ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.74 by root, Fri Jul 18 01:29:58 2008 UTC vs.
Revision 1.135 by root, Fri Jul 3 08:51:48 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.22; 19our $VERSION = 4.45;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detected, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
110and no read request is in the queue (unlike read queue callbacks, this 133and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 134callback will only be called when at least one octet of data is in the
112read buffer). 135read buffer).
113 136
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 138method or access the C<$handle->{rbuf}> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
116 141
117When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
135=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
136 161
137If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 166
142Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
146 172
147Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
148 174
149=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
150 176
154 180
155=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
156 182
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
160 186
161For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
165isn't finished). 191isn't finished).
166 192
167=item autocork => <boolean> 193=item autocork => <boolean>
168 194
169When disabled (the default), then C<push_write> will try to immediately 195When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 196write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 197a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 198be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
174 201
175When enabled, then writes will always be queued till the next event loop 202When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 203iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
178 206
179=item no_delay => <boolean> 207=item no_delay => <boolean>
180 208
181When doing small writes on sockets, your operating system kernel might 209When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 210wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 211the Nagle algorithm, and usually it is beneficial.
184 212
185In some situations you want as low a delay as possible, which cna be 213In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 214accomplishd by setting this option to a true value.
187 215
188The default is your opertaing system's default behaviour, this option 216The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 217enabled), this option explicitly enables or disables it, if possible.
190 218
191=item read_size => <bytes> 219=item read_size => <bytes>
192 220
193The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
195 224
196=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
197 226
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
200considered empty. 229considered empty.
201 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
202=item linger => <seconds> 236=item linger => <seconds>
203 237
204If non-zero (default: C<3600>), then the destructor of the 238If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 239AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 240write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 241socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 242system treats outstanding data at socket close time).
209 243
210This will not work for partial TLS data that could not yet been 244This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254common name verification (see C<verify_cn> in L<AnyEvent::TLS>).
212 255
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 257
215When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
218 264
219TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
221 269
222For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
224 273
225You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
229 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
230See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 290
232=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
233 292
234Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
238=item json => JSON or JSON::XS object 301=item json => JSON or JSON::XS object
239 302
240This is the json coder object used by the C<json> read and write types. 303This is the json coder object used by the C<json> read and write types.
241 304
242If you don't supply it, then AnyEvent::Handle will create and use a 305If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 306suitable one (on demand), which will write and expect UTF-8 encoded JSON
307texts.
244 308
245Note that you are responsible to depend on the JSON module if you want to 309Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 310use this functionality, as AnyEvent does not have a dependency itself.
247 311
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 312=back
255 313
256=cut 314=cut
257 315
258sub new { 316sub new {
259 my $class = shift; 317 my $class = shift;
260
261 my $self = bless { @_ }, $class; 318 my $self = bless { @_ }, $class;
262 319
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 320 $self->{fh} or Carp::croak "mandatory argument fh is missing";
264 321
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 322 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266
267 if ($self->{tls}) {
268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271 323
272 $self->{_activity} = AnyEvent->now; 324 $self->{_activity} = AnyEvent->now;
273 $self->_timeout; 325 $self->_timeout;
274 326
327 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328
329 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330 if $self->{tls};
331
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 332 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 333
278 $self->start_read 334 $self->start_read
279 if $self->{on_read}; 335 if $self->{on_read};
280 336
281 $self 337 $self->{fh} && $self
282} 338}
283 339
284sub _shutdown { 340sub _shutdown {
285 my ($self) = @_; 341 my ($self) = @_;
286 342
287 delete $self->{_tw}; 343 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 344 $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww};
290 delete $self->{fh};
291 345
292 $self->stoptls; 346 &_freetls;
293} 347}
294 348
295sub _error { 349sub _error {
296 my ($self, $errno, $fatal) = @_; 350 my ($self, $errno, $fatal, $message) = @_;
297 351
298 $self->_shutdown 352 $self->_shutdown
299 if $fatal; 353 if $fatal;
300 354
301 $! = $errno; 355 $! = $errno;
356 $message ||= "$!";
302 357
303 if ($self->{on_error}) { 358 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 359 $self->{on_error}($self, $fatal, $message);
305 } else { 360 } elsif ($self->{fh}) {
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 361 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 362 }
308} 363}
309 364
310=item $fh = $handle->fh 365=item $fh = $handle->fh
311 366
312This method returns the file handle of the L<AnyEvent::Handle> object. 367This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 368
314=cut 369=cut
315 370
316sub fh { $_[0]{fh} } 371sub fh { $_[0]{fh} }
317 372
335 $_[0]{on_eof} = $_[1]; 390 $_[0]{on_eof} = $_[1];
336} 391}
337 392
338=item $handle->on_timeout ($cb) 393=item $handle->on_timeout ($cb)
339 394
340Replace the current C<on_timeout> callback, or disables the callback 395Replace the current C<on_timeout> callback, or disables the callback (but
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 396not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
342argument. 397argument and method.
343 398
344=cut 399=cut
345 400
346sub on_timeout { 401sub on_timeout {
347 $_[0]{on_timeout} = $_[1]; 402 $_[0]{on_timeout} = $_[1];
348} 403}
349 404
350=item $handle->autocork ($boolean) 405=item $handle->autocork ($boolean)
351 406
352Enables or disables the current autocork behaviour (see C<autocork> 407Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 408constructor argument). Changes will only take effect on the next write.
354 409
355=cut 410=cut
411
412sub autocork {
413 $_[0]{autocork} = $_[1];
414}
356 415
357=item $handle->no_delay ($boolean) 416=item $handle->no_delay ($boolean)
358 417
359Enables or disables the C<no_delay> setting (see constructor argument of 418Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 419the same name for details).
453 my ($self, $cb) = @_; 512 my ($self, $cb) = @_;
454 513
455 $self->{on_drain} = $cb; 514 $self->{on_drain} = $cb;
456 515
457 $cb->($self) 516 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 517 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 518}
460 519
461=item $handle->push_write ($data) 520=item $handle->push_write ($data)
462 521
463Queues the given scalar to be written. You can push as much data as you 522Queues the given scalar to be written. You can push as much data as you
480 substr $self->{wbuf}, 0, $len, ""; 539 substr $self->{wbuf}, 0, $len, "";
481 540
482 $self->{_activity} = AnyEvent->now; 541 $self->{_activity} = AnyEvent->now;
483 542
484 $self->{on_drain}($self) 543 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 544 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 545 && $self->{on_drain};
487 546
488 delete $self->{_ww} unless length $self->{wbuf}; 547 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 549 $self->_error ($!, 1);
514 573
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 574 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 575 ->($self, @_);
517 } 576 }
518 577
519 if ($self->{filter_w}) { 578 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 579 $self->{_tls_wbuf} .= $_[0];
580
581 &_dotls ($self);
521 } else { 582 } else {
522 $self->{wbuf} .= $_[0]; 583 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 584 $self->_drain_wbuf;
524 } 585 }
525} 586}
542=cut 603=cut
543 604
544register_write_type netstring => sub { 605register_write_type netstring => sub {
545 my ($self, $string) = @_; 606 my ($self, $string) = @_;
546 607
547 sprintf "%d:%s,", (length $string), $string 608 (length $string) . ":$string,"
548}; 609};
549 610
550=item packstring => $format, $data 611=item packstring => $format, $data
551 612
552An octet string prefixed with an encoded length. The encoding C<$format> 613An octet string prefixed with an encoded length. The encoding C<$format>
617 678
618 pack "w/a*", Storable::nfreeze ($ref) 679 pack "w/a*", Storable::nfreeze ($ref)
619}; 680};
620 681
621=back 682=back
683
684=item $handle->push_shutdown
685
686Sometimes you know you want to close the socket after writing your data
687before it was actually written. One way to do that is to replace your
688C<on_drain> handler by a callback that shuts down the socket. This method
689is a shorthand for just that, and replaces the C<on_drain> callback with:
690
691 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692
693This simply shuts down the write side and signals an EOF condition to the
694the peer.
695
696You can rely on the normal read queue and C<on_eof> handling
697afterwards. This is the cleanest way to close a connection.
698
699=cut
700
701sub push_shutdown {
702 $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703}
622 704
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 705=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 706
625This function (not method) lets you add your own types to C<push_write>. 707This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 708Whenever the given C<type> is used, C<push_write> will invoke the code
726 808
727 if ( 809 if (
728 defined $self->{rbuf_max} 810 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf} 811 && $self->{rbuf_max} < length $self->{rbuf}
730 ) { 812 ) {
731 return $self->_error (&Errno::ENOSPC, 1); 813 $self->_error (&Errno::ENOSPC, 1), return;
732 } 814 }
733 815
734 while () { 816 while () {
735 no strict 'refs'; 817 # we need to use a separate tls read buffer, as we must not receive data while
818 # we are draining the buffer, and this can only happen with TLS.
819 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
736 820
737 my $len = length $self->{rbuf}; 821 my $len = length $self->{rbuf};
738 822
739 if (my $cb = shift @{ $self->{_queue} }) { 823 if (my $cb = shift @{ $self->{_queue} }) {
740 unless ($cb->($self)) { 824 unless ($cb->($self)) {
741 if ($self->{_eof}) { 825 if ($self->{_eof}) {
742 # no progress can be made (not enough data and no data forthcoming) 826 # no progress can be made (not enough data and no data forthcoming)
743 $self->_error (&Errno::EPIPE, 1), last; 827 $self->_error (&Errno::EPIPE, 1), return;
744 } 828 }
745 829
746 unshift @{ $self->{_queue} }, $cb; 830 unshift @{ $self->{_queue} }, $cb;
747 last; 831 last;
748 } 832 }
756 && !@{ $self->{_queue} } # and the queue is still empty 840 && !@{ $self->{_queue} } # and the queue is still empty
757 && $self->{on_read} # but we still have on_read 841 && $self->{on_read} # but we still have on_read
758 ) { 842 ) {
759 # no further data will arrive 843 # no further data will arrive
760 # so no progress can be made 844 # so no progress can be made
761 $self->_error (&Errno::EPIPE, 1), last 845 $self->_error (&Errno::EPIPE, 1), return
762 if $self->{_eof}; 846 if $self->{_eof};
763 847
764 last; # more data might arrive 848 last; # more data might arrive
765 } 849 }
766 } else { 850 } else {
767 # read side becomes idle 851 # read side becomes idle
768 delete $self->{_rw}; 852 delete $self->{_rw} unless $self->{tls};
769 last; 853 last;
770 } 854 }
771 } 855 }
772 856
857 if ($self->{_eof}) {
858 if ($self->{on_eof}) {
773 $self->{on_eof}($self) 859 $self->{on_eof}($self)
774 if $self->{_eof} && $self->{on_eof}; 860 } else {
861 $self->_error (0, 1);
862 }
863 }
775 864
776 # may need to restart read watcher 865 # may need to restart read watcher
777 unless ($self->{_rw}) { 866 unless ($self->{_rw}) {
778 $self->start_read 867 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} }; 868 if $self->{on_read} || @{ $self->{_queue} };
797 886
798=item $handle->rbuf 887=item $handle->rbuf
799 888
800Returns the read buffer (as a modifiable lvalue). 889Returns the read buffer (as a modifiable lvalue).
801 890
802You can access the read buffer directly as the C<< ->{rbuf} >> member, if 891You can access the read buffer directly as the C<< ->{rbuf} >>
803you want. 892member, if you want. However, the only operation allowed on the
893read buffer (apart from looking at it) is removing data from its
894beginning. Otherwise modifying or appending to it is not allowed and will
895lead to hard-to-track-down bugs.
804 896
805NOTE: The read buffer should only be used or modified if the C<on_read>, 897NOTE: The read buffer should only be used or modified if the C<on_read>,
806C<push_read> or C<unshift_read> methods are used. The other read methods 898C<push_read> or C<unshift_read> methods are used. The other read methods
807automatically manage the read buffer. 899automatically manage the read buffer.
808 900
905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 997 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 1 998 1
907 } 999 }
908}; 1000};
909 1001
910# compatibility with older API
911sub push_read_chunk {
912 $_[0]->push_read (chunk => $_[1], $_[2]);
913}
914
915sub unshift_read_chunk {
916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
917}
918
919=item line => [$eol, ]$cb->($handle, $line, $eol) 1002=item line => [$eol, ]$cb->($handle, $line, $eol)
920 1003
921The callback will be called only once a full line (including the end of 1004The callback will be called only once a full line (including the end of
922line marker, C<$eol>) has been read. This line (excluding the end of line 1005line marker, C<$eol>) has been read. This line (excluding the end of line
923marker) will be passed to the callback as second argument (C<$line>), and 1006marker) will be passed to the callback as second argument (C<$line>), and
938=cut 1021=cut
939 1022
940register_read_type line => sub { 1023register_read_type line => sub {
941 my ($self, $cb, $eol) = @_; 1024 my ($self, $cb, $eol) = @_;
942 1025
943 $eol = qr|(\015?\012)| if @_ < 3; 1026 if (@_ < 3) {
1027 # this is more than twice as fast as the generic code below
1028 sub {
1029 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1030
1031 $cb->($_[0], $1, $2);
1032 1
1033 }
1034 } else {
944 $eol = quotemeta $eol unless ref $eol; 1035 $eol = quotemeta $eol unless ref $eol;
945 $eol = qr|^(.*?)($eol)|s; 1036 $eol = qr|^(.*?)($eol)|s;
946 1037
947 sub { 1038 sub {
948 $_[0]{rbuf} =~ s/$eol// or return; 1039 $_[0]{rbuf} =~ s/$eol// or return;
949 1040
950 $cb->($_[0], $1, $2); 1041 $cb->($_[0], $1, $2);
1042 1
951 1 1043 }
952 } 1044 }
953}; 1045};
954
955# compatibility with older API
956sub push_read_line {
957 my $self = shift;
958 $self->push_read (line => @_);
959}
960
961sub unshift_read_line {
962 my $self = shift;
963 $self->unshift_read (line => @_);
964}
965 1046
966=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1047=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
967 1048
968Makes a regex match against the regex object C<$accept> and returns 1049Makes a regex match against the regex object C<$accept> and returns
969everything up to and including the match. 1050everything up to and including the match.
1074An octet string prefixed with an encoded length. The encoding C<$format> 1155An octet string prefixed with an encoded length. The encoding C<$format>
1075uses the same format as a Perl C<pack> format, but must specify a single 1156uses the same format as a Perl C<pack> format, but must specify a single
1076integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1157integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1077optional C<!>, C<< < >> or C<< > >> modifier). 1158optional C<!>, C<< < >> or C<< > >> modifier).
1078 1159
1079DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1160For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161EPP uses a prefix of C<N> (4 octtes).
1080 1162
1081Example: read a block of data prefixed by its length in BER-encoded 1163Example: read a block of data prefixed by its length in BER-encoded
1082format (very efficient). 1164format (very efficient).
1083 1165
1084 $handle->push_read (packstring => "w", sub { 1166 $handle->push_read (packstring => "w", sub {
1090register_read_type packstring => sub { 1172register_read_type packstring => sub {
1091 my ($self, $cb, $format) = @_; 1173 my ($self, $cb, $format) = @_;
1092 1174
1093 sub { 1175 sub {
1094 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1176 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1095 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1177 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1096 or return; 1178 or return;
1097 1179
1180 $format = length pack $format, $len;
1181
1182 # bypass unshift if we already have the remaining chunk
1183 if ($format + $len <= length $_[0]{rbuf}) {
1184 my $data = substr $_[0]{rbuf}, $format, $len;
1185 substr $_[0]{rbuf}, 0, $format + $len, "";
1186 $cb->($_[0], $data);
1187 } else {
1098 # remove prefix 1188 # remove prefix
1099 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1189 substr $_[0]{rbuf}, 0, $format, "";
1100 1190
1101 # read rest 1191 # read remaining chunk
1102 $_[0]->unshift_read (chunk => $len, $cb); 1192 $_[0]->unshift_read (chunk => $len, $cb);
1193 }
1103 1194
1104 1 1195 1
1105 } 1196 }
1106}; 1197};
1107 1198
1108=item json => $cb->($handle, $hash_or_arrayref) 1199=item json => $cb->($handle, $hash_or_arrayref)
1109 1200
1110Reads a JSON object or array, decodes it and passes it to the callback. 1201Reads a JSON object or array, decodes it and passes it to the
1202callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1111 1203
1112If a C<json> object was passed to the constructor, then that will be used 1204If a C<json> object was passed to the constructor, then that will be used
1113for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1205for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1114 1206
1115This read type uses the incremental parser available with JSON version 1207This read type uses the incremental parser available with JSON version
1124=cut 1216=cut
1125 1217
1126register_read_type json => sub { 1218register_read_type json => sub {
1127 my ($self, $cb) = @_; 1219 my ($self, $cb) = @_;
1128 1220
1129 require JSON; 1221 my $json = $self->{json} ||=
1222 eval { require JSON::XS; JSON::XS->new->utf8 }
1223 || do { require JSON; JSON->new->utf8 };
1130 1224
1131 my $data; 1225 my $data;
1132 my $rbuf = \$self->{rbuf}; 1226 my $rbuf = \$self->{rbuf};
1133 1227
1134 my $json = $self->{json} ||= JSON->new->utf8;
1135
1136 sub { 1228 sub {
1137 my $ref = $json->incr_parse ($self->{rbuf}); 1229 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1138 1230
1139 if ($ref) { 1231 if ($ref) {
1140 $self->{rbuf} = $json->incr_text; 1232 $self->{rbuf} = $json->incr_text;
1141 $json->incr_text = ""; 1233 $json->incr_text = "";
1142 $cb->($self, $ref); 1234 $cb->($self, $ref);
1143 1235
1144 1 1236 1
1237 } elsif ($@) {
1238 # error case
1239 $json->incr_skip;
1240
1241 $self->{rbuf} = $json->incr_text;
1242 $json->incr_text = "";
1243
1244 $self->_error (&Errno::EBADMSG);
1245
1246 ()
1145 } else { 1247 } else {
1146 $self->{rbuf} = ""; 1248 $self->{rbuf} = "";
1249
1147 () 1250 ()
1148 } 1251 }
1149 } 1252 }
1150}; 1253};
1151 1254
1164 1267
1165 require Storable; 1268 require Storable;
1166 1269
1167 sub { 1270 sub {
1168 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1271 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1169 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1272 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1170 or return; 1273 or return;
1171 1274
1275 my $format = length pack "w", $len;
1276
1277 # bypass unshift if we already have the remaining chunk
1278 if ($format + $len <= length $_[0]{rbuf}) {
1279 my $data = substr $_[0]{rbuf}, $format, $len;
1280 substr $_[0]{rbuf}, 0, $format + $len, "";
1281 $cb->($_[0], Storable::thaw ($data));
1282 } else {
1172 # remove prefix 1283 # remove prefix
1173 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1284 substr $_[0]{rbuf}, 0, $format, "";
1174 1285
1175 # read rest 1286 # read remaining chunk
1176 $_[0]->unshift_read (chunk => $len, sub { 1287 $_[0]->unshift_read (chunk => $len, sub {
1177 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1288 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1178 $cb->($_[0], $ref); 1289 $cb->($_[0], $ref);
1179 } else { 1290 } else {
1180 $self->_error (&Errno::EBADMSG); 1291 $self->_error (&Errno::EBADMSG);
1292 }
1181 } 1293 });
1182 }); 1294 }
1295
1296 1
1183 } 1297 }
1184}; 1298};
1185 1299
1186=back 1300=back
1187 1301
1217Note that AnyEvent::Handle will automatically C<start_read> for you when 1331Note that AnyEvent::Handle will automatically C<start_read> for you when
1218you change the C<on_read> callback or push/unshift a read callback, and it 1332you change the C<on_read> callback or push/unshift a read callback, and it
1219will automatically C<stop_read> for you when neither C<on_read> is set nor 1333will automatically C<stop_read> for you when neither C<on_read> is set nor
1220there are any read requests in the queue. 1334there are any read requests in the queue.
1221 1335
1336These methods will have no effect when in TLS mode (as TLS doesn't support
1337half-duplex connections).
1338
1222=cut 1339=cut
1223 1340
1224sub stop_read { 1341sub stop_read {
1225 my ($self) = @_; 1342 my ($self) = @_;
1226 1343
1227 delete $self->{_rw}; 1344 delete $self->{_rw} unless $self->{tls};
1228} 1345}
1229 1346
1230sub start_read { 1347sub start_read {
1231 my ($self) = @_; 1348 my ($self) = @_;
1232 1349
1233 unless ($self->{_rw} || $self->{_eof}) { 1350 unless ($self->{_rw} || $self->{_eof}) {
1234 Scalar::Util::weaken $self; 1351 Scalar::Util::weaken $self;
1235 1352
1236 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1353 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1237 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1354 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1238 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1355 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1239 1356
1240 if ($len > 0) { 1357 if ($len > 0) {
1241 $self->{_activity} = AnyEvent->now; 1358 $self->{_activity} = AnyEvent->now;
1242 1359
1243 $self->{filter_r} 1360 if ($self->{tls}) {
1244 ? $self->{filter_r}($self, $rbuf) 1361 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1245 : $self->{_in_drain} || $self->_drain_rbuf; 1362
1363 &_dotls ($self);
1364 } else {
1365 $self->_drain_rbuf unless $self->{_in_drain};
1366 }
1246 1367
1247 } elsif (defined $len) { 1368 } elsif (defined $len) {
1248 delete $self->{_rw}; 1369 delete $self->{_rw};
1249 $self->{_eof} = 1; 1370 $self->{_eof} = 1;
1250 $self->_drain_rbuf unless $self->{_in_drain}; 1371 $self->_drain_rbuf unless $self->{_in_drain};
1254 } 1375 }
1255 }); 1376 });
1256 } 1377 }
1257} 1378}
1258 1379
1380our $ERROR_SYSCALL;
1381our $ERROR_WANT_READ;
1382our $ERROR_ZERO_RETURN;
1383
1384sub _tls_error {
1385 my ($self, $err) = @_;
1386 warn "$err,$!\n";#d#
1387
1388 return $self->_error ($!, 1)
1389 if $err == Net::SSLeay::ERROR_SYSCALL ();
1390
1391 $self->_error (&Errno::EPROTO, 1,
1392 Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ()));
1393}
1394
1395# poll the write BIO and send the data if applicable
1396# also decode read data if possible
1397# this is basiclaly our TLS state machine
1398# more efficient implementations are possible with openssl,
1399# but not with the buggy and incomplete Net::SSLeay.
1259sub _dotls { 1400sub _dotls {
1260 my ($self) = @_; 1401 my ($self) = @_;
1261 1402
1262 my $buf; 1403 my $tmp;
1263 1404
1264 if (length $self->{_tls_wbuf}) { 1405 if (length $self->{_tls_wbuf}) {
1265 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1406 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1266 substr $self->{_tls_wbuf}, 0, $len, ""; 1407 substr $self->{_tls_wbuf}, 0, $tmp, "";
1267 } 1408 }
1268 }
1269 1409
1410 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1411 return $self->_tls_error ($tmp)
1412 if $tmp != $ERROR_WANT_READ
1413 && ($tmp != $ERROR_SYSCALL || $!)
1414 && $tmp != $ERROR_ZERO_RETURN;
1415 }
1416
1417 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1418 unless (length $tmp) {
1419 # let's treat SSL-eof as we treat normal EOF
1420 delete $self->{_rw};
1421 $self->{_eof} = 1;
1422 &_freetls;
1423 }
1424
1425 $self->{_tls_rbuf} .= $tmp;
1426 $self->_drain_rbuf unless $self->{_in_drain};
1427 $self->{tls} or return; # tls session might have gone away in callback
1428 }
1429
1430 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1431 return $self->_tls_error ($tmp)
1432 if $tmp != $ERROR_WANT_READ
1433 && ($tmp != $ERROR_SYSCALL || $!)
1434 && $tmp != $ERROR_ZERO_RETURN;
1435
1270 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1436 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1271 $self->{wbuf} .= $buf; 1437 $self->{wbuf} .= $tmp;
1272 $self->_drain_wbuf; 1438 $self->_drain_wbuf;
1273 }
1274
1275 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1276 if (length $buf) {
1277 $self->{rbuf} .= $buf;
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279 } else {
1280 # let's treat SSL-eof as we treat normal EOF
1281 $self->{_eof} = 1;
1282 $self->_shutdown;
1283 return;
1284 }
1285 }
1286
1287 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1288
1289 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1290 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1291 return $self->_error ($!, 1);
1292 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1293 return $self->_error (&Errno::EIO, 1);
1294 }
1295
1296 # all others are fine for our purposes
1297 } 1439 }
1298} 1440}
1299 1441
1300=item $handle->starttls ($tls[, $tls_ctx]) 1442=item $handle->starttls ($tls[, $tls_ctx])
1301 1443
1304C<starttls>. 1446C<starttls>.
1305 1447
1306The first argument is the same as the C<tls> constructor argument (either 1448The first argument is the same as the C<tls> constructor argument (either
1307C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1449C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1308 1450
1309The second argument is the optional C<Net::SSLeay::CTX> object that is 1451The second argument is the optional C<AnyEvent::TLS> object that is used
1310used when AnyEvent::Handle has to create its own TLS connection object. 1452when AnyEvent::Handle has to create its own TLS connection object, or
1453a hash reference with C<< key => value >> pairs that will be used to
1454construct a new context.
1311 1455
1312The TLS connection object will end up in C<< $handle->{tls} >> after this 1456The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1313call and can be used or changed to your liking. Note that the handshake 1457context in C<< $handle->{tls_ctx} >> after this call and can be used or
1314might have already started when this function returns. 1458changed to your liking. Note that the handshake might have already started
1459when this function returns.
1460
1461If it an error to start a TLS handshake more than once per
1462AnyEvent::Handle object (this is due to bugs in OpenSSL).
1315 1463
1316=cut 1464=cut
1317 1465
1318sub starttls { 1466sub starttls {
1319 my ($self, $ssl, $ctx) = @_; 1467 my ($self, $ssl, $ctx) = @_;
1320 1468
1321 $self->stoptls; 1469 require Net::SSLeay;
1322 1470
1323 if ($ssl eq "accept") { 1471 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1324 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1472 if $self->{tls};
1325 Net::SSLeay::set_accept_state ($ssl); 1473
1326 } elsif ($ssl eq "connect") { 1474 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1327 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1475 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1328 Net::SSLeay::set_connect_state ($ssl); 1476 $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1477
1478 $ctx ||= $self->{tls_ctx};
1479
1480 if ("HASH" eq ref $ctx) {
1481 require AnyEvent::TLS;
1482
1483 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1484 $ctx = new AnyEvent::TLS %$ctx;
1485 }
1329 } 1486
1330 1487 $self->{tls_ctx} = $ctx || TLS_CTX ();
1331 $self->{tls} = $ssl; 1488 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1332 1489
1333 # basically, this is deep magic (because SSL_read should have the same issues) 1490 # basically, this is deep magic (because SSL_read should have the same issues)
1334 # but the openssl maintainers basically said: "trust us, it just works". 1491 # but the openssl maintainers basically said: "trust us, it just works".
1335 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1492 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1336 # and mismaintained ssleay-module doesn't even offer them). 1493 # and mismaintained ssleay-module doesn't even offer them).
1337 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1494 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1495 #
1496 # in short: this is a mess.
1497 #
1498 # note that we do not try to keep the length constant between writes as we are required to do.
1499 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1500 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1501 # have identity issues in that area.
1338 Net::SSLeay::CTX_set_mode ($self->{tls}, 1502# Net::SSLeay::CTX_set_mode ($ssl,
1339 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1503# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1340 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1504# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1505 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1341 1506
1342 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1507 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1343 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1508 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1344 1509
1345 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1510 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1346 1511
1347 $self->{filter_w} = sub { 1512 &_dotls; # need to trigger the initial handshake
1348 $_[0]{_tls_wbuf} .= ${$_[1]}; 1513 $self->start_read; # make sure we actually do read
1349 &_dotls;
1350 };
1351 $self->{filter_r} = sub {
1352 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1353 &_dotls;
1354 };
1355} 1514}
1356 1515
1357=item $handle->stoptls 1516=item $handle->stoptls
1358 1517
1359Destroys the SSL connection, if any. Partial read or write data will be 1518Shuts down the SSL connection - this makes a proper EOF handshake by
1360lost. 1519sending a close notify to the other side, but since OpenSSL doesn't
1520support non-blocking shut downs, it is not possible to re-use the stream
1521afterwards.
1361 1522
1362=cut 1523=cut
1363 1524
1364sub stoptls { 1525sub stoptls {
1365 my ($self) = @_; 1526 my ($self) = @_;
1366 1527
1367 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1528 if ($self->{tls}) {
1529 Net::SSLeay::shutdown ($self->{tls});
1368 1530
1369 delete $self->{_rbio}; 1531 &_dotls;
1370 delete $self->{_wbio}; 1532
1371 delete $self->{_tls_wbuf}; 1533 # we don't give a shit. no, we do, but we can't. no...
1372 delete $self->{filter_r}; 1534 # we, we... have to use openssl :/
1373 delete $self->{filter_w}; 1535 &_freetls;
1536 }
1537}
1538
1539sub _freetls {
1540 my ($self) = @_;
1541
1542 return unless $self->{tls};
1543
1544 $self->{tls_ctx}->_put_session (delete $self->{tls});
1545
1546 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1374} 1547}
1375 1548
1376sub DESTROY { 1549sub DESTROY {
1377 my $self = shift; 1550 my ($self) = @_;
1378 1551
1379 $self->stoptls; 1552 &_freetls;
1380 1553
1381 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1554 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1382 1555
1383 if ($linger && length $self->{wbuf}) { 1556 if ($linger && length $self->{wbuf}) {
1384 my $fh = delete $self->{fh}; 1557 my $fh = delete $self->{fh};
1399 @linger = (); 1572 @linger = ();
1400 }); 1573 });
1401 } 1574 }
1402} 1575}
1403 1576
1577=item $handle->destroy
1578
1579Shuts down the handle object as much as possible - this call ensures that
1580no further callbacks will be invoked and resources will be freed as much
1581as possible. You must not call any methods on the object afterwards.
1582
1583Normally, you can just "forget" any references to an AnyEvent::Handle
1584object and it will simply shut down. This works in fatal error and EOF
1585callbacks, as well as code outside. It does I<NOT> work in a read or write
1586callback, so when you want to destroy the AnyEvent::Handle object from
1587within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1588that case.
1589
1590The handle might still linger in the background and write out remaining
1591data, as specified by the C<linger> option, however.
1592
1593=cut
1594
1595sub destroy {
1596 my ($self) = @_;
1597
1598 $self->DESTROY;
1599 %$self = ();
1600}
1601
1404=item AnyEvent::Handle::TLS_CTX 1602=item AnyEvent::Handle::TLS_CTX
1405 1603
1406This function creates and returns the Net::SSLeay::CTX object used by 1604This function creates and returns the AnyEvent::TLS object used by default
1407default for TLS mode. 1605for TLS mode.
1408 1606
1409The context is created like this: 1607The context is created by calling L<AnyEvent::TLS> without any arguments.
1410
1411 Net::SSLeay::load_error_strings;
1412 Net::SSLeay::SSLeay_add_ssl_algorithms;
1413 Net::SSLeay::randomize;
1414
1415 my $CTX = Net::SSLeay::CTX_new;
1416
1417 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1418 1608
1419=cut 1609=cut
1420 1610
1421our $TLS_CTX; 1611our $TLS_CTX;
1422 1612
1423sub TLS_CTX() { 1613sub TLS_CTX() {
1424 $TLS_CTX || do { 1614 $TLS_CTX ||= do {
1425 require Net::SSLeay; 1615 require AnyEvent::TLS;
1426 1616
1427 Net::SSLeay::load_error_strings (); 1617 new AnyEvent::TLS
1428 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1429 Net::SSLeay::randomize ();
1430
1431 $TLS_CTX = Net::SSLeay::CTX_new ();
1432
1433 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1434
1435 $TLS_CTX
1436 } 1618 }
1437} 1619}
1438 1620
1439=back 1621=back
1622
1623
1624=head1 NONFREQUENTLY ASKED QUESTIONS
1625
1626=over 4
1627
1628=item I C<undef> the AnyEvent::Handle reference inside my callback and
1629still get further invocations!
1630
1631That's because AnyEvent::Handle keeps a reference to itself when handling
1632read or write callbacks.
1633
1634It is only safe to "forget" the reference inside EOF or error callbacks,
1635from within all other callbacks, you need to explicitly call the C<<
1636->destroy >> method.
1637
1638=item I get different callback invocations in TLS mode/Why can't I pause
1639reading?
1640
1641Unlike, say, TCP, TLS connections do not consist of two independent
1642communication channels, one for each direction. Or put differently. The
1643read and write directions are not independent of each other: you cannot
1644write data unless you are also prepared to read, and vice versa.
1645
1646This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1647callback invocations when you are not expecting any read data - the reason
1648is that AnyEvent::Handle always reads in TLS mode.
1649
1650During the connection, you have to make sure that you always have a
1651non-empty read-queue, or an C<on_read> watcher. At the end of the
1652connection (or when you no longer want to use it) you can call the
1653C<destroy> method.
1654
1655=item How do I read data until the other side closes the connection?
1656
1657If you just want to read your data into a perl scalar, the easiest way
1658to achieve this is by setting an C<on_read> callback that does nothing,
1659clearing the C<on_eof> callback and in the C<on_error> callback, the data
1660will be in C<$_[0]{rbuf}>:
1661
1662 $handle->on_read (sub { });
1663 $handle->on_eof (undef);
1664 $handle->on_error (sub {
1665 my $data = delete $_[0]{rbuf};
1666 undef $handle;
1667 });
1668
1669The reason to use C<on_error> is that TCP connections, due to latencies
1670and packets loss, might get closed quite violently with an error, when in
1671fact, all data has been received.
1672
1673It is usually better to use acknowledgements when transferring data,
1674to make sure the other side hasn't just died and you got the data
1675intact. This is also one reason why so many internet protocols have an
1676explicit QUIT command.
1677
1678=item I don't want to destroy the handle too early - how do I wait until
1679all data has been written?
1680
1681After writing your last bits of data, set the C<on_drain> callback
1682and destroy the handle in there - with the default setting of
1683C<low_water_mark> this will be called precisely when all data has been
1684written to the socket:
1685
1686 $handle->push_write (...);
1687 $handle->on_drain (sub {
1688 warn "all data submitted to the kernel\n";
1689 undef $handle;
1690 });
1691
1692=back
1693
1440 1694
1441=head1 SUBCLASSING AnyEvent::Handle 1695=head1 SUBCLASSING AnyEvent::Handle
1442 1696
1443In many cases, you might want to subclass AnyEvent::Handle. 1697In many cases, you might want to subclass AnyEvent::Handle.
1444 1698
1448=over 4 1702=over 4
1449 1703
1450=item * all constructor arguments become object members. 1704=item * all constructor arguments become object members.
1451 1705
1452At least initially, when you pass a C<tls>-argument to the constructor it 1706At least initially, when you pass a C<tls>-argument to the constructor it
1453will end up in C<< $handle->{tls} >>. Those members might be changes or 1707will end up in C<< $handle->{tls} >>. Those members might be changed or
1454mutated later on (for example C<tls> will hold the TLS connection object). 1708mutated later on (for example C<tls> will hold the TLS connection object).
1455 1709
1456=item * other object member names are prefixed with an C<_>. 1710=item * other object member names are prefixed with an C<_>.
1457 1711
1458All object members not explicitly documented (internal use) are prefixed 1712All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines