ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.164 by root, Mon Jul 27 22:44:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.151; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
121 205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
136 220
137If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 225
142Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
146 231
147Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
148 233
149=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
150 235
154 239
155=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
156 241
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
160 245
161For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
165isn't finished). 250isn't finished).
166 251
252=item autocork => <boolean>
253
254When disabled (the default), then C<push_write> will try to immediately
255write the data to the handle, if possible. This avoids having to register
256a write watcher and wait for the next event loop iteration, but can
257be inefficient if you write multiple small chunks (on the wire, this
258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
260
261When enabled, then writes will always be queued till the next event loop
262iteration. This is efficient when you do many small writes per iteration,
263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
265
266=item no_delay => <boolean>
267
268When doing small writes on sockets, your operating system kernel might
269wait a bit for more data before actually sending it out. This is called
270the Nagle algorithm, and usually it is beneficial.
271
272In some situations you want as low a delay as possible, which can be
273accomplishd by setting this option to a true value.
274
275The default is your opertaing system's default behaviour (most likely
276enabled), this option explicitly enables or disables it, if possible.
277
167=item read_size => <bytes> 278=item read_size => <bytes>
168 279
169The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
171 283
172=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
173 285
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
176considered empty. 288considered empty.
177 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
178=item linger => <seconds> 295=item linger => <seconds>
179 296
180If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 301system treats outstanding data at socket close time).
185 302
186This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
188 316
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 318
191When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
194 325
195TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
197 330
198For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
200 334
201You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
205 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
206See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 351
208=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
209 353
210Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
214=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
215 395
216This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
217 397
218If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
220 401
221Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
223 404
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 405=back
231 406
232=cut 407=cut
233 408
234sub new { 409sub new {
235 my $class = shift; 410 my $class = shift;
236
237 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
238 412
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
240 476
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 478
248 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 480 $self->_timeout;
250 481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 488
253 $self->start_read 489 $self->start_read
254 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
255 491
256 $self 492 $self->_drain_wbuf;
257} 493}
258 494
259sub _shutdown { 495#sub _shutdown {
260 my ($self) = @_; 496# my ($self) = @_;
261 497#
262 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww}; 500#
265 delete $self->{fh}; 501# &_freetls;
266 502#}
267 $self->stoptls;
268}
269 503
270sub _error { 504sub _error {
271 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
272
273 $self->_shutdown
274 if $fatal;
275 506
276 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
277 509
278 if ($self->{on_error}) { 510 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
280 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 516 }
283} 517}
284 518
285=item $fh = $handle->fh 519=item $fh = $handle->fh
286 520
287This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 522
289=cut 523=cut
290 524
291sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
292 526
310 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
311} 545}
312 546
313=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
314 548
315Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 551argument and method.
318 552
319=cut 553=cut
320 554
321sub on_timeout { 555sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
557}
558
559=item $handle->autocork ($boolean)
560
561Enables or disables the current autocork behaviour (see C<autocork>
562constructor argument). Changes will only take effect on the next write.
563
564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
569
570=item $handle->no_delay ($boolean)
571
572Enables or disables the C<no_delay> setting (see constructor argument of
573the same name for details).
574
575=cut
576
577sub no_delay {
578 $_[0]{no_delay} = $_[1];
579
580 eval {
581 local $SIG{__DIE__};
582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
323} 605}
324 606
325############################################################################# 607#############################################################################
326 608
327=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
340# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
341# also check for time-outs 623# also check for time-outs
342sub _timeout { 624sub _timeout {
343 my ($self) = @_; 625 my ($self) = @_;
344 626
345 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
346 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
347 629
348 # when would the timeout trigger? 630 # when would the timeout trigger?
349 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
350 632
353 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
354 636
355 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
356 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
357 } else { 639 } else {
358 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
359 } 641 }
360 642
361 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
362 return unless $self->{timeout}; 644 return unless $self->{timeout};
363 645
405 my ($self, $cb) = @_; 687 my ($self, $cb) = @_;
406 688
407 $self->{on_drain} = $cb; 689 $self->{on_drain} = $cb;
408 690
409 $cb->($self) 691 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 692 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 693}
412 694
413=item $handle->push_write ($data) 695=item $handle->push_write ($data)
414 696
415Queues the given scalar to be written. You can push as much data as you 697Queues the given scalar to be written. You can push as much data as you
426 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
427 709
428 my $cb = sub { 710 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
430 712
431 if ($len >= 0) { 713 if (defined $len) {
432 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
433 715
434 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
435 717
436 $self->{on_drain}($self) 718 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 719 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 720 && $self->{on_drain};
439 721
440 delete $self->{_ww} unless length $self->{wbuf}; 722 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 723 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 724 $self->_error ($!, 1);
443 } 725 }
444 }; 726 };
445 727
446 # try to write data immediately 728 # try to write data immediately
447 $cb->(); 729 $cb->() unless $self->{autocork};
448 730
449 # if still data left in wbuf, we need to poll 731 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 732 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 733 if length $self->{wbuf};
452 }; 734 };
466 748
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 749 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 750 ->($self, @_);
469 } 751 }
470 752
471 if ($self->{filter_w}) { 753 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 754 $self->{_tls_wbuf} .= $_[0];
755 &_dotls ($self) if $self->{fh};
473 } else { 756 } else {
474 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
476 } 759 }
477} 760}
478 761
479=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
480 763
494=cut 777=cut
495 778
496register_write_type netstring => sub { 779register_write_type netstring => sub {
497 my ($self, $string) = @_; 780 my ($self, $string) = @_;
498 781
499 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
500}; 783};
501 784
502=item packstring => $format, $data 785=item packstring => $format, $data
503 786
504An octet string prefixed with an encoded length. The encoding C<$format> 787An octet string prefixed with an encoded length. The encoding C<$format>
569 852
570 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
571}; 854};
572 855
573=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
574 882
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 884
577This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
672=cut 980=cut
673 981
674sub _drain_rbuf { 982sub _drain_rbuf {
675 my ($self) = @_; 983 my ($self) = @_;
676 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
677 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
678 988
679 if ( 989 if (
680 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 992 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 993 $self->_error (Errno::ENOSPC, 1), return;
684 } 994 }
685 995
686 while () { 996 while () {
687 no strict 'refs'; 997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
688 1001
689 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
690 1003
691 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
693 if ($self->{_eof}) { 1006 # no progress can be made
694 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 1008 $self->_error (Errno::EPIPE, 1), return
696 } 1009 if $self->{_eof};
697 1010
698 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
699 last; 1012 last;
700 } 1013 }
701 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
708 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
710 ) { 1023 ) {
711 # no further data will arrive 1024 # no further data will arrive
712 # so no progress can be made 1025 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 1026 $self->_error (Errno::EPIPE, 1), return
714 if $self->{_eof}; 1027 if $self->{_eof};
715 1028
716 last; # more data might arrive 1029 last; # more data might arrive
717 } 1030 }
718 } else { 1031 } else {
719 # read side becomes idle 1032 # read side becomes idle
720 delete $self->{_rw}; 1033 delete $self->{_rw} unless $self->{tls};
721 last; 1034 last;
722 } 1035 }
723 } 1036 }
724 1037
1038 if ($self->{_eof}) {
1039 $self->{on_eof}
725 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 1041 : $self->_error (0, 1, "Unexpected end-of-file");
1042
1043 return;
1044 }
727 1045
728 # may need to restart read watcher 1046 # may need to restart read watcher
729 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
730 $self->start_read 1048 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 1049 if $self->{on_read} || @{ $self->{_queue} };
742 1060
743sub on_read { 1061sub on_read {
744 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
745 1063
746 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
747 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
748} 1066}
749 1067
750=item $handle->rbuf 1068=item $handle->rbuf
751 1069
752Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
753 1071
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
756 1077
757NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 1080automatically manage the read buffer.
760 1081
801 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
802 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
803 } 1124 }
804 1125
805 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
806 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
807} 1128}
808 1129
809sub unshift_read { 1130sub unshift_read {
810 my $self = shift; 1131 my $self = shift;
811 my $cb = pop; 1132 my $cb = pop;
817 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
818 } 1139 }
819 1140
820 1141
821 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
822 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
823} 1144}
824 1145
825=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
826 1147
827=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1178 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 1179 1
859 } 1180 }
860}; 1181};
861 1182
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1183=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1184
873The callback will be called only once a full line (including the end of 1185The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1186line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1187marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1202=cut
891 1203
892register_read_type line => sub { 1204register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1205 my ($self, $cb, $eol) = @_;
894 1206
895 $eol = qr|(\015?\012)| if @_ < 3; 1207 if (@_ < 3) {
1208 # this is more than twice as fast as the generic code below
1209 sub {
1210 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1211
1212 $cb->($_[0], $1, $2);
1213 1
1214 }
1215 } else {
896 $eol = quotemeta $eol unless ref $eol; 1216 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1217 $eol = qr|^(.*?)($eol)|s;
898 1218
899 sub { 1219 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1220 $_[0]{rbuf} =~ s/$eol// or return;
901 1221
902 $cb->($_[0], $1, $2); 1222 $cb->($_[0], $1, $2);
1223 1
903 1 1224 }
904 } 1225 }
905}; 1226};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1227
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1228=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1229
920Makes a regex match against the regex object C<$accept> and returns 1230Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1231everything up to and including the match.
971 return 1; 1281 return 1;
972 } 1282 }
973 1283
974 # reject 1284 # reject
975 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
976 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
977 } 1287 }
978 1288
979 # skip 1289 # skip
980 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
981 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
997 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
998 1308
999 sub { 1309 sub {
1000 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1002 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1003 } 1313 }
1004 return; 1314 return;
1005 } 1315 }
1006 1316
1007 my $len = $1; 1317 my $len = $1;
1010 my $string = $_[1]; 1320 my $string = $_[1];
1011 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1012 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1013 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1014 } else { 1324 } else {
1015 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1016 } 1326 }
1017 }); 1327 });
1018 }); 1328 });
1019 1329
1020 1 1330 1
1026An octet string prefixed with an encoded length. The encoding C<$format> 1336An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1337uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1338integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1339optional C<!>, C<< < >> or C<< > >> modifier).
1030 1340
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1341For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342EPP uses a prefix of C<N> (4 octtes).
1032 1343
1033Example: read a block of data prefixed by its length in BER-encoded 1344Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1345format (very efficient).
1035 1346
1036 $handle->push_read (packstring => "w", sub { 1347 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1353register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1354 my ($self, $cb, $format) = @_;
1044 1355
1045 sub { 1356 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1357 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1358 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1359 or return;
1049 1360
1361 $format = length pack $format, $len;
1362
1363 # bypass unshift if we already have the remaining chunk
1364 if ($format + $len <= length $_[0]{rbuf}) {
1365 my $data = substr $_[0]{rbuf}, $format, $len;
1366 substr $_[0]{rbuf}, 0, $format + $len, "";
1367 $cb->($_[0], $data);
1368 } else {
1050 # remove prefix 1369 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1370 substr $_[0]{rbuf}, 0, $format, "";
1052 1371
1053 # read rest 1372 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1373 $_[0]->unshift_read (chunk => $len, $cb);
1374 }
1055 1375
1056 1 1376 1
1057 } 1377 }
1058}; 1378};
1059 1379
1060=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
1061 1381
1062Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1384
1064If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1387
1067This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
1076=cut 1397=cut
1077 1398
1078register_read_type json => sub { 1399register_read_type json => sub {
1079 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1080 1401
1081 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1082 1405
1083 my $data; 1406 my $data;
1084 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1085 1408
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1409 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1411
1091 if ($ref) { 1412 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1414 $json->incr_text = "";
1094 $cb->($self, $ref); 1415 $cb->($self, $ref);
1095 1416
1096 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1097 } else { 1428 } else {
1098 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1099 () 1431 ()
1100 } 1432 }
1101 } 1433 }
1102}; 1434};
1103 1435
1116 1448
1117 require Storable; 1449 require Storable;
1118 1450
1119 sub { 1451 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1452 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1453 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1454 or return;
1123 1455
1456 my $format = length pack "w", $len;
1457
1458 # bypass unshift if we already have the remaining chunk
1459 if ($format + $len <= length $_[0]{rbuf}) {
1460 my $data = substr $_[0]{rbuf}, $format, $len;
1461 substr $_[0]{rbuf}, 0, $format + $len, "";
1462 $cb->($_[0], Storable::thaw ($data));
1463 } else {
1124 # remove prefix 1464 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1465 substr $_[0]{rbuf}, 0, $format, "";
1126 1466
1127 # read rest 1467 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1131 } else { 1471 } else {
1132 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1473 }
1133 } 1474 });
1134 }); 1475 }
1476
1477 1
1135 } 1478 }
1136}; 1479};
1137 1480
1138=back 1481=back
1139 1482
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1512Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1513you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1514will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1515there are any read requests in the queue.
1173 1516
1517These methods will have no effect when in TLS mode (as TLS doesn't support
1518half-duplex connections).
1519
1174=cut 1520=cut
1175 1521
1176sub stop_read { 1522sub stop_read {
1177 my ($self) = @_; 1523 my ($self) = @_;
1178 1524
1179 delete $self->{_rw}; 1525 delete $self->{_rw} unless $self->{tls};
1180} 1526}
1181 1527
1182sub start_read { 1528sub start_read {
1183 my ($self) = @_; 1529 my ($self) = @_;
1184 1530
1185 unless ($self->{_rw} || $self->{_eof}) { 1531 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1532 Scalar::Util::weaken $self;
1187 1533
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1534 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1535 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1536 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1537
1192 if ($len > 0) { 1538 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1539 $self->{_activity} = AnyEvent->now;
1194 1540
1195 $self->{filter_r} 1541 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1543
1544 &_dotls ($self);
1545 } else {
1546 $self->_drain_rbuf;
1547 }
1198 1548
1199 } elsif (defined $len) { 1549 } elsif (defined $len) {
1200 delete $self->{_rw}; 1550 delete $self->{_rw};
1201 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1203 1553
1204 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1205 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1206 } 1556 }
1207 }); 1557 });
1208 } 1558 }
1209} 1559}
1210 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1589sub _dotls {
1212 my ($self) = @_; 1590 my ($self) = @_;
1213 1591
1214 my $buf; 1592 my $tmp;
1215 1593
1216 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1597 }
1220 }
1221 1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1603 }
1604
1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1606 unless (length $tmp) {
1607 $self->{_on_starttls}
1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1619 }
1620
1621 $self->{_tls_rbuf} .= $tmp;
1622 $self->_drain_rbuf;
1623 $self->{tls} or return; # tls session might have gone away in callback
1624 }
1625
1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1627 return $self->_tls_error ($tmp)
1628 if $tmp != $ERROR_WANT_READ
1629 && ($tmp != $ERROR_SYSCALL || $!);
1630
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1632 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1225 } 1634 }
1226 1635
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1636 $self->{_on_starttls}
1228 if (length $buf) { 1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1229 $self->{rbuf} .= $buf; 1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250} 1639}
1251 1640
1252=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1253 1642
1254Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1256C<starttls>. 1645C<starttls>.
1257 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1258The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1653
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1263 1658
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1267 1663
1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1667
1268=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1269 1671
1270sub starttls { 1672sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1272 1674
1273 $self->stoptls; 1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1274 1677
1275 if ($ssl eq "accept") { 1678 $self->{tls} = $tls;
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1679 $self->{tls_ctx} = $ctx if @_ > 2;
1277 Net::SSLeay::set_accept_state ($ssl); 1680
1278 } elsif ($ssl eq "connect") { 1681 return unless $self->{fh};
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1682
1280 Net::SSLeay::set_connect_state ($ssl); 1683 require Net::SSLeay;
1684
1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1281 } 1703
1282 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1284 1706
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1711 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1712 #
1713 # in short: this is a mess.
1714 #
1715 # note that we do not try to keep the length constant between writes as we are required to do.
1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1718 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1293 1723
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1726
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1298 1728
1299 $self->{filter_w} = sub { 1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1730 if $self->{on_starttls};
1301 &_dotls; 1731
1302 }; 1732 &_dotls; # need to trigger the initial handshake
1303 $self->{filter_r} = sub { 1733 $self->start_read; # make sure we actually do read
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1734}
1308 1735
1309=item $handle->stoptls 1736=item $handle->stoptls
1310 1737
1311Destroys the SSL connection, if any. Partial read or write data will be 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1739sending a close notify to the other side, but since OpenSSL doesn't
1740support non-blocking shut downs, it is not guarenteed that you can re-use
1741the stream afterwards.
1313 1742
1314=cut 1743=cut
1315 1744
1316sub stoptls { 1745sub stoptls {
1317 my ($self) = @_; 1746 my ($self) = @_;
1318 1747
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1748 if ($self->{tls}) {
1749 Net::SSLeay::shutdown ($self->{tls});
1320 1750
1321 delete $self->{_rbio}; 1751 &_dotls;
1322 delete $self->{_wbio}; 1752
1323 delete $self->{_tls_wbuf}; 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1324 delete $self->{filter_r}; 1754# # we, we... have to use openssl :/#d#
1325 delete $self->{filter_w}; 1755# &_freetls;#d#
1756 }
1757}
1758
1759sub _freetls {
1760 my ($self) = @_;
1761
1762 return unless $self->{tls};
1763
1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1766
1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1326} 1768}
1327 1769
1328sub DESTROY { 1770sub DESTROY {
1329 my $self = shift; 1771 my ($self) = @_;
1330 1772
1331 $self->stoptls; 1773 &_freetls;
1332 1774
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1776
1335 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1336 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1337 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1338 1780
1339 my @linger; 1781 my @linger;
1340 1782
1351 @linger = (); 1793 @linger = ();
1352 }); 1794 });
1353 } 1795 }
1354} 1796}
1355 1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. You must not call any methods on the object afterwards.
1803
1804Normally, you can just "forget" any references to an AnyEvent::Handle
1805object and it will simply shut down. This works in fatal error and EOF
1806callbacks, as well as code outside. It does I<NOT> work in a read or write
1807callback, so when you want to destroy the AnyEvent::Handle object from
1808within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1809that case.
1810
1811Destroying the handle object in this way has the advantage that callbacks
1812will be removed as well, so if those are the only reference holders (as
1813is common), then one doesn't need to do anything special to break any
1814reference cycles.
1815
1816The handle might still linger in the background and write out remaining
1817data, as specified by the C<linger> option, however.
1818
1819=cut
1820
1821sub destroy {
1822 my ($self) = @_;
1823
1824 $self->DESTROY;
1825 %$self = ();
1826 bless $self, "AnyEvent::Handle::destroyed";
1827}
1828
1829{
1830 package AnyEvent::Handle::destroyed;
1831
1832 sub AUTOLOAD {
1833 #nop
1834 }
1835}
1836
1356=item AnyEvent::Handle::TLS_CTX 1837=item AnyEvent::Handle::TLS_CTX
1357 1838
1358This function creates and returns the Net::SSLeay::CTX object used by 1839This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1840for TLS mode.
1360 1841
1361The context is created like this: 1842The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1843
1371=cut 1844=cut
1372 1845
1373our $TLS_CTX; 1846our $TLS_CTX;
1374 1847
1375sub TLS_CTX() { 1848sub TLS_CTX() {
1376 $TLS_CTX || do { 1849 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1850 require AnyEvent::TLS;
1378 1851
1379 Net::SSLeay::load_error_strings (); 1852 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1853 }
1389} 1854}
1390 1855
1391=back 1856=back
1857
1858
1859=head1 NONFREQUENTLY ASKED QUESTIONS
1860
1861=over 4
1862
1863=item I C<undef> the AnyEvent::Handle reference inside my callback and
1864still get further invocations!
1865
1866That's because AnyEvent::Handle keeps a reference to itself when handling
1867read or write callbacks.
1868
1869It is only safe to "forget" the reference inside EOF or error callbacks,
1870from within all other callbacks, you need to explicitly call the C<<
1871->destroy >> method.
1872
1873=item I get different callback invocations in TLS mode/Why can't I pause
1874reading?
1875
1876Unlike, say, TCP, TLS connections do not consist of two independent
1877communication channels, one for each direction. Or put differently. The
1878read and write directions are not independent of each other: you cannot
1879write data unless you are also prepared to read, and vice versa.
1880
1881This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1882callback invocations when you are not expecting any read data - the reason
1883is that AnyEvent::Handle always reads in TLS mode.
1884
1885During the connection, you have to make sure that you always have a
1886non-empty read-queue, or an C<on_read> watcher. At the end of the
1887connection (or when you no longer want to use it) you can call the
1888C<destroy> method.
1889
1890=item How do I read data until the other side closes the connection?
1891
1892If you just want to read your data into a perl scalar, the easiest way
1893to achieve this is by setting an C<on_read> callback that does nothing,
1894clearing the C<on_eof> callback and in the C<on_error> callback, the data
1895will be in C<$_[0]{rbuf}>:
1896
1897 $handle->on_read (sub { });
1898 $handle->on_eof (undef);
1899 $handle->on_error (sub {
1900 my $data = delete $_[0]{rbuf};
1901 });
1902
1903The reason to use C<on_error> is that TCP connections, due to latencies
1904and packets loss, might get closed quite violently with an error, when in
1905fact, all data has been received.
1906
1907It is usually better to use acknowledgements when transferring data,
1908to make sure the other side hasn't just died and you got the data
1909intact. This is also one reason why so many internet protocols have an
1910explicit QUIT command.
1911
1912=item I don't want to destroy the handle too early - how do I wait until
1913all data has been written?
1914
1915After writing your last bits of data, set the C<on_drain> callback
1916and destroy the handle in there - with the default setting of
1917C<low_water_mark> this will be called precisely when all data has been
1918written to the socket:
1919
1920 $handle->push_write (...);
1921 $handle->on_drain (sub {
1922 warn "all data submitted to the kernel\n";
1923 undef $handle;
1924 });
1925
1926If you just want to queue some data and then signal EOF to the other side,
1927consider using C<< ->push_shutdown >> instead.
1928
1929=item I want to contact a TLS/SSL server, I don't care about security.
1930
1931If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1932simply connect to it and then create the AnyEvent::Handle with the C<tls>
1933parameter:
1934
1935 tcp_connect $host, $port, sub {
1936 my ($fh) = @_;
1937
1938 my $handle = new AnyEvent::Handle
1939 fh => $fh,
1940 tls => "connect",
1941 on_error => sub { ... };
1942
1943 $handle->push_write (...);
1944 };
1945
1946=item I want to contact a TLS/SSL server, I do care about security.
1947
1948Then you should additionally enable certificate verification, including
1949peername verification, if the protocol you use supports it (see
1950L<AnyEvent::TLS>, C<verify_peername>).
1951
1952E.g. for HTTPS:
1953
1954 tcp_connect $host, $port, sub {
1955 my ($fh) = @_;
1956
1957 my $handle = new AnyEvent::Handle
1958 fh => $fh,
1959 peername => $host,
1960 tls => "connect",
1961 tls_ctx => { verify => 1, verify_peername => "https" },
1962 ...
1963
1964Note that you must specify the hostname you connected to (or whatever
1965"peername" the protocol needs) as the C<peername> argument, otherwise no
1966peername verification will be done.
1967
1968The above will use the system-dependent default set of trusted CA
1969certificates. If you want to check against a specific CA, add the
1970C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1971
1972 tls_ctx => {
1973 verify => 1,
1974 verify_peername => "https",
1975 ca_file => "my-ca-cert.pem",
1976 },
1977
1978=item I want to create a TLS/SSL server, how do I do that?
1979
1980Well, you first need to get a server certificate and key. You have
1981three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1982self-signed certificate (cheap. check the search engine of your choice,
1983there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1984nice program for that purpose).
1985
1986Then create a file with your private key (in PEM format, see
1987L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1988file should then look like this:
1989
1990 -----BEGIN RSA PRIVATE KEY-----
1991 ...header data
1992 ... lots of base64'y-stuff
1993 -----END RSA PRIVATE KEY-----
1994
1995 -----BEGIN CERTIFICATE-----
1996 ... lots of base64'y-stuff
1997 -----END CERTIFICATE-----
1998
1999The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2000specify this file as C<cert_file>:
2001
2002 tcp_server undef, $port, sub {
2003 my ($fh) = @_;
2004
2005 my $handle = new AnyEvent::Handle
2006 fh => $fh,
2007 tls => "accept",
2008 tls_ctx => { cert_file => "my-server-keycert.pem" },
2009 ...
2010
2011When you have intermediate CA certificates that your clients might not
2012know about, just append them to the C<cert_file>.
2013
2014=back
2015
1392 2016
1393=head1 SUBCLASSING AnyEvent::Handle 2017=head1 SUBCLASSING AnyEvent::Handle
1394 2018
1395In many cases, you might want to subclass AnyEvent::Handle. 2019In many cases, you might want to subclass AnyEvent::Handle.
1396 2020
1400=over 4 2024=over 4
1401 2025
1402=item * all constructor arguments become object members. 2026=item * all constructor arguments become object members.
1403 2027
1404At least initially, when you pass a C<tls>-argument to the constructor it 2028At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 2029will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 2030mutated later on (for example C<tls> will hold the TLS connection object).
1407 2031
1408=item * other object member names are prefixed with an C<_>. 2032=item * other object member names are prefixed with an C<_>.
1409 2033
1410All object members not explicitly documented (internal use) are prefixed 2034All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines