ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.172 by root, Wed Aug 5 20:50:27 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.151; 16our $VERSION = 4.901;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
121 205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
136 220
137If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 225
142Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
146 231
147Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
148 233
149=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
150 235
154 239
155=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
156 241
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
160 245
161For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
165isn't finished). 250isn't finished).
166 251
252=item autocork => <boolean>
253
254When disabled (the default), then C<push_write> will try to immediately
255write the data to the handle, if possible. This avoids having to register
256a write watcher and wait for the next event loop iteration, but can
257be inefficient if you write multiple small chunks (on the wire, this
258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
260
261When enabled, then writes will always be queued till the next event loop
262iteration. This is efficient when you do many small writes per iteration,
263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
265
266=item no_delay => <boolean>
267
268When doing small writes on sockets, your operating system kernel might
269wait a bit for more data before actually sending it out. This is called
270the Nagle algorithm, and usually it is beneficial.
271
272In some situations you want as low a delay as possible, which can be
273accomplishd by setting this option to a true value.
274
275The default is your opertaing system's default behaviour (most likely
276enabled), this option explicitly enables or disables it, if possible.
277
167=item read_size => <bytes> 278=item read_size => <bytes>
168 279
169The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
171 283
172=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
173 285
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
176considered empty. 288considered empty.
177 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
178=item linger => <seconds> 295=item linger => <seconds>
179 296
180If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 301system treats outstanding data at socket close time).
185 302
186This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
188 316
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 318
191When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
194 325
195TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
197 330
198For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
200 334
201You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
205 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
206See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 351
208=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
209 353
210Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
214=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
215 395
216This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
217 397
218If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
220 401
221Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
223 404
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 405=back
231 406
232=cut 407=cut
233 408
234sub new { 409sub new {
235 my $class = shift; 410 my $class = shift;
236
237 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
238 412
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
240 476
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 478
248 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 480 $self->_timeout;
250 481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 488
253 $self->start_read 489 $self->start_read
254 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
255 491
256 $self 492 $self->_drain_wbuf;
257} 493}
258 494
259sub _shutdown { 495#sub _shutdown {
260 my ($self) = @_; 496# my ($self) = @_;
261 497#
262 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww}; 500#
265 delete $self->{fh}; 501# &_freetls;
266 502#}
267 $self->stoptls;
268}
269 503
270sub _error { 504sub _error {
271 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
272
273 $self->_shutdown
274 if $fatal;
275 506
276 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
277 509
278 if ($self->{on_error}) { 510 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
280 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 516 }
283} 517}
284 518
285=item $fh = $handle->fh 519=item $fh = $handle->fh
286 520
287This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 522
289=cut 523=cut
290 524
291sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
292 526
310 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
311} 545}
312 546
313=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
314 548
315Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 551argument and method.
318 552
319=cut 553=cut
320 554
321sub on_timeout { 555sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
557}
558
559=item $handle->autocork ($boolean)
560
561Enables or disables the current autocork behaviour (see C<autocork>
562constructor argument). Changes will only take effect on the next write.
563
564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
569
570=item $handle->no_delay ($boolean)
571
572Enables or disables the C<no_delay> setting (see constructor argument of
573the same name for details).
574
575=cut
576
577sub no_delay {
578 $_[0]{no_delay} = $_[1];
579
580 eval {
581 local $SIG{__DIE__};
582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
323} 615}
324 616
325############################################################################# 617#############################################################################
326 618
327=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
340# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
341# also check for time-outs 633# also check for time-outs
342sub _timeout { 634sub _timeout {
343 my ($self) = @_; 635 my ($self) = @_;
344 636
345 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
346 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
347 639
348 # when would the timeout trigger? 640 # when would the timeout trigger?
349 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
350 642
353 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
354 646
355 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
356 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
357 } else { 649 } else {
358 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
359 } 651 }
360 652
361 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
362 return unless $self->{timeout}; 654 return unless $self->{timeout};
363 655
405 my ($self, $cb) = @_; 697 my ($self, $cb) = @_;
406 698
407 $self->{on_drain} = $cb; 699 $self->{on_drain} = $cb;
408 700
409 $cb->($self) 701 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 702 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 703}
412 704
413=item $handle->push_write ($data) 705=item $handle->push_write ($data)
414 706
415Queues the given scalar to be written. You can push as much data as you 707Queues the given scalar to be written. You can push as much data as you
426 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
427 719
428 my $cb = sub { 720 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
430 722
431 if ($len >= 0) { 723 if (defined $len) {
432 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
433 725
434 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
435 727
436 $self->{on_drain}($self) 728 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 729 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 730 && $self->{on_drain};
439 731
440 delete $self->{_ww} unless length $self->{wbuf}; 732 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 733 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 734 $self->_error ($!, 1);
443 } 735 }
444 }; 736 };
445 737
446 # try to write data immediately 738 # try to write data immediately
447 $cb->(); 739 $cb->() unless $self->{autocork};
448 740
449 # if still data left in wbuf, we need to poll 741 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 742 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 743 if length $self->{wbuf};
452 }; 744 };
466 758
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 759 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 760 ->($self, @_);
469 } 761 }
470 762
471 if ($self->{filter_w}) { 763 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 764 $self->{_tls_wbuf} .= $_[0];
765 &_dotls ($self) if $self->{fh};
473 } else { 766 } else {
474 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
476 } 769 }
477} 770}
478 771
479=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
480 773
494=cut 787=cut
495 788
496register_write_type netstring => sub { 789register_write_type netstring => sub {
497 my ($self, $string) = @_; 790 my ($self, $string) = @_;
498 791
499 sprintf "%d:%s,", (length $string), $string 792 (length $string) . ":$string,"
500}; 793};
501 794
502=item packstring => $format, $data 795=item packstring => $format, $data
503 796
504An octet string prefixed with an encoded length. The encoding C<$format> 797An octet string prefixed with an encoded length. The encoding C<$format>
569 862
570 pack "w/a*", Storable::nfreeze ($ref) 863 pack "w/a*", Storable::nfreeze ($ref)
571}; 864};
572 865
573=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
574 892
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 894
577This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
672=cut 990=cut
673 991
674sub _drain_rbuf { 992sub _drain_rbuf {
675 my ($self) = @_; 993 my ($self) = @_;
676 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
677 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
678
679 if (
680 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf}
682 ) {
683 return $self->_error (&Errno::ENOSPC, 1);
684 }
685 998
686 while () { 999 while () {
687 no strict 'refs'; 1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
688 1004
689 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
690 1006
691 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
693 if ($self->{_eof}) { 1009 # no progress can be made
694 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 1011 $self->_error (Errno::EPIPE, 1), return
696 } 1012 if $self->{_eof};
697 1013
698 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
699 last; 1015 last;
700 } 1016 }
701 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
708 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
710 ) { 1026 ) {
711 # no further data will arrive 1027 # no further data will arrive
712 # so no progress can be made 1028 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 1029 $self->_error (Errno::EPIPE, 1), return
714 if $self->{_eof}; 1030 if $self->{_eof};
715 1031
716 last; # more data might arrive 1032 last; # more data might arrive
717 } 1033 }
718 } else { 1034 } else {
719 # read side becomes idle 1035 # read side becomes idle
720 delete $self->{_rw}; 1036 delete $self->{_rw} unless $self->{tls};
721 last; 1037 last;
722 } 1038 }
723 } 1039 }
724 1040
1041 if ($self->{_eof}) {
1042 $self->{on_eof}
725 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 1044 : $self->_error (0, 1, "Unexpected end-of-file");
1045
1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
1054 }
727 1055
728 # may need to restart read watcher 1056 # may need to restart read watcher
729 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
730 $self->start_read 1058 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 1059 if $self->{on_read} || @{ $self->{_queue} };
742 1070
743sub on_read { 1071sub on_read {
744 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
745 1073
746 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
747 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
748} 1076}
749 1077
750=item $handle->rbuf 1078=item $handle->rbuf
751 1079
752Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
753 1081
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
756 1087
757NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 1090automatically manage the read buffer.
760 1091
801 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
802 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
803 } 1134 }
804 1135
805 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
806 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
807} 1138}
808 1139
809sub unshift_read { 1140sub unshift_read {
810 my $self = shift; 1141 my $self = shift;
811 my $cb = pop; 1142 my $cb = pop;
817 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
818 } 1149 }
819 1150
820 1151
821 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
822 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
823} 1154}
824 1155
825=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
826 1157
827=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1188 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 1189 1
859 } 1190 }
860}; 1191};
861 1192
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1193=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1194
873The callback will be called only once a full line (including the end of 1195The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1196line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1197marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1212=cut
891 1213
892register_read_type line => sub { 1214register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1215 my ($self, $cb, $eol) = @_;
894 1216
895 $eol = qr|(\015?\012)| if @_ < 3; 1217 if (@_ < 3) {
1218 # this is more than twice as fast as the generic code below
1219 sub {
1220 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1221
1222 $cb->($_[0], $1, $2);
1223 1
1224 }
1225 } else {
896 $eol = quotemeta $eol unless ref $eol; 1226 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1227 $eol = qr|^(.*?)($eol)|s;
898 1228
899 sub { 1229 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1230 $_[0]{rbuf} =~ s/$eol// or return;
901 1231
902 $cb->($_[0], $1, $2); 1232 $cb->($_[0], $1, $2);
1233 1
903 1 1234 }
904 } 1235 }
905}; 1236};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1237
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1238=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1239
920Makes a regex match against the regex object C<$accept> and returns 1240Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1241everything up to and including the match.
971 return 1; 1291 return 1;
972 } 1292 }
973 1293
974 # reject 1294 # reject
975 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
976 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
977 } 1297 }
978 1298
979 # skip 1299 # skip
980 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
981 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
997 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
998 1318
999 sub { 1319 sub {
1000 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
1002 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
1003 } 1323 }
1004 return; 1324 return;
1005 } 1325 }
1006 1326
1007 my $len = $1; 1327 my $len = $1;
1010 my $string = $_[1]; 1330 my $string = $_[1];
1011 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
1012 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
1013 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
1014 } else { 1334 } else {
1015 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
1016 } 1336 }
1017 }); 1337 });
1018 }); 1338 });
1019 1339
1020 1 1340 1
1026An octet string prefixed with an encoded length. The encoding C<$format> 1346An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1347uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1348integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1349optional C<!>, C<< < >> or C<< > >> modifier).
1030 1350
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1351For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1352EPP uses a prefix of C<N> (4 octtes).
1032 1353
1033Example: read a block of data prefixed by its length in BER-encoded 1354Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1355format (very efficient).
1035 1356
1036 $handle->push_read (packstring => "w", sub { 1357 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1363register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1364 my ($self, $cb, $format) = @_;
1044 1365
1045 sub { 1366 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1367 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1368 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1369 or return;
1049 1370
1371 $format = length pack $format, $len;
1372
1373 # bypass unshift if we already have the remaining chunk
1374 if ($format + $len <= length $_[0]{rbuf}) {
1375 my $data = substr $_[0]{rbuf}, $format, $len;
1376 substr $_[0]{rbuf}, 0, $format + $len, "";
1377 $cb->($_[0], $data);
1378 } else {
1050 # remove prefix 1379 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1380 substr $_[0]{rbuf}, 0, $format, "";
1052 1381
1053 # read rest 1382 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1383 $_[0]->unshift_read (chunk => $len, $cb);
1384 }
1055 1385
1056 1 1386 1
1057 } 1387 }
1058}; 1388};
1059 1389
1060=item json => $cb->($handle, $hash_or_arrayref) 1390=item json => $cb->($handle, $hash_or_arrayref)
1061 1391
1062Reads a JSON object or array, decodes it and passes it to the callback. 1392Reads a JSON object or array, decodes it and passes it to the
1393callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1394
1064If a C<json> object was passed to the constructor, then that will be used 1395If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1396for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1397
1067This read type uses the incremental parser available with JSON version 1398This read type uses the incremental parser available with JSON version
1076=cut 1407=cut
1077 1408
1078register_read_type json => sub { 1409register_read_type json => sub {
1079 my ($self, $cb) = @_; 1410 my ($self, $cb) = @_;
1080 1411
1081 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1082 1415
1083 my $data; 1416 my $data;
1084 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1085 1418
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1419 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1421
1091 if ($ref) { 1422 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1423 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1424 $json->incr_text = "";
1094 $cb->($self, $ref); 1425 $cb->($self, $ref);
1095 1426
1096 1 1427 1
1428 } elsif ($@) {
1429 # error case
1430 $json->incr_skip;
1431
1432 $self->{rbuf} = $json->incr_text;
1433 $json->incr_text = "";
1434
1435 $self->_error (Errno::EBADMSG);
1436
1437 ()
1097 } else { 1438 } else {
1098 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1440
1099 () 1441 ()
1100 } 1442 }
1101 } 1443 }
1102}; 1444};
1103 1445
1116 1458
1117 require Storable; 1459 require Storable;
1118 1460
1119 sub { 1461 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1462 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1463 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1464 or return;
1123 1465
1466 my $format = length pack "w", $len;
1467
1468 # bypass unshift if we already have the remaining chunk
1469 if ($format + $len <= length $_[0]{rbuf}) {
1470 my $data = substr $_[0]{rbuf}, $format, $len;
1471 substr $_[0]{rbuf}, 0, $format + $len, "";
1472 $cb->($_[0], Storable::thaw ($data));
1473 } else {
1124 # remove prefix 1474 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1475 substr $_[0]{rbuf}, 0, $format, "";
1126 1476
1127 # read rest 1477 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1478 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1480 $cb->($_[0], $ref);
1131 } else { 1481 } else {
1132 $self->_error (&Errno::EBADMSG); 1482 $self->_error (Errno::EBADMSG);
1483 }
1133 } 1484 });
1134 }); 1485 }
1486
1487 1
1135 } 1488 }
1136}; 1489};
1137 1490
1138=back 1491=back
1139 1492
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1522Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1523you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1524will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1525there are any read requests in the queue.
1173 1526
1527These methods will have no effect when in TLS mode (as TLS doesn't support
1528half-duplex connections).
1529
1174=cut 1530=cut
1175 1531
1176sub stop_read { 1532sub stop_read {
1177 my ($self) = @_; 1533 my ($self) = @_;
1178 1534
1179 delete $self->{_rw}; 1535 delete $self->{_rw} unless $self->{tls};
1180} 1536}
1181 1537
1182sub start_read { 1538sub start_read {
1183 my ($self) = @_; 1539 my ($self) = @_;
1184 1540
1185 unless ($self->{_rw} || $self->{_eof}) { 1541 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1542 Scalar::Util::weaken $self;
1187 1543
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1544 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1545 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1546 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1547
1192 if ($len > 0) { 1548 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1549 $self->{_activity} = AnyEvent->now;
1194 1550
1195 $self->{filter_r} 1551 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1553
1554 &_dotls ($self);
1555 } else {
1556 $self->_drain_rbuf;
1557 }
1198 1558
1199 } elsif (defined $len) { 1559 } elsif (defined $len) {
1200 delete $self->{_rw}; 1560 delete $self->{_rw};
1201 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1203 1563
1204 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1205 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1206 } 1566 }
1207 }); 1567 });
1208 } 1568 }
1209} 1569}
1210 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1599sub _dotls {
1212 my ($self) = @_; 1600 my ($self) = @_;
1213 1601
1214 my $buf; 1602 my $tmp;
1215 1603
1216 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1607 }
1220 }
1221 1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1613 }
1614
1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1616 unless (length $tmp) {
1617 $self->{_on_starttls}
1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1629 }
1630
1631 $self->{_tls_rbuf} .= $tmp;
1632 $self->_drain_rbuf;
1633 $self->{tls} or return; # tls session might have gone away in callback
1634 }
1635
1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1637 return $self->_tls_error ($tmp)
1638 if $tmp != $ERROR_WANT_READ
1639 && ($tmp != $ERROR_SYSCALL || $!);
1640
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1642 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1225 } 1644 }
1226 1645
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1646 $self->{_on_starttls}
1228 if (length $buf) { 1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1229 $self->{rbuf} .= $buf; 1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250} 1649}
1251 1650
1252=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1253 1652
1254Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1256C<starttls>. 1655C<starttls>.
1257 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1258The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1663
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1263 1668
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1267 1673
1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1677
1268=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1269 1681
1270sub starttls { 1682sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1272 1684
1273 $self->stoptls; 1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1274 1687
1275 if ($ssl eq "accept") { 1688 $self->{tls} = $tls;
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1689 $self->{tls_ctx} = $ctx if @_ > 2;
1277 Net::SSLeay::set_accept_state ($ssl); 1690
1278 } elsif ($ssl eq "connect") { 1691 return unless $self->{fh};
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1692
1280 Net::SSLeay::set_connect_state ($ssl); 1693 require Net::SSLeay;
1694
1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1281 } 1713
1282 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1284 1716
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1721 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1722 #
1723 # in short: this is a mess.
1724 #
1725 # note that we do not try to keep the length constant between writes as we are required to do.
1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1728 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1293 1733
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1736
1737 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1738
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1739 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1298 1740
1299 $self->{filter_w} = sub { 1741 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1742 if $self->{on_starttls};
1301 &_dotls; 1743
1302 }; 1744 &_dotls; # need to trigger the initial handshake
1303 $self->{filter_r} = sub { 1745 $self->start_read; # make sure we actually do read
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1746}
1308 1747
1309=item $handle->stoptls 1748=item $handle->stoptls
1310 1749
1311Destroys the SSL connection, if any. Partial read or write data will be 1750Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1751sending a close notify to the other side, but since OpenSSL doesn't
1752support non-blocking shut downs, it is not guarenteed that you can re-use
1753the stream afterwards.
1313 1754
1314=cut 1755=cut
1315 1756
1316sub stoptls { 1757sub stoptls {
1317 my ($self) = @_; 1758 my ($self) = @_;
1318 1759
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1760 if ($self->{tls}) {
1761 Net::SSLeay::shutdown ($self->{tls});
1320 1762
1321 delete $self->{_rbio}; 1763 &_dotls;
1322 delete $self->{_wbio}; 1764
1323 delete $self->{_tls_wbuf}; 1765# # we don't give a shit. no, we do, but we can't. no...#d#
1324 delete $self->{filter_r}; 1766# # we, we... have to use openssl :/#d#
1325 delete $self->{filter_w}; 1767# &_freetls;#d#
1768 }
1769}
1770
1771sub _freetls {
1772 my ($self) = @_;
1773
1774 return unless $self->{tls};
1775
1776 $self->{tls_ctx}->_put_session (delete $self->{tls})
1777 if $self->{tls} > 0;
1778
1779 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1326} 1780}
1327 1781
1328sub DESTROY { 1782sub DESTROY {
1329 my $self = shift; 1783 my ($self) = @_;
1330 1784
1331 $self->stoptls; 1785 &_freetls;
1332 1786
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1787 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1788
1335 if ($linger && length $self->{wbuf}) { 1789 if ($linger && length $self->{wbuf} && $self->{fh}) {
1336 my $fh = delete $self->{fh}; 1790 my $fh = delete $self->{fh};
1337 my $wbuf = delete $self->{wbuf}; 1791 my $wbuf = delete $self->{wbuf};
1338 1792
1339 my @linger; 1793 my @linger;
1340 1794
1351 @linger = (); 1805 @linger = ();
1352 }); 1806 });
1353 } 1807 }
1354} 1808}
1355 1809
1810=item $handle->destroy
1811
1812Shuts down the handle object as much as possible - this call ensures that
1813no further callbacks will be invoked and as many resources as possible
1814will be freed. Any method you will call on the handle object after
1815destroying it in this way will be silently ignored (and it will return the
1816empty list).
1817
1818Normally, you can just "forget" any references to an AnyEvent::Handle
1819object and it will simply shut down. This works in fatal error and EOF
1820callbacks, as well as code outside. It does I<NOT> work in a read or write
1821callback, so when you want to destroy the AnyEvent::Handle object from
1822within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1823that case.
1824
1825Destroying the handle object in this way has the advantage that callbacks
1826will be removed as well, so if those are the only reference holders (as
1827is common), then one doesn't need to do anything special to break any
1828reference cycles.
1829
1830The handle might still linger in the background and write out remaining
1831data, as specified by the C<linger> option, however.
1832
1833=cut
1834
1835sub destroy {
1836 my ($self) = @_;
1837
1838 $self->DESTROY;
1839 %$self = ();
1840 bless $self, "AnyEvent::Handle::destroyed";
1841}
1842
1843sub AnyEvent::Handle::destroyed::AUTOLOAD {
1844 #nop
1845}
1846
1356=item AnyEvent::Handle::TLS_CTX 1847=item AnyEvent::Handle::TLS_CTX
1357 1848
1358This function creates and returns the Net::SSLeay::CTX object used by 1849This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1850for TLS mode.
1360 1851
1361The context is created like this: 1852The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1853
1371=cut 1854=cut
1372 1855
1373our $TLS_CTX; 1856our $TLS_CTX;
1374 1857
1375sub TLS_CTX() { 1858sub TLS_CTX() {
1376 $TLS_CTX || do { 1859 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1860 require AnyEvent::TLS;
1378 1861
1379 Net::SSLeay::load_error_strings (); 1862 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1863 }
1389} 1864}
1390 1865
1391=back 1866=back
1867
1868
1869=head1 NONFREQUENTLY ASKED QUESTIONS
1870
1871=over 4
1872
1873=item I C<undef> the AnyEvent::Handle reference inside my callback and
1874still get further invocations!
1875
1876That's because AnyEvent::Handle keeps a reference to itself when handling
1877read or write callbacks.
1878
1879It is only safe to "forget" the reference inside EOF or error callbacks,
1880from within all other callbacks, you need to explicitly call the C<<
1881->destroy >> method.
1882
1883=item I get different callback invocations in TLS mode/Why can't I pause
1884reading?
1885
1886Unlike, say, TCP, TLS connections do not consist of two independent
1887communication channels, one for each direction. Or put differently. The
1888read and write directions are not independent of each other: you cannot
1889write data unless you are also prepared to read, and vice versa.
1890
1891This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1892callback invocations when you are not expecting any read data - the reason
1893is that AnyEvent::Handle always reads in TLS mode.
1894
1895During the connection, you have to make sure that you always have a
1896non-empty read-queue, or an C<on_read> watcher. At the end of the
1897connection (or when you no longer want to use it) you can call the
1898C<destroy> method.
1899
1900=item How do I read data until the other side closes the connection?
1901
1902If you just want to read your data into a perl scalar, the easiest way
1903to achieve this is by setting an C<on_read> callback that does nothing,
1904clearing the C<on_eof> callback and in the C<on_error> callback, the data
1905will be in C<$_[0]{rbuf}>:
1906
1907 $handle->on_read (sub { });
1908 $handle->on_eof (undef);
1909 $handle->on_error (sub {
1910 my $data = delete $_[0]{rbuf};
1911 });
1912
1913The reason to use C<on_error> is that TCP connections, due to latencies
1914and packets loss, might get closed quite violently with an error, when in
1915fact, all data has been received.
1916
1917It is usually better to use acknowledgements when transferring data,
1918to make sure the other side hasn't just died and you got the data
1919intact. This is also one reason why so many internet protocols have an
1920explicit QUIT command.
1921
1922=item I don't want to destroy the handle too early - how do I wait until
1923all data has been written?
1924
1925After writing your last bits of data, set the C<on_drain> callback
1926and destroy the handle in there - with the default setting of
1927C<low_water_mark> this will be called precisely when all data has been
1928written to the socket:
1929
1930 $handle->push_write (...);
1931 $handle->on_drain (sub {
1932 warn "all data submitted to the kernel\n";
1933 undef $handle;
1934 });
1935
1936If you just want to queue some data and then signal EOF to the other side,
1937consider using C<< ->push_shutdown >> instead.
1938
1939=item I want to contact a TLS/SSL server, I don't care about security.
1940
1941If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1942simply connect to it and then create the AnyEvent::Handle with the C<tls>
1943parameter:
1944
1945 tcp_connect $host, $port, sub {
1946 my ($fh) = @_;
1947
1948 my $handle = new AnyEvent::Handle
1949 fh => $fh,
1950 tls => "connect",
1951 on_error => sub { ... };
1952
1953 $handle->push_write (...);
1954 };
1955
1956=item I want to contact a TLS/SSL server, I do care about security.
1957
1958Then you should additionally enable certificate verification, including
1959peername verification, if the protocol you use supports it (see
1960L<AnyEvent::TLS>, C<verify_peername>).
1961
1962E.g. for HTTPS:
1963
1964 tcp_connect $host, $port, sub {
1965 my ($fh) = @_;
1966
1967 my $handle = new AnyEvent::Handle
1968 fh => $fh,
1969 peername => $host,
1970 tls => "connect",
1971 tls_ctx => { verify => 1, verify_peername => "https" },
1972 ...
1973
1974Note that you must specify the hostname you connected to (or whatever
1975"peername" the protocol needs) as the C<peername> argument, otherwise no
1976peername verification will be done.
1977
1978The above will use the system-dependent default set of trusted CA
1979certificates. If you want to check against a specific CA, add the
1980C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1981
1982 tls_ctx => {
1983 verify => 1,
1984 verify_peername => "https",
1985 ca_file => "my-ca-cert.pem",
1986 },
1987
1988=item I want to create a TLS/SSL server, how do I do that?
1989
1990Well, you first need to get a server certificate and key. You have
1991three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1992self-signed certificate (cheap. check the search engine of your choice,
1993there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1994nice program for that purpose).
1995
1996Then create a file with your private key (in PEM format, see
1997L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1998file should then look like this:
1999
2000 -----BEGIN RSA PRIVATE KEY-----
2001 ...header data
2002 ... lots of base64'y-stuff
2003 -----END RSA PRIVATE KEY-----
2004
2005 -----BEGIN CERTIFICATE-----
2006 ... lots of base64'y-stuff
2007 -----END CERTIFICATE-----
2008
2009The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2010specify this file as C<cert_file>:
2011
2012 tcp_server undef, $port, sub {
2013 my ($fh) = @_;
2014
2015 my $handle = new AnyEvent::Handle
2016 fh => $fh,
2017 tls => "accept",
2018 tls_ctx => { cert_file => "my-server-keycert.pem" },
2019 ...
2020
2021When you have intermediate CA certificates that your clients might not
2022know about, just append them to the C<cert_file>.
2023
2024=back
2025
1392 2026
1393=head1 SUBCLASSING AnyEvent::Handle 2027=head1 SUBCLASSING AnyEvent::Handle
1394 2028
1395In many cases, you might want to subclass AnyEvent::Handle. 2029In many cases, you might want to subclass AnyEvent::Handle.
1396 2030
1400=over 4 2034=over 4
1401 2035
1402=item * all constructor arguments become object members. 2036=item * all constructor arguments become object members.
1403 2037
1404At least initially, when you pass a C<tls>-argument to the constructor it 2038At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 2039will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 2040mutated later on (for example C<tls> will hold the TLS connection object).
1407 2041
1408=item * other object member names are prefixed with an C<_>. 2042=item * other object member names are prefixed with an C<_>.
1409 2043
1410All object members not explicitly documented (internal use) are prefixed 2044All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines