packstring => $format, $data 836=item packstring => $format, $data
483 837
484An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
489=cut 843=cut
490 844
491register_write_type packstring => sub { 845register_write_type packstring => sub {
492 my ($self, $format, $string) = @_; 846 my ($self, $format, $string) = @_;
493 847
494 pack "$format/a", $string 848 pack "$format/a*", $string
495}; 849};
496 850
497=item json => $array_or_hashref 851=item json => $array_or_hashref
498 852
499Encodes the given hash or array reference into a JSON object. Unless you 853Encodes the given hash or array reference into a JSON object. Unless you
524Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
525this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
526 880
527=cut 881=cut
528 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
529register_write_type json => sub { 888register_write_type json => sub {
530 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
531 890
532 require JSON; 891 my $json = $self->{json} ||= json_coder;
533 892
534 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
535 : JSON::encode_json ($ref)
536}; 894};
537 895
896=item storable => $reference
897
898Freezes the given reference using L<Storable> and writes it to the
899handle. Uses the C<nfreeze> format.
900
901=cut
902
903register_write_type storable => sub {
904 my ($self, $ref) = @_;
905
906 require Storable;
907
908 pack "w/a*", Storable::nfreeze ($ref)
909};
910
538=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
539 937
540=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
541 939
542This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
543Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
564ways, the "simple" way, using only C<on_read> and the "complex" way, using 962ways, the "simple" way, using only C<on_read> and the "complex" way, using
565a queue. 963a queue.
566 964
567In the simple case, you just install an C<on_read> callback and whenever 965In the simple case, you just install an C<on_read> callback and whenever
568new data arrives, it will be called. You can then remove some data (if 966new data arrives, it will be called. You can then remove some data (if
569enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 967enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
570or not. 968leave the data there if you want to accumulate more (e.g. when only a
969partial message has been received so far).
571 970
572In the more complex case, you want to queue multiple callbacks. In this 971In the more complex case, you want to queue multiple callbacks. In this
573case, AnyEvent::Handle will call the first queued callback each time new 972case, AnyEvent::Handle will call the first queued callback each time new
574data arrives (also the first time it is queued) and removes it when it has 973data arrives (also the first time it is queued) and removes it when it has
575done its job (see C<push_read>, below). 974done its job (see C<push_read>, below).
593 # handle xml 992 # handle xml
594 }); 993 });
595 }); 994 });
596 }); 995 });
597 996
598Example 2: Implement a client for a protocol that replies either with 997Example 2: Implement a client for a protocol that replies either with "OK"
599"OK" and another line or "ERROR" for one request, and 64 bytes for the 998and another line or "ERROR" for the first request that is sent, and 64
600second request. Due tot he availability of a full queue, we can just 999bytes for the second request. Due to the availability of a queue, we can
601pipeline sending both requests and manipulate the queue as necessary in 1000just pipeline sending both requests and manipulate the queue as necessary
602the callbacks: 1001in the callbacks.
603 1002
604 # request one 1003When the first callback is called and sees an "OK" response, it will
1004C<unshift> another line-read. This line-read will be queued I<before> the
100564-byte chunk callback.
1006
1007 # request one, returns either "OK + extra line" or "ERROR"
605 $handle->push_write ("request 1\015\012"); 1008 $handle->push_write ("request 1\015\012");
606 1009
607 # we expect "ERROR" or "OK" as response, so push a line read 1010 # we expect "ERROR" or "OK" as response, so push a line read
608 $handle->push_read (line => sub { 1011 $handle->push_read (line => sub {
609 # if we got an "OK", we have to _prepend_ another line, 1012 # if we got an "OK", we have to _prepend_ another line,
616 ... 1019 ...
617 }); 1020 });
618 } 1021 }
619 }); 1022 });
620 1023
621 # request two 1024 # request two, simply returns 64 octets
622 $handle->push_write ("request 2\015\012"); 1025 $handle->push_write ("request 2\015\012");
623 1026
624 # simply read 64 bytes, always 1027 # simply read 64 bytes, always
625 $handle->push_read (chunk => 64, sub { 1028 $handle->push_read (chunk => 64, sub {
626 my $response = $_[1]; 1029 my $response = $_[1];
632=cut 1035=cut
633 1036
634sub _drain_rbuf { 1037sub _drain_rbuf {
635 my ($self) = @_; 1038 my ($self) = @_;
636 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
637 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
638
639 if (
640 defined $self->{rbuf_max}
641 && $self->{rbuf_max} < length $self->{rbuf}
642 ) {
643 return $self->_error (&Errno::ENOSPC, 1);
644 }
645 1043
646 while () { 1044 while () {
647 no strict 'refs'; 1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
648 1049
649 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
650 1051
651 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
652 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
653 if ($self->{_eof}) { 1054 # no progress can be made
654 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
655 $self->_error (&Errno::EPIPE, 1), last; 1056 $self->_error (Errno::EPIPE, 1), return
656 } 1057 if $self->{_eof};
657 1058
658 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
659 last; 1060 last;
660 } 1061 }
661 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
668 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
669 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
670 ) { 1071 ) {
671 # no further data will arrive 1072 # no further data will arrive
672 # so no progress can be made 1073 # so no progress can be made
673 $self->_error (&Errno::EPIPE, 1), last 1074 $self->_error (Errno::EPIPE, 1), return
674 if $self->{_eof}; 1075 if $self->{_eof};
675 1076
676 last; # more data might arrive 1077 last; # more data might arrive
677 } 1078 }
678 } else { 1079 } else {
679 # read side becomes idle 1080 # read side becomes idle
680 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
681 last; 1082 last;
682 } 1083 }
683 } 1084 }
684 1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
685 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
686 if $self->{_eof} && $self->{on_eof}; 1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
1099 }
687 1100
688 # may need to restart read watcher 1101 # may need to restart read watcher
689 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
690 $self->start_read 1103 $self->start_read
691 if $self->{on_read} || @{ $self->{_queue} }; 1104 if $self->{on_read} || @{ $self->{_queue} };
702 1115
703sub on_read { 1116sub on_read {
704 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
705 1118
706 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
707 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
708} 1121}
709 1122
710=item $handle->rbuf 1123=item $handle->rbuf
711 1124
712Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
713 1126
714You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
715you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
716 1132
717NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
718C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
719automatically manage the read buffer. 1135automatically manage the read buffer.
720 1136
761 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
762 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
763 } 1179 }
764 1180
765 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
766 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
767} 1183}
768 1184
769sub unshift_read { 1185sub unshift_read {
770 my $self = shift; 1186 my $self = shift;
771 my $cb = pop; 1187 my $cb = pop;
777 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
778 } 1194 }
779 1195
780 1196
781 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
782 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
783} 1199}
784 1200
785=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
786 1202
787=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
817 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1233 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
818 1 1234 1
819 } 1235 }
820}; 1236};
821 1237
822# compatibility with older API
823sub push_read_chunk {
824 $_[0]->push_read (chunk => $_[1], $_[2]);
825}
826
827sub unshift_read_chunk {
828 $_[0]->unshift_read (chunk => $_[1], $_[2]);
829}
830
831=item line => [$eol, ]$cb->($handle, $line, $eol) 1238=item line => [$eol, ]$cb->($handle, $line, $eol)
832 1239
833The callback will be called only once a full line (including the end of 1240The callback will be called only once a full line (including the end of
834line marker, C<$eol>) has been read. This line (excluding the end of line 1241line marker, C<$eol>) has been read. This line (excluding the end of line
835marker) will be passed to the callback as second argument (C<$line>), and 1242marker) will be passed to the callback as second argument (C<$line>), and
850=cut 1257=cut
851 1258
852register_read_type line => sub { 1259register_read_type line => sub {
853 my ($self, $cb, $eol) = @_; 1260 my ($self, $cb, $eol) = @_;
854 1261
855 $eol = qr|(\015?\012)| if @_ < 3; 1262 if (@_ < 3) {
1263 # this is more than twice as fast as the generic code below
1264 sub {
1265 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1266
1267 $cb->($_[0], $1, $2);
1268 1
1269 }
1270 } else {
856 $eol = quotemeta $eol unless ref $eol; 1271 $eol = quotemeta $eol unless ref $eol;
857 $eol = qr|^(.*?)($eol)|s; 1272 $eol = qr|^(.*?)($eol)|s;
858 1273
859 sub { 1274 sub {
860 $_[0]{rbuf} =~ s/$eol// or return; 1275 $_[0]{rbuf} =~ s/$eol// or return;
861 1276
862 $cb->($_[0], $1, $2); 1277 $cb->($_[0], $1, $2);
1278 1
863 1 1279 }
864 } 1280 }
865}; 1281};
866
867# compatibility with older API
868sub push_read_line {
869 my $self = shift;
870 $self->push_read (line => @_);
871}
872
873sub unshift_read_line {
874 my $self = shift;
875 $self->unshift_read (line => @_);
876}
877 1282
878=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1283=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
879 1284
880Makes a regex match against the regex object C<$accept> and returns 1285Makes a regex match against the regex object C<$accept> and returns
881everything up to and including the match. 1286everything up to and including the match.
931 return 1; 1336 return 1;
932 } 1337 }
933 1338
934 # reject 1339 # reject
935 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
936 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
937 } 1342 }
938 1343
939 # skip 1344 # skip
940 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
941 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
957 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
958 1363
959 sub { 1364 sub {
960 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
961 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
962 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
963 } 1368 }
964 return; 1369 return;
965 } 1370 }
966 1371
967 my $len = $1; 1372 my $len = $1;
970 my $string = $_[1]; 1375 my $string = $_[1];
971 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
972 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
973 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
974 } else { 1379 } else {
975 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
976 } 1381 }
977 }); 1382 });
978 }); 1383 });
979 1384
980 1 1385 1
986An octet string prefixed with an encoded length. The encoding C<$format> 1391An octet string prefixed with an encoded length. The encoding C<$format>
987uses the same format as a Perl C<pack> format, but must specify a single 1392uses the same format as a Perl C<pack> format, but must specify a single
988integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
989optional C<!>, C<< < >> or C<< > >> modifier). 1394optional C<!>, C<< < >> or C<< > >> modifier).
990 1395
991DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
992 1398
993Example: read a block of data prefixed by its length in BER-encoded 1399Example: read a block of data prefixed by its length in BER-encoded
994format (very efficient). 1400format (very efficient).
995 1401
996 $handle->push_read (packstring => "w", sub { 1402 $handle->push_read (packstring => "w", sub {
1002register_read_type packstring => sub { 1408register_read_type packstring => sub {
1003 my ($self, $cb, $format) = @_; 1409 my ($self, $cb, $format) = @_;
1004 1410
1005 sub { 1411 sub {
1006 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1412 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1007 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1413 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1008 or return; 1414 or return;
1009 1415
1416 $format = length pack $format, $len;
1417
1418 # bypass unshift if we already have the remaining chunk
1419 if ($format + $len <= length $_[0]{rbuf}) {
1420 my $data = substr $_[0]{rbuf}, $format, $len;
1421 substr $_[0]{rbuf}, 0, $format + $len, "";
1422 $cb->($_[0], $data);
1423 } else {
1010 # remove prefix 1424 # remove prefix
1011 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1425 substr $_[0]{rbuf}, 0, $format, "";
1012 1426
1013 # read rest 1427 # read remaining chunk
1014 $_[0]->unshift_read (chunk => $len, $cb); 1428 $_[0]->unshift_read (chunk => $len, $cb);
1429 }
1015 1430
1016 1 1431 1
1017 } 1432 }
1018}; 1433};
1019 1434
1020=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1021 1436
1022Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1023 1439
1024If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1025for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1026 1442
1027This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1034the C<json> write type description, above, for an actual example. 1450the C<json> write type description, above, for an actual example.
1035 1451
1036=cut 1452=cut
1037 1453
1038register_read_type json => sub { 1454register_read_type json => sub {
1039 my ($self, $cb, $accept, $reject, $skip) = @_; 1455 my ($self, $cb) = @_;
1040 1456
1041 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1042 1458
1043 my $data; 1459 my $data;
1044 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1045 1461
1046 my $json = $self->{json} ||= JSON->new->utf8;
1047
1048 sub { 1462 sub {
1049 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1050 1464
1051 if ($ref) { 1465 if ($ref) {
1052 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1053 $json->incr_text = ""; 1467 $json->incr_text = "";
1054 $cb->($self, $ref); 1468 $cb->($self, $ref);
1055 1469
1056 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1057 } else { 1481 } else {
1058 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1059 () 1484 ()
1060 } 1485 }
1486 }
1487};
1488
1489=item storable => $cb->($handle, $ref)
1490
1491Deserialises a L<Storable> frozen representation as written by the
1492C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1493data).
1494
1495Raises C<EBADMSG> error if the data could not be decoded.
1496
1497=cut
1498
1499register_read_type storable => sub {
1500 my ($self, $cb) = @_;
1501
1502 require Storable;
1503
1504 sub {
1505 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1506 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1507 or return;
1508
1509 my $format = length pack "w", $len;
1510
1511 # bypass unshift if we already have the remaining chunk
1512 if ($format + $len <= length $_[0]{rbuf}) {
1513 my $data = substr $_[0]{rbuf}, $format, $len;
1514 substr $_[0]{rbuf}, 0, $format + $len, "";
1515 $cb->($_[0], Storable::thaw ($data));
1516 } else {
1517 # remove prefix
1518 substr $_[0]{rbuf}, 0, $format, "";
1519
1520 # read remaining chunk
1521 $_[0]->unshift_read (chunk => $len, sub {
1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1523 $cb->($_[0], $ref);
1524 } else {
1525 $self->_error (Errno::EBADMSG);
1526 }
1527 });
1528 }
1529
1530 1
1061 } 1531 }
1062}; 1532};
1063 1533
1064=back 1534=back
1065 1535
1095Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1096you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1097will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1098there are any read requests in the queue. 1568there are any read requests in the queue.
1099 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1100=cut 1573=cut
1101 1574
1102sub stop_read { 1575sub stop_read {
1103 my ($self) = @_; 1576 my ($self) = @_;
1104 1577
1105 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1106} 1579}
1107 1580
1108sub start_read { 1581sub start_read {
1109 my ($self) = @_; 1582 my ($self) = @_;
1110 1583
1111 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1112 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1113 1586
1114 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1115 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1116 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1117 1590
1118 if ($len > 0) { 1591 if ($len > 0) {
1119 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1120 1593
1121 $self->{filter_r} 1594 if ($self->{tls}) {
1122 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1123 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1124 1601
1125 } elsif (defined $len) { 1602 } elsif (defined $len) {
1126 delete $self->{_rw}; 1603 delete $self->{_rw};
1127 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1128 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1129 1606
1130 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1131 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1132 } 1609 }
1133 }); 1610 };
1134 } 1611 }
1135} 1612}
1136 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1137sub _dotls { 1642sub _dotls {
1138 my ($self) = @_; 1643 my ($self) = @_;
1139 1644
1140 my $buf; 1645 my $tmp;
1141 1646
1142 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1143 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1144 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1145 } 1650 }
1146 }
1147 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1148 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1149 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1150 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1151 } 1687 }
1152 1688
1153 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1154 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1155 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1156 $self->_drain_rbuf unless $self->{_in_drain};
1157 } else {
1158 # let's treat SSL-eof as we treat normal EOF
1159 $self->{_eof} = 1;
1160 $self->_shutdown;
1161 return;
1162 }
1163 }
1164
1165 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1166
1167 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1168 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1169 return $self->_error ($!, 1);
1170 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1171 return $self->_error (&Errno::EIO, 1);
1172 }
1173
1174 # all others are fine for our purposes
1175 }
1176} 1692}
1177 1693
1178=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1179 1695
1180Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1181object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1182C<starttls>. 1698C<starttls>.
1183 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1184The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1185C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1186 1706
1187The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1188used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1189 1711
1190The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1191call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1192might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1193 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1194=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1195 1724
1196sub starttls { 1725sub starttls {
1197 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1198 1727
1199 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1200 1730
1201 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1202 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1203 Net::SSLeay::set_accept_state ($ssl); 1733
1204 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1205 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1206 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = delete $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1207 } 1756
1208 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1209 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1210 1759
1211 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1212 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1213 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1214 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1215 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1216 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1217 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1218 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1219 1776
1220 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1221 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1222 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1223 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1224 1783
1225 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1226 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1227 &_dotls; 1786
1228 }; 1787 &_dotls; # need to trigger the initial handshake
1229 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1230 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1231 &_dotls;
1232 };
1233} 1789}
1234 1790
1235=item $handle->stoptls 1791=item $handle->stoptls
1236 1792
1237Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1238lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1239 1797
1240=cut 1798=cut
1241 1799
1242sub stoptls { 1800sub stoptls {
1243 my ($self) = @_; 1801 my ($self) = @_;
1244 1802
1245 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1246 1805
1247 delete $self->{_rbio}; 1806 &_dotls;
1248 delete $self->{_wbio}; 1807
1249 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1250 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1251 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1252} 1823}
1253 1824
1254sub DESTROY { 1825sub DESTROY {
1255 my $self = shift; 1826 my ($self) = @_;
1256 1827
1257 $self->stoptls; 1828 &_freetls;
1829
1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1831
1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1833 my $fh = delete $self->{fh};
1834 my $wbuf = delete $self->{wbuf};
1835
1836 my @linger;
1837
1838 push @linger, AE::io $fh, 1, sub {
1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1840
1841 if ($len > 0) {
1842 substr $wbuf, 0, $len, "";
1843 } else {
1844 @linger = (); # end
1845 }
1846 };
1847 push @linger, AE::timer $linger, 0, sub {
1848 @linger = ();
1849 };
1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1258} 1888}
1259 1889
1260=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1261 1891
1262This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1263default for TLS mode. 1893for TLS mode.
1264 1894
1265The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1266
1267 Net::SSLeay::load_error_strings;
1268 Net::SSLeay::SSLeay_add_ssl_algorithms;
1269 Net::SSLeay::randomize;
1270
1271 my $CTX = Net::SSLeay::CTX_new;
1272
1273 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1274 1896
1275=cut 1897=cut
1276 1898
1277our $TLS_CTX; 1899our $TLS_CTX;
1278 1900
1279sub TLS_CTX() { 1901sub TLS_CTX() {
1280 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1281 require Net::SSLeay; 1903 require AnyEvent::TLS;
1282 1904
1283 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1284 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1285 Net::SSLeay::randomize ();
1286
1287 $TLS_CTX = Net::SSLeay::CTX_new ();
1288
1289 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1290
1291 $TLS_CTX
1292 } 1906 }
1293} 1907}
1294 1908
1295=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1296 2069
1297=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1298 2071
1299In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1300 2073
1304=over 4 2077=over 4
1305 2078
1306=item * all constructor arguments become object members. 2079=item * all constructor arguments become object members.
1307 2080
1308At least initially, when you pass a C<tls>-argument to the constructor it 2081At least initially, when you pass a C<tls>-argument to the constructor it
1309will end up in C<< $handle->{tls} >>. Those members might be changes or 2082will end up in C<< $handle->{tls} >>. Those members might be changed or
1310mutated later on (for example C<tls> will hold the TLS connection object). 2083mutated later on (for example C<tls> will hold the TLS connection object).
1311 2084
1312=item * other object member names are prefixed with an C<_>. 2085=item * other object member names are prefixed with an C<_>.
1313 2086
1314All object members not explicitly documented (internal use) are prefixed 2087All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines