ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.180 by root, Thu Aug 20 22:58:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.151;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
167=item read_size => <bytes> 290=item read_size => <bytes>
168 291
169The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
171 295
172=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
173 297
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
176considered empty. 300considered empty.
177 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
178=item linger => <seconds> 307=item linger => <seconds>
179 308
180If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 313system treats outstanding data at socket close time).
185 314
186This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
188 328
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 330
191When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
194 337
195TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
197 342
198For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
200 346
201You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
205 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
206See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 363
208=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
209 365
210Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
214=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
215 407
216This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
217 409
218If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
220 413
221Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
223 416
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 417=back
231 418
232=cut 419=cut
233 420
234sub new { 421sub new {
235 my $class = shift; 422 my $class = shift;
236
237 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
238 424
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
240 488
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242 490
243 if ($self->{tls}) { 491 $self->{_activity} =
244 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
246 } 502 if $self->{tls};
247
248 $self->{_activity} = AnyEvent->now;
249 $self->_timeout;
250 503
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 505
253 $self->start_read 506 $self->start_read
254 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
255 508
256 $self 509 $self->_drain_wbuf;
257}
258
259sub _shutdown {
260 my ($self) = @_;
261
262 delete $self->{_tw};
263 delete $self->{_rw};
264 delete $self->{_ww};
265 delete $self->{fh};
266
267 $self->stoptls;
268} 510}
269 511
270sub _error { 512sub _error {
271 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
272
273 $self->_shutdown
274 if $fatal;
275 514
276 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
277 517
278 if ($self->{on_error}) { 518 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
280 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 524 }
283} 525}
284 526
285=item $fh = $handle->fh 527=item $fh = $handle->fh
286 528
287This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 530
289=cut 531=cut
290 532
291sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
292 534
310 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
311} 553}
312 554
313=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
314 556
315Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
317argument.
318 558
319=cut 559=item $handle->on_wtimeout ($cb)
320 560
321sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
322 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
323} 625}
324 626
325############################################################################# 627#############################################################################
326 628
327=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
328 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
329Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
330 636
331=cut 637=item $handle->timeout_reset
332 638
333sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
334 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
335 662
336 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
337 $self->_timeout; 664 delete $self->{$tw}; &$cb;
338} 665 };
339 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
340# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
341# also check for time-outs 673 # also check for time-outs
342sub _timeout { 674 $cb = sub {
343 my ($self) = @_; 675 my ($self) = @_;
344 676
345 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
346 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
347 679
348 # when would the timeout trigger? 680 # when would the timeout trigger?
349 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
350 682
351 # now or in the past already? 683 # now or in the past already?
352 if ($after <= 0) { 684 if ($after <= 0) {
353 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
354 686
355 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
356 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
357 } else { 689 } else {
358 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
359 } 698 }
360 699
361 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
362 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
363 702
364 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
365 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
366 } 709 }
367
368 Scalar::Util::weaken $self;
369 return unless $self; # ->error could have destroyed $self
370
371 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
372 delete $self->{_tw};
373 $self->_timeout;
374 });
375 } else {
376 delete $self->{_tw};
377 } 710 }
378} 711}
379 712
380############################################################################# 713#############################################################################
381 714
405 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
406 739
407 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
408 741
409 $cb->($self) 742 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 744}
412 745
413=item $handle->push_write ($data) 746=item $handle->push_write ($data)
414 747
415Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
426 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
427 760
428 my $cb = sub { 761 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
430 763
431 if ($len >= 0) { 764 if (defined $len) {
432 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
433 766
434 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
435 768
436 $self->{on_drain}($self) 769 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 771 && $self->{on_drain};
439 772
440 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 775 $self->_error ($!, 1);
443 } 776 }
444 }; 777 };
445 778
446 # try to write data immediately 779 # try to write data immediately
447 $cb->(); 780 $cb->() unless $self->{autocork};
448 781
449 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
451 if length $self->{wbuf}; 784 if length $self->{wbuf};
452 }; 785 };
453} 786}
454 787
455our %WH; 788our %WH;
466 799
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 801 ->($self, @_);
469 } 802 }
470 803
471 if ($self->{filter_w}) { 804 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
473 } else { 807 } else {
474 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
476 } 810 }
477} 811}
478 812
479=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
480 814
494=cut 828=cut
495 829
496register_write_type netstring => sub { 830register_write_type netstring => sub {
497 my ($self, $string) = @_; 831 my ($self, $string) = @_;
498 832
499 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
500}; 834};
501 835
502=item packstring => $format, $data 836=item packstring => $format, $data
503 837
504An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
544Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
545this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
546 880
547=cut 881=cut
548 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
549register_write_type json => sub { 888register_write_type json => sub {
550 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
551 890
552 require JSON; 891 my $json = $self->{json} ||= json_coder;
553 892
554 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
555 : JSON::encode_json ($ref)
556}; 894};
557 895
558=item storable => $reference 896=item storable => $reference
559 897
560Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
569 907
570 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
571}; 909};
572 910
573=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
574 937
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 939
577This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
672=cut 1035=cut
673 1036
674sub _drain_rbuf { 1037sub _drain_rbuf {
675 my ($self) = @_; 1038 my ($self) = @_;
676 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
677 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
678
679 if (
680 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf}
682 ) {
683 return $self->_error (&Errno::ENOSPC, 1);
684 }
685 1043
686 while () { 1044 while () {
687 no strict 'refs'; 1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
688 1049
689 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
690 1051
691 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
693 if ($self->{_eof}) { 1054 # no progress can be made
694 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 1056 $self->_error (Errno::EPIPE, 1), return
696 } 1057 if $self->{_eof};
697 1058
698 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
699 last; 1060 last;
700 } 1061 }
701 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
708 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
710 ) { 1071 ) {
711 # no further data will arrive 1072 # no further data will arrive
712 # so no progress can be made 1073 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 1074 $self->_error (Errno::EPIPE, 1), return
714 if $self->{_eof}; 1075 if $self->{_eof};
715 1076
716 last; # more data might arrive 1077 last; # more data might arrive
717 } 1078 }
718 } else { 1079 } else {
719 # read side becomes idle 1080 # read side becomes idle
720 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
721 last; 1082 last;
722 } 1083 }
723 } 1084 }
724 1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
725 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
1099 }
727 1100
728 # may need to restart read watcher 1101 # may need to restart read watcher
729 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
730 $self->start_read 1103 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 1104 if $self->{on_read} || @{ $self->{_queue} };
742 1115
743sub on_read { 1116sub on_read {
744 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
745 1118
746 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
747 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
748} 1121}
749 1122
750=item $handle->rbuf 1123=item $handle->rbuf
751 1124
752Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
753 1126
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
756 1132
757NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 1135automatically manage the read buffer.
760 1136
801 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
802 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
803 } 1179 }
804 1180
805 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
806 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
807} 1183}
808 1184
809sub unshift_read { 1185sub unshift_read {
810 my $self = shift; 1186 my $self = shift;
811 my $cb = pop; 1187 my $cb = pop;
817 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
818 } 1194 }
819 1195
820 1196
821 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
822 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
823} 1199}
824 1200
825=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
826 1202
827=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1233 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 1234 1
859 } 1235 }
860}; 1236};
861 1237
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1238=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1239
873The callback will be called only once a full line (including the end of 1240The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1241line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1242marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1257=cut
891 1258
892register_read_type line => sub { 1259register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1260 my ($self, $cb, $eol) = @_;
894 1261
895 $eol = qr|(\015?\012)| if @_ < 3; 1262 if (@_ < 3) {
1263 # this is more than twice as fast as the generic code below
1264 sub {
1265 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1266
1267 $cb->($_[0], $1, $2);
1268 1
1269 }
1270 } else {
896 $eol = quotemeta $eol unless ref $eol; 1271 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1272 $eol = qr|^(.*?)($eol)|s;
898 1273
899 sub { 1274 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1275 $_[0]{rbuf} =~ s/$eol// or return;
901 1276
902 $cb->($_[0], $1, $2); 1277 $cb->($_[0], $1, $2);
1278 1
903 1 1279 }
904 } 1280 }
905}; 1281};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1282
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1283=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1284
920Makes a regex match against the regex object C<$accept> and returns 1285Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1286everything up to and including the match.
971 return 1; 1336 return 1;
972 } 1337 }
973 1338
974 # reject 1339 # reject
975 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
976 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
977 } 1342 }
978 1343
979 # skip 1344 # skip
980 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
981 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
997 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
998 1363
999 sub { 1364 sub {
1000 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1002 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
1003 } 1368 }
1004 return; 1369 return;
1005 } 1370 }
1006 1371
1007 my $len = $1; 1372 my $len = $1;
1010 my $string = $_[1]; 1375 my $string = $_[1];
1011 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
1012 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
1013 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1014 } else { 1379 } else {
1015 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1016 } 1381 }
1017 }); 1382 });
1018 }); 1383 });
1019 1384
1020 1 1385 1
1026An octet string prefixed with an encoded length. The encoding C<$format> 1391An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1392uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1394optional C<!>, C<< < >> or C<< > >> modifier).
1030 1395
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1032 1398
1033Example: read a block of data prefixed by its length in BER-encoded 1399Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1400format (very efficient).
1035 1401
1036 $handle->push_read (packstring => "w", sub { 1402 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1408register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1409 my ($self, $cb, $format) = @_;
1044 1410
1045 sub { 1411 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1412 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1413 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1414 or return;
1049 1415
1416 $format = length pack $format, $len;
1417
1418 # bypass unshift if we already have the remaining chunk
1419 if ($format + $len <= length $_[0]{rbuf}) {
1420 my $data = substr $_[0]{rbuf}, $format, $len;
1421 substr $_[0]{rbuf}, 0, $format + $len, "";
1422 $cb->($_[0], $data);
1423 } else {
1050 # remove prefix 1424 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1425 substr $_[0]{rbuf}, 0, $format, "";
1052 1426
1053 # read rest 1427 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1428 $_[0]->unshift_read (chunk => $len, $cb);
1429 }
1055 1430
1056 1 1431 1
1057 } 1432 }
1058}; 1433};
1059 1434
1060=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1061 1436
1062Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1439
1064If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1442
1067This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1076=cut 1452=cut
1077 1453
1078register_read_type json => sub { 1454register_read_type json => sub {
1079 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1080 1456
1081 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1082 1458
1083 my $data; 1459 my $data;
1084 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1085 1461
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1462 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1464
1091 if ($ref) { 1465 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1467 $json->incr_text = "";
1094 $cb->($self, $ref); 1468 $cb->($self, $ref);
1095 1469
1096 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1097 } else { 1481 } else {
1098 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1099 () 1484 ()
1100 } 1485 }
1101 } 1486 }
1102}; 1487};
1103 1488
1116 1501
1117 require Storable; 1502 require Storable;
1118 1503
1119 sub { 1504 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1505 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1506 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1507 or return;
1123 1508
1509 my $format = length pack "w", $len;
1510
1511 # bypass unshift if we already have the remaining chunk
1512 if ($format + $len <= length $_[0]{rbuf}) {
1513 my $data = substr $_[0]{rbuf}, $format, $len;
1514 substr $_[0]{rbuf}, 0, $format + $len, "";
1515 $cb->($_[0], Storable::thaw ($data));
1516 } else {
1124 # remove prefix 1517 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1518 substr $_[0]{rbuf}, 0, $format, "";
1126 1519
1127 # read rest 1520 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1131 } else { 1524 } else {
1132 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1526 }
1133 } 1527 });
1134 }); 1528 }
1529
1530 1
1135 } 1531 }
1136}; 1532};
1137 1533
1138=back 1534=back
1139 1535
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1568there are any read requests in the queue.
1173 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1174=cut 1573=cut
1175 1574
1176sub stop_read { 1575sub stop_read {
1177 my ($self) = @_; 1576 my ($self) = @_;
1178 1577
1179 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1180} 1579}
1181 1580
1182sub start_read { 1581sub start_read {
1183 my ($self) = @_; 1582 my ($self) = @_;
1184 1583
1185 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1187 1586
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1590
1192 if ($len > 0) { 1591 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1194 1593
1195 $self->{filter_r} 1594 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1198 1601
1199 } elsif (defined $len) { 1602 } elsif (defined $len) {
1200 delete $self->{_rw}; 1603 delete $self->{_rw};
1201 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1203 1606
1204 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1205 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1206 } 1609 }
1207 }); 1610 };
1208 } 1611 }
1209} 1612}
1210 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1642sub _dotls {
1212 my ($self) = @_; 1643 my ($self) = @_;
1213 1644
1214 my $buf; 1645 my $tmp;
1215 1646
1216 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1650 }
1220 }
1221 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1225 } 1687 }
1226 1688
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1228 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1229 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250} 1692}
1251 1693
1252=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1253 1695
1254Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1256C<starttls>. 1698C<starttls>.
1257 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1258The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1706
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1263 1711
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1267 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1268=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1269 1724
1270sub starttls { 1725sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1272 1727
1273 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1274 1730
1275 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1277 Net::SSLeay::set_accept_state ($ssl); 1733
1278 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1280 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = delete $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1281 } 1756
1282 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1284 1759
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1293 1776
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1298 1783
1299 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1301 &_dotls; 1786
1302 }; 1787 &_dotls; # need to trigger the initial handshake
1303 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1789}
1308 1790
1309=item $handle->stoptls 1791=item $handle->stoptls
1310 1792
1311Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1313 1797
1314=cut 1798=cut
1315 1799
1316sub stoptls { 1800sub stoptls {
1317 my ($self) = @_; 1801 my ($self) = @_;
1318 1802
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1320 1805
1321 delete $self->{_rbio}; 1806 &_dotls;
1322 delete $self->{_wbio}; 1807
1323 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1324 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1325 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1326} 1823}
1327 1824
1328sub DESTROY { 1825sub DESTROY {
1329 my $self = shift; 1826 my ($self) = @_;
1330 1827
1331 $self->stoptls; 1828 &_freetls;
1332 1829
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1831
1335 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1336 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1337 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1338 1835
1339 my @linger; 1836 my @linger;
1340 1837
1341 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1342 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1343 1840
1344 if ($len > 0) { 1841 if ($len > 0) {
1345 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1346 } else { 1843 } else {
1347 @linger = (); # end 1844 @linger = (); # end
1348 } 1845 }
1349 }); 1846 };
1350 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1351 @linger = (); 1848 @linger = ();
1352 }); 1849 };
1353 } 1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1354} 1888}
1355 1889
1356=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1357 1891
1358This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1893for TLS mode.
1360 1894
1361The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1896
1371=cut 1897=cut
1372 1898
1373our $TLS_CTX; 1899our $TLS_CTX;
1374 1900
1375sub TLS_CTX() { 1901sub TLS_CTX() {
1376 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1903 require AnyEvent::TLS;
1378 1904
1379 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1906 }
1389} 1907}
1390 1908
1391=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1392 2069
1393=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1394 2071
1395In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1396 2073
1400=over 4 2077=over 4
1401 2078
1402=item * all constructor arguments become object members. 2079=item * all constructor arguments become object members.
1403 2080
1404At least initially, when you pass a C<tls>-argument to the constructor it 2081At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 2082will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 2083mutated later on (for example C<tls> will hold the TLS connection object).
1407 2084
1408=item * other object member names are prefixed with an C<_>. 2085=item * other object member names are prefixed with an C<_>.
1409 2086
1410All object members not explicitly documented (internal use) are prefixed 2087All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines