ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.66 by root, Fri Jun 6 15:32:54 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.15; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>. 41
42The L<AnyEvent::Intro> tutorial contains some well-documented
43AnyEvent::Handle examples.
53 44
54In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
57 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
58All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
59argument. 53argument.
60 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
61=head1 METHODS 67=head1 METHODS
62 68
63=over 4 69=over 4
64 70
65=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 72
67The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
68 74
69=over 4 75=over 4
70 76
71=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 78
73The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 80NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82that mode.
77 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
78=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
79 102
80Set the callback to be called when an end-of-file condition is detcted, 103This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
82connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
83 108
84While not mandatory, it is highly recommended to set an eof callback, 109The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 111timeout is to be used).
87 112
113=item on_connect => $cb->($handle, $host, $port, $retry->())
114
115This callback is called when a connection has been successfully established.
116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
88=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
89 140
90This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 143connect or a read error.
93 144
94Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 146fatal errors the handle object will be destroyed (by a call to C<< ->
147destroy >>) after invoking the error callback (which means you are free to
148examine the handle object). Examples of fatal errors are an EOF condition
149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
157
96usable. Non-fatal errors can be retried by simply returning, but it is 158Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 159to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 160when this callback is invoked. Examples of non-fatal errors are timeouts
161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 162
100On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
102 166
103While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
105C<croak>. 169C<croak>.
106 170
110and no read request is in the queue (unlike read queue callbacks, this 174and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 175callback will only be called when at least one octet of data is in the
112read buffer). 176read buffer).
113 177
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
116 182
117When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
121 187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
208
122=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
123 210
124This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
126 213
127To append to the write buffer, use the C<< ->push_write >> method. 214To append to the write buffer, use the C<< ->push_write >> method.
128 215
216This callback is useful when you don't want to put all of your write data
217into the queue at once, for example, when you want to write the contents
218of some file to the socket you might not want to read the whole file into
219memory and push it into the queue, but instead only read more data from
220the file when the write queue becomes empty.
221
129=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
130 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
131If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 239
136Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
140 245
141Zero (the default) disables this timeout. 246Zero (the default) disables this timeout.
142 247
143=item on_timeout => $cb->($handle) 248=item on_timeout => $cb->($handle)
144 249
148 253
149=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
150 255
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
154 259
155For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
159isn't finished). 264isn't finished).
160 265
266=item autocork => <boolean>
267
268When disabled (the default), then C<push_write> will try to immediately
269write the data to the handle, if possible. This avoids having to register
270a write watcher and wait for the next event loop iteration, but can
271be inefficient if you write multiple small chunks (on the wire, this
272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
274
275When enabled, then writes will always be queued till the next event loop
276iteration. This is efficient when you do many small writes per iteration,
277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
279
280=item no_delay => <boolean>
281
282When doing small writes on sockets, your operating system kernel might
283wait a bit for more data before actually sending it out. This is called
284the Nagle algorithm, and usually it is beneficial.
285
286In some situations you want as low a delay as possible, which can be
287accomplishd by setting this option to a true value.
288
289The default is your opertaing system's default behaviour (most likely
290enabled), this option explicitly enables or disables it, if possible.
291
161=item read_size => <bytes> 292=item read_size => <bytes>
162 293
163The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
165 297
166=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
167 299
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
170considered empty. 302considered empty.
171 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
172=item linger => <seconds> 309=item linger => <seconds>
173 310
174If non-zero (default: C<3600>), then the destructor of the 311If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 312AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 313write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 314socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 315system treats outstanding data at socket close time).
179 316
180This will not work for partial TLS data that could not yet been 317This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
182 330
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 332
185When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
188 339
189TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
191 344
192For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
194 348
195You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
199 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
200See the C<starttls> method if you need to start TLs negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 365
202=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
203 367
204Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
208=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
209 409
210This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
211 411
212If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
214 415
215Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
217 418
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 419=back
225 420
226=cut 421=cut
227 422
228sub new { 423sub new {
229 my $class = shift; 424 my $class = shift;
230
231 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
232 426
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
234 490
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 492
237 if ($self->{tls}) { 493 $self->{_activity} =
238 require Net::SSLeay; 494 $self->{_ractivity} =
495 $self->{_wactivity} = AE::now;
496
497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
502
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 504 if $self->{tls};
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244 505
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 507
247 $self->start_read 508 $self->start_read
248 if $self->{on_read} || @{ $self->{_queue} }; 509 if $self->{on_read} || @{ $self->{_queue} };
249 510
250 $self 511 $self->_drain_wbuf;
251} 512}
252 513
253sub _shutdown { 514#sub _shutdown {
254 my ($self) = @_; 515# my ($self) = @_;
255 516#
256 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
257 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
258 delete $self->{_ww}; 519#
259 delete $self->{fh}; 520# &_freetls;
260 521#}
261 $self->stoptls;
262}
263 522
264sub _error { 523sub _error {
265 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
266
267 $self->_shutdown
268 if $fatal;
269 525
270 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
271 528
272 if ($self->{on_error}) { 529 if ($self->{on_error}) {
273 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
274 } else { 531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
275 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
276 } 535 }
277} 536}
278 537
279=item $fh = $handle->fh 538=item $fh = $handle->fh
280 539
281This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
282 541
283=cut 542=cut
284 543
285sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
286 545
304 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
305} 564}
306 565
307=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
308 567
309Replace the current C<on_timeout> callback, or disables the callback 568=item $handle->on_rtimeout ($cb)
310(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
311argument.
312 569
313=cut 570=item $handle->on_wtimeout ($cb)
314 571
315sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
573callback, or disables the callback (but not the timeout) if C<$cb> =
574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
579
580=item $handle->autocork ($boolean)
581
582Enables or disables the current autocork behaviour (see C<autocork>
583constructor argument). Changes will only take effect on the next write.
584
585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
590
591=item $handle->no_delay ($boolean)
592
593Enables or disables the C<no_delay> setting (see constructor argument of
594the same name for details).
595
596=cut
597
598sub no_delay {
599 $_[0]{no_delay} = $_[1];
600
601 eval {
602 local $SIG{__DIE__};
603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
605 };
606}
607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
316 $_[0]{on_timeout} = $_[1]; 625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
317} 636}
318 637
319############################################################################# 638#############################################################################
320 639
321=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
322 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
323Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
324 647
325=cut 648=item $handle->timeout_reset
326 649
327sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
328 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
329 673
330 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
331 $self->_timeout; 675 delete $self->{$tw}; &$cb;
332} 676 };
333 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
334# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
335# also check for time-outs 684 # also check for time-outs
336sub _timeout { 685 $cb = sub {
337 my ($self) = @_; 686 my ($self) = @_;
338 687
339 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
340 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
341 690
342 # when would the timeout trigger? 691 # when would the timeout trigger?
343 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
344 693
345 # now or in the past already? 694 # now or in the past already?
346 if ($after <= 0) { 695 if ($after <= 0) {
347 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
348 697
349 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
350 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
351 } else { 700 } else {
352 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
353 } 709 }
354 710
355 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
356 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
357 713
358 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
359 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
360 } 720 }
361
362 Scalar::Util::weaken $self;
363 return unless $self; # ->error could have destroyed $self
364
365 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
366 delete $self->{_tw};
367 $self->_timeout;
368 });
369 } else {
370 delete $self->{_tw};
371 } 721 }
372} 722}
373 723
374############################################################################# 724#############################################################################
375 725
399 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
400 750
401 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
402 752
403 $cb->($self) 753 $cb->($self)
404 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
405} 755}
406 756
407=item $handle->push_write ($data) 757=item $handle->push_write ($data)
408 758
409Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
420 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
421 771
422 my $cb = sub { 772 my $cb = sub {
423 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
424 774
425 if ($len >= 0) { 775 if (defined $len) {
426 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
427 777
428 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
429 779
430 $self->{on_drain}($self) 780 $self->{on_drain}($self)
431 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
432 && $self->{on_drain}; 782 && $self->{on_drain};
433 783
434 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
435 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
436 $self->_error ($!, 1); 786 $self->_error ($!, 1);
437 } 787 }
438 }; 788 };
439 789
440 # try to write data immediately 790 # try to write data immediately
441 $cb->(); 791 $cb->() unless $self->{autocork};
442 792
443 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
444 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
445 if length $self->{wbuf}; 795 if length $self->{wbuf};
446 }; 796 };
447} 797}
448 798
449our %WH; 799our %WH;
460 810
461 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
462 ->($self, @_); 812 ->($self, @_);
463 } 813 }
464 814
465 if ($self->{filter_w}) { 815 if ($self->{tls}) {
466 $self->{filter_w}($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
467 } else { 818 } else {
468 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
469 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
470 } 821 }
471} 822}
472 823
473=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
474 825
488=cut 839=cut
489 840
490register_write_type netstring => sub { 841register_write_type netstring => sub {
491 my ($self, $string) = @_; 842 my ($self, $string) = @_;
492 843
493 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
494}; 845};
495 846
496=item packstring => $format, $data 847=item packstring => $format, $data
497 848
498An octet string prefixed with an encoded length. The encoding C<$format> 849An octet string prefixed with an encoded length. The encoding C<$format>
564 pack "w/a*", Storable::nfreeze ($ref) 915 pack "w/a*", Storable::nfreeze ($ref)
565}; 916};
566 917
567=back 918=back
568 919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
944
569=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
570 946
571This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
572Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
573reference with the handle object and the remaining arguments. 949reference with the handle object and the remaining arguments.
593ways, the "simple" way, using only C<on_read> and the "complex" way, using 969ways, the "simple" way, using only C<on_read> and the "complex" way, using
594a queue. 970a queue.
595 971
596In the simple case, you just install an C<on_read> callback and whenever 972In the simple case, you just install an C<on_read> callback and whenever
597new data arrives, it will be called. You can then remove some data (if 973new data arrives, it will be called. You can then remove some data (if
598enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 974enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
599or not. 975leave the data there if you want to accumulate more (e.g. when only a
976partial message has been received so far).
600 977
601In the more complex case, you want to queue multiple callbacks. In this 978In the more complex case, you want to queue multiple callbacks. In this
602case, AnyEvent::Handle will call the first queued callback each time new 979case, AnyEvent::Handle will call the first queued callback each time new
603data arrives (also the first time it is queued) and removes it when it has 980data arrives (also the first time it is queued) and removes it when it has
604done its job (see C<push_read>, below). 981done its job (see C<push_read>, below).
622 # handle xml 999 # handle xml
623 }); 1000 });
624 }); 1001 });
625 }); 1002 });
626 1003
627Example 2: Implement a client for a protocol that replies either with 1004Example 2: Implement a client for a protocol that replies either with "OK"
628"OK" and another line or "ERROR" for one request, and 64 bytes for the 1005and another line or "ERROR" for the first request that is sent, and 64
629second request. Due tot he availability of a full queue, we can just 1006bytes for the second request. Due to the availability of a queue, we can
630pipeline sending both requests and manipulate the queue as necessary in 1007just pipeline sending both requests and manipulate the queue as necessary
631the callbacks: 1008in the callbacks.
632 1009
633 # request one 1010When the first callback is called and sees an "OK" response, it will
1011C<unshift> another line-read. This line-read will be queued I<before> the
101264-byte chunk callback.
1013
1014 # request one, returns either "OK + extra line" or "ERROR"
634 $handle->push_write ("request 1\015\012"); 1015 $handle->push_write ("request 1\015\012");
635 1016
636 # we expect "ERROR" or "OK" as response, so push a line read 1017 # we expect "ERROR" or "OK" as response, so push a line read
637 $handle->push_read (line => sub { 1018 $handle->push_read (line => sub {
638 # if we got an "OK", we have to _prepend_ another line, 1019 # if we got an "OK", we have to _prepend_ another line,
645 ... 1026 ...
646 }); 1027 });
647 } 1028 }
648 }); 1029 });
649 1030
650 # request two 1031 # request two, simply returns 64 octets
651 $handle->push_write ("request 2\015\012"); 1032 $handle->push_write ("request 2\015\012");
652 1033
653 # simply read 64 bytes, always 1034 # simply read 64 bytes, always
654 $handle->push_read (chunk => 64, sub { 1035 $handle->push_read (chunk => 64, sub {
655 my $response = $_[1]; 1036 my $response = $_[1];
661=cut 1042=cut
662 1043
663sub _drain_rbuf { 1044sub _drain_rbuf {
664 my ($self) = @_; 1045 my ($self) = @_;
665 1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
666 local $self->{_in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
667
668 if (
669 defined $self->{rbuf_max}
670 && $self->{rbuf_max} < length $self->{rbuf}
671 ) {
672 return $self->_error (&Errno::ENOSPC, 1);
673 }
674 1050
675 while () { 1051 while () {
676 no strict 'refs'; 1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
677 1056
678 my $len = length $self->{rbuf}; 1057 my $len = length $self->{rbuf};
679 1058
680 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
681 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
682 if ($self->{_eof}) { 1061 # no progress can be made
683 # no progress can be made (not enough data and no data forthcoming) 1062 # (not enough data and no data forthcoming)
684 $self->_error (&Errno::EPIPE, 1), last; 1063 $self->_error (Errno::EPIPE, 1), return
685 } 1064 if $self->{_eof};
686 1065
687 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
688 last; 1067 last;
689 } 1068 }
690 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
697 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
698 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
699 ) { 1078 ) {
700 # no further data will arrive 1079 # no further data will arrive
701 # so no progress can be made 1080 # so no progress can be made
702 $self->_error (&Errno::EPIPE, 1), last 1081 $self->_error (Errno::EPIPE, 1), return
703 if $self->{_eof}; 1082 if $self->{_eof};
704 1083
705 last; # more data might arrive 1084 last; # more data might arrive
706 } 1085 }
707 } else { 1086 } else {
708 # read side becomes idle 1087 # read side becomes idle
709 delete $self->{_rw}; 1088 delete $self->{_rw} unless $self->{tls};
710 last; 1089 last;
711 } 1090 }
712 } 1091 }
713 1092
1093 if ($self->{_eof}) {
1094 $self->{on_eof}
714 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
715 if $self->{_eof} && $self->{on_eof}; 1096 : $self->_error (0, 1, "Unexpected end-of-file");
1097
1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
1106 }
716 1107
717 # may need to restart read watcher 1108 # may need to restart read watcher
718 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
719 $self->start_read 1110 $self->start_read
720 if $self->{on_read} || @{ $self->{_queue} }; 1111 if $self->{on_read} || @{ $self->{_queue} };
731 1122
732sub on_read { 1123sub on_read {
733 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
734 1125
735 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
736 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1127 $self->_drain_rbuf if $cb;
737} 1128}
738 1129
739=item $handle->rbuf 1130=item $handle->rbuf
740 1131
741Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
742 1133
743You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
744you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
745 1139
746NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
747C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
748automatically manage the read buffer. 1142automatically manage the read buffer.
749 1143
790 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1184 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
791 ->($self, $cb, @_); 1185 ->($self, $cb, @_);
792 } 1186 }
793 1187
794 push @{ $self->{_queue} }, $cb; 1188 push @{ $self->{_queue} }, $cb;
795 $self->_drain_rbuf unless $self->{_in_drain}; 1189 $self->_drain_rbuf;
796} 1190}
797 1191
798sub unshift_read { 1192sub unshift_read {
799 my $self = shift; 1193 my $self = shift;
800 my $cb = pop; 1194 my $cb = pop;
806 ->($self, $cb, @_); 1200 ->($self, $cb, @_);
807 } 1201 }
808 1202
809 1203
810 unshift @{ $self->{_queue} }, $cb; 1204 unshift @{ $self->{_queue} }, $cb;
811 $self->_drain_rbuf unless $self->{_in_drain}; 1205 $self->_drain_rbuf;
812} 1206}
813 1207
814=item $handle->push_read (type => @args, $cb) 1208=item $handle->push_read (type => @args, $cb)
815 1209
816=item $handle->unshift_read (type => @args, $cb) 1210=item $handle->unshift_read (type => @args, $cb)
846 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1240 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
847 1 1241 1
848 } 1242 }
849}; 1243};
850 1244
851# compatibility with older API
852sub push_read_chunk {
853 $_[0]->push_read (chunk => $_[1], $_[2]);
854}
855
856sub unshift_read_chunk {
857 $_[0]->unshift_read (chunk => $_[1], $_[2]);
858}
859
860=item line => [$eol, ]$cb->($handle, $line, $eol) 1245=item line => [$eol, ]$cb->($handle, $line, $eol)
861 1246
862The callback will be called only once a full line (including the end of 1247The callback will be called only once a full line (including the end of
863line marker, C<$eol>) has been read. This line (excluding the end of line 1248line marker, C<$eol>) has been read. This line (excluding the end of line
864marker) will be passed to the callback as second argument (C<$line>), and 1249marker) will be passed to the callback as second argument (C<$line>), and
879=cut 1264=cut
880 1265
881register_read_type line => sub { 1266register_read_type line => sub {
882 my ($self, $cb, $eol) = @_; 1267 my ($self, $cb, $eol) = @_;
883 1268
884 $eol = qr|(\015?\012)| if @_ < 3; 1269 if (@_ < 3) {
1270 # this is more than twice as fast as the generic code below
1271 sub {
1272 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1273
1274 $cb->($_[0], $1, $2);
1275 1
1276 }
1277 } else {
885 $eol = quotemeta $eol unless ref $eol; 1278 $eol = quotemeta $eol unless ref $eol;
886 $eol = qr|^(.*?)($eol)|s; 1279 $eol = qr|^(.*?)($eol)|s;
887 1280
888 sub { 1281 sub {
889 $_[0]{rbuf} =~ s/$eol// or return; 1282 $_[0]{rbuf} =~ s/$eol// or return;
890 1283
891 $cb->($_[0], $1, $2); 1284 $cb->($_[0], $1, $2);
1285 1
892 1 1286 }
893 } 1287 }
894}; 1288};
895
896# compatibility with older API
897sub push_read_line {
898 my $self = shift;
899 $self->push_read (line => @_);
900}
901
902sub unshift_read_line {
903 my $self = shift;
904 $self->unshift_read (line => @_);
905}
906 1289
907=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1290=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
908 1291
909Makes a regex match against the regex object C<$accept> and returns 1292Makes a regex match against the regex object C<$accept> and returns
910everything up to and including the match. 1293everything up to and including the match.
960 return 1; 1343 return 1;
961 } 1344 }
962 1345
963 # reject 1346 # reject
964 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
965 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
966 } 1349 }
967 1350
968 # skip 1351 # skip
969 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
970 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
986 my ($self, $cb) = @_; 1369 my ($self, $cb) = @_;
987 1370
988 sub { 1371 sub {
989 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
990 if ($_[0]{rbuf} =~ /[^0-9]/) { 1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
991 $self->_error (&Errno::EBADMSG); 1374 $self->_error (Errno::EBADMSG);
992 } 1375 }
993 return; 1376 return;
994 } 1377 }
995 1378
996 my $len = $1; 1379 my $len = $1;
999 my $string = $_[1]; 1382 my $string = $_[1];
1000 $_[0]->unshift_read (chunk => 1, sub { 1383 $_[0]->unshift_read (chunk => 1, sub {
1001 if ($_[1] eq ",") { 1384 if ($_[1] eq ",") {
1002 $cb->($_[0], $string); 1385 $cb->($_[0], $string);
1003 } else { 1386 } else {
1004 $self->_error (&Errno::EBADMSG); 1387 $self->_error (Errno::EBADMSG);
1005 } 1388 }
1006 }); 1389 });
1007 }); 1390 });
1008 1391
1009 1 1392 1
1015An octet string prefixed with an encoded length. The encoding C<$format> 1398An octet string prefixed with an encoded length. The encoding C<$format>
1016uses the same format as a Perl C<pack> format, but must specify a single 1399uses the same format as a Perl C<pack> format, but must specify a single
1017integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1018optional C<!>, C<< < >> or C<< > >> modifier). 1401optional C<!>, C<< < >> or C<< > >> modifier).
1019 1402
1020DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1021 1405
1022Example: read a block of data prefixed by its length in BER-encoded 1406Example: read a block of data prefixed by its length in BER-encoded
1023format (very efficient). 1407format (very efficient).
1024 1408
1025 $handle->push_read (packstring => "w", sub { 1409 $handle->push_read (packstring => "w", sub {
1031register_read_type packstring => sub { 1415register_read_type packstring => sub {
1032 my ($self, $cb, $format) = @_; 1416 my ($self, $cb, $format) = @_;
1033 1417
1034 sub { 1418 sub {
1035 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1419 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1036 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1420 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1037 or return; 1421 or return;
1038 1422
1423 $format = length pack $format, $len;
1424
1425 # bypass unshift if we already have the remaining chunk
1426 if ($format + $len <= length $_[0]{rbuf}) {
1427 my $data = substr $_[0]{rbuf}, $format, $len;
1428 substr $_[0]{rbuf}, 0, $format + $len, "";
1429 $cb->($_[0], $data);
1430 } else {
1039 # remove prefix 1431 # remove prefix
1040 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1432 substr $_[0]{rbuf}, 0, $format, "";
1041 1433
1042 # read rest 1434 # read remaining chunk
1043 $_[0]->unshift_read (chunk => $len, $cb); 1435 $_[0]->unshift_read (chunk => $len, $cb);
1436 }
1044 1437
1045 1 1438 1
1046 } 1439 }
1047}; 1440};
1048 1441
1049=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
1050 1443
1051Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1052 1446
1053If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
1054for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1055 1449
1056This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
1065=cut 1459=cut
1066 1460
1067register_read_type json => sub { 1461register_read_type json => sub {
1068 my ($self, $cb) = @_; 1462 my ($self, $cb) = @_;
1069 1463
1070 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
1071 1467
1072 my $data; 1468 my $data;
1073 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
1074 1470
1075 my $json = $self->{json} ||= JSON->new->utf8;
1076
1077 sub { 1471 sub {
1078 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1079 1473
1080 if ($ref) { 1474 if ($ref) {
1081 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1082 $json->incr_text = ""; 1476 $json->incr_text = "";
1083 $cb->($self, $ref); 1477 $cb->($self, $ref);
1084 1478
1085 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1086 } else { 1490 } else {
1087 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1088 () 1493 ()
1089 } 1494 }
1090 } 1495 }
1091}; 1496};
1092 1497
1105 1510
1106 require Storable; 1511 require Storable;
1107 1512
1108 sub { 1513 sub {
1109 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1514 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1515 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1111 or return; 1516 or return;
1112 1517
1518 my $format = length pack "w", $len;
1519
1520 # bypass unshift if we already have the remaining chunk
1521 if ($format + $len <= length $_[0]{rbuf}) {
1522 my $data = substr $_[0]{rbuf}, $format, $len;
1523 substr $_[0]{rbuf}, 0, $format + $len, "";
1524 $cb->($_[0], Storable::thaw ($data));
1525 } else {
1113 # remove prefix 1526 # remove prefix
1114 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1527 substr $_[0]{rbuf}, 0, $format, "";
1115 1528
1116 # read rest 1529 # read remaining chunk
1117 $_[0]->unshift_read (chunk => $len, sub { 1530 $_[0]->unshift_read (chunk => $len, sub {
1118 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1119 $cb->($_[0], $ref); 1532 $cb->($_[0], $ref);
1120 } else { 1533 } else {
1121 $self->_error (&Errno::EBADMSG); 1534 $self->_error (Errno::EBADMSG);
1535 }
1122 } 1536 });
1123 }); 1537 }
1538
1539 1
1124 } 1540 }
1125}; 1541};
1126 1542
1127=back 1543=back
1128 1544
1158Note that AnyEvent::Handle will automatically C<start_read> for you when 1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1159you change the C<on_read> callback or push/unshift a read callback, and it 1575you change the C<on_read> callback or push/unshift a read callback, and it
1160will automatically C<stop_read> for you when neither C<on_read> is set nor 1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1161there are any read requests in the queue. 1577there are any read requests in the queue.
1162 1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1163=cut 1582=cut
1164 1583
1165sub stop_read { 1584sub stop_read {
1166 my ($self) = @_; 1585 my ($self) = @_;
1167 1586
1168 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1169} 1588}
1170 1589
1171sub start_read { 1590sub start_read {
1172 my ($self) = @_; 1591 my ($self) = @_;
1173 1592
1174 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1175 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1176 1595
1177 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1178 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1179 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1180 1599
1181 if ($len > 0) { 1600 if ($len > 0) {
1182 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1183 1602
1184 $self->{filter_r} 1603 if ($self->{tls}) {
1185 ? $self->{filter_r}($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1186 : $self->{_in_drain} || $self->_drain_rbuf; 1605
1606 &_dotls ($self);
1607 } else {
1608 $self->_drain_rbuf;
1609 }
1187 1610
1188 } elsif (defined $len) { 1611 } elsif (defined $len) {
1189 delete $self->{_rw}; 1612 delete $self->{_rw};
1190 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1191 $self->_drain_rbuf unless $self->{_in_drain}; 1614 $self->_drain_rbuf;
1192 1615
1193 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1194 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1195 } 1618 }
1196 }); 1619 };
1197 } 1620 }
1198} 1621}
1199 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1200sub _dotls { 1651sub _dotls {
1201 my ($self) = @_; 1652 my ($self) = @_;
1202 1653
1203 my $buf; 1654 my $tmp;
1204 1655
1205 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1206 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1207 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1208 } 1659 }
1209 }
1210 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
1211 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1212 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1213 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1214 } 1696 }
1215 1697
1216 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
1217 if (length $buf) { 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1218 $self->{rbuf} .= $buf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1219 $self->_drain_rbuf unless $self->{_in_drain};
1220 } else {
1221 # let's treat SSL-eof as we treat normal EOF
1222 $self->{_eof} = 1;
1223 $self->_shutdown;
1224 return;
1225 }
1226 }
1227
1228 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1229
1230 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1231 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1232 return $self->_error ($!, 1);
1233 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1234 return $self->_error (&Errno::EIO, 1);
1235 }
1236
1237 # all others are fine for our purposes
1238 }
1239} 1701}
1240 1702
1241=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1242 1704
1243Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1244object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1245C<starttls>. 1707C<starttls>.
1246 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1247The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1248C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1249 1715
1250The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1251used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1252 1720
1253The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1254call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1255might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1256 1725
1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1729
1257=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1258 1733
1259sub starttls { 1734sub starttls {
1260 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1261 1736
1262 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1263 1739
1264 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1266 Net::SSLeay::set_accept_state ($ssl); 1742
1267 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1268 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1269 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1270 } 1765
1271 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1272 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1273 1768
1274 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1275 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1276 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1277 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1278 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1279 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1280 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1281 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1282 1785
1283 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1284 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1285 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1286 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1287 1792
1288 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1289 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1290 &_dotls; 1795
1291 }; 1796 &_dotls; # need to trigger the initial handshake
1292 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1293 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1294 &_dotls;
1295 };
1296} 1798}
1297 1799
1298=item $handle->stoptls 1800=item $handle->stoptls
1299 1801
1300Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1301lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1302 1806
1303=cut 1807=cut
1304 1808
1305sub stoptls { 1809sub stoptls {
1306 my ($self) = @_; 1810 my ($self) = @_;
1307 1811
1308 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1309 1814
1310 delete $self->{_rbio}; 1815 &_dotls;
1311 delete $self->{_wbio}; 1816
1312 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1313 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1314 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1315} 1832}
1316 1833
1317sub DESTROY { 1834sub DESTROY {
1318 my $self = shift; 1835 my ($self) = @_;
1319 1836
1320 $self->stoptls; 1837 &_freetls;
1321 1838
1322 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1323 1840
1324 if ($linger && length $self->{wbuf}) { 1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1325 my $fh = delete $self->{fh}; 1842 my $fh = delete $self->{fh};
1326 my $wbuf = delete $self->{wbuf}; 1843 my $wbuf = delete $self->{wbuf};
1327 1844
1328 my @linger; 1845 my @linger;
1329 1846
1330 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1847 push @linger, AE::io $fh, 1, sub {
1331 my $len = syswrite $fh, $wbuf, length $wbuf; 1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1332 1849
1333 if ($len > 0) { 1850 if ($len > 0) {
1334 substr $wbuf, 0, $len, ""; 1851 substr $wbuf, 0, $len, "";
1335 } else { 1852 } else {
1336 @linger = (); # end 1853 @linger = (); # end
1337 } 1854 }
1338 }); 1855 };
1339 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1856 push @linger, AE::timer $linger, 0, sub {
1340 @linger = (); 1857 @linger = ();
1341 }); 1858 };
1342 } 1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1343} 1897}
1344 1898
1345=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1346 1900
1347This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1348default for TLS mode. 1902for TLS mode.
1349 1903
1350The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1351
1352 Net::SSLeay::load_error_strings;
1353 Net::SSLeay::SSLeay_add_ssl_algorithms;
1354 Net::SSLeay::randomize;
1355
1356 my $CTX = Net::SSLeay::CTX_new;
1357
1358 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1359 1905
1360=cut 1906=cut
1361 1907
1362our $TLS_CTX; 1908our $TLS_CTX;
1363 1909
1364sub TLS_CTX() { 1910sub TLS_CTX() {
1365 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1366 require Net::SSLeay; 1912 require AnyEvent::TLS;
1367 1913
1368 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1369 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1370 Net::SSLeay::randomize ();
1371
1372 $TLS_CTX = Net::SSLeay::CTX_new ();
1373
1374 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1375
1376 $TLS_CTX
1377 } 1915 }
1378} 1916}
1379 1917
1380=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1381 2078
1382=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1383 2080
1384In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1385 2082
1389=over 4 2086=over 4
1390 2087
1391=item * all constructor arguments become object members. 2088=item * all constructor arguments become object members.
1392 2089
1393At least initially, when you pass a C<tls>-argument to the constructor it 2090At least initially, when you pass a C<tls>-argument to the constructor it
1394will end up in C<< $handle->{tls} >>. Those members might be changes or 2091will end up in C<< $handle->{tls} >>. Those members might be changed or
1395mutated later on (for example C<tls> will hold the TLS connection object). 2092mutated later on (for example C<tls> will hold the TLS connection object).
1396 2093
1397=item * other object member names are prefixed with an C<_>. 2094=item * other object member names are prefixed with an C<_>.
1398 2095
1399All object members not explicitly documented (internal use) are prefixed 2096All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines