ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.74 by root, Fri Jul 18 01:29:58 2008 UTC vs.
Revision 1.181 by root, Tue Sep 1 10:40:05 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
167=item autocork => <boolean> 264=item autocork => <boolean>
168 265
169When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
174 272
175When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
178 277
179=item no_delay => <boolean> 278=item no_delay => <boolean>
180 279
181When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
184 283
185In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
187 286
188The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
190 289
191=item read_size => <bytes> 290=item read_size => <bytes>
192 291
193The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
195 295
196=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
197 297
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
200considered empty. 300considered empty.
201 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
202=item linger => <seconds> 307=item linger => <seconds>
203 308
204If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 313system treats outstanding data at socket close time).
209 314
210This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
212 328
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 330
215When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
218 337
219TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
221 342
222For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
224 346
225You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
229 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
230See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 363
232=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
233 365
234Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
238=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
239 407
240This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
241 409
242If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
244 413
245Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
247 416
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 417=back
255 418
256=cut 419=cut
257 420
258sub new { 421sub new {
259 my $class = shift; 422 my $class = shift;
260
261 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
262 424
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
264 488
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 490
267 if ($self->{tls}) { 491 $self->{_activity} =
268 require Net::SSLeay; 492 $self->{_ractivity} =
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271
272 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
273 $self->_timeout;
274 494
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
278 $self->start_read 506 $self->start_read
279 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
280 508
281 $self 509 $self->_drain_wbuf;
282}
283
284sub _shutdown {
285 my ($self) = @_;
286
287 delete $self->{_tw};
288 delete $self->{_rw};
289 delete $self->{_ww};
290 delete $self->{fh};
291
292 $self->stoptls;
293} 510}
294 511
295sub _error { 512sub _error {
296 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 514
301 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
302 517
303 if ($self->{on_error}) { 518 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
305 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 524 }
308} 525}
309 526
310=item $fh = $handle->fh 527=item $fh = $handle->fh
311 528
312This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 530
314=cut 531=cut
315 532
316sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
317 534
335 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
336} 553}
337 554
338=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
339 556
340Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 558
344=cut 559=item $handle->on_wtimeout ($cb)
345 560
346sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
348} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
349 568
350=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
351 570
352Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 572constructor argument). Changes will only take effect on the next write.
354 573
355=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
356 579
357=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
358 581
359Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 583the same name for details).
364sub no_delay { 587sub no_delay {
365 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
366 589
367 eval { 590 eval {
368 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
370 }; 594 };
371} 595}
372 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
373############################################################################# 627#############################################################################
374 628
375=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
376 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
377Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
378 636
379=cut 637=item $handle->timeout_reset
380 638
381sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
382 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
383 662
384 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
385 $self->_timeout; 664 delete $self->{$tw}; &$cb;
386} 665 };
387 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
388# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
389# also check for time-outs 673 # also check for time-outs
390sub _timeout { 674 $cb = sub {
391 my ($self) = @_; 675 my ($self) = @_;
392 676
393 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
395 679
396 # when would the timeout trigger? 680 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 682
399 # now or in the past already? 683 # now or in the past already?
400 if ($after <= 0) { 684 if ($after <= 0) {
401 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
402 686
403 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
405 } else { 689 } else {
406 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
407 } 698 }
408 699
409 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
411 702
412 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
414 } 709 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 710 }
426} 711}
427 712
428############################################################################# 713#############################################################################
429 714
453 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
454 739
455 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
456 741
457 $cb->($self) 742 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 744}
460 745
461=item $handle->push_write ($data) 746=item $handle->push_write ($data)
462 747
463Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
475 760
476 my $cb = sub { 761 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
478 763
479 if ($len >= 0) { 764 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
481 766
482 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
483 768
484 $self->{on_drain}($self) 769 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 771 && $self->{on_drain};
487 772
488 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 775 $self->_error ($!, 1);
493 778
494 # try to write data immediately 779 # try to write data immediately
495 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
496 781
497 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 784 if length $self->{wbuf};
500 }; 785 };
501} 786}
502 787
503our %WH; 788our %WH;
514 799
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 801 ->($self, @_);
517 } 802 }
518 803
519 if ($self->{filter_w}) { 804 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
521 } else { 807 } else {
522 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
524 } 810 }
525} 811}
526 812
527=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
528 814
542=cut 828=cut
543 829
544register_write_type netstring => sub { 830register_write_type netstring => sub {
545 my ($self, $string) = @_; 831 my ($self, $string) = @_;
546 832
547 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
548}; 834};
549 835
550=item packstring => $format, $data 836=item packstring => $format, $data
551 837
552An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
592Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
593this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
594 880
595=cut 881=cut
596 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
597register_write_type json => sub { 888register_write_type json => sub {
598 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
599 890
600 require JSON; 891 my $json = $self->{json} ||= json_coder;
601 892
602 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
603 : JSON::encode_json ($ref)
604}; 894};
605 895
606=item storable => $reference 896=item storable => $reference
607 897
608Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
617 907
618 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
619}; 909};
620 910
621=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
622 937
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 939
625This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1035=cut
721 1036
722sub _drain_rbuf { 1037sub _drain_rbuf {
723 my ($self) = @_; 1038 my ($self) = @_;
724 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1043
734 while () { 1044 while () {
735 no strict 'refs'; 1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
736 1049
737 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
738 1051
739 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
740 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
741 if ($self->{_eof}) { 1054 # no progress can be made
742 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
743 $self->_error (&Errno::EPIPE, 1), last; 1056 $self->_error (Errno::EPIPE, 1), return
744 } 1057 if $self->{_eof};
745 1058
746 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
747 last; 1060 last;
748 } 1061 }
749 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
756 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
757 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
758 ) { 1071 ) {
759 # no further data will arrive 1072 # no further data will arrive
760 # so no progress can be made 1073 # so no progress can be made
761 $self->_error (&Errno::EPIPE, 1), last 1074 $self->_error (Errno::EPIPE, 1), return
762 if $self->{_eof}; 1075 if $self->{_eof};
763 1076
764 last; # more data might arrive 1077 last; # more data might arrive
765 } 1078 }
766 } else { 1079 } else {
767 # read side becomes idle 1080 # read side becomes idle
768 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
769 last; 1082 last;
770 } 1083 }
771 } 1084 }
772 1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
773 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
774 if $self->{_eof} && $self->{on_eof}; 1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
1099 }
775 1100
776 # may need to restart read watcher 1101 # may need to restart read watcher
777 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
778 $self->start_read 1103 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} }; 1104 if $self->{on_read} || @{ $self->{_queue} };
790 1115
791sub on_read { 1116sub on_read {
792 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
793 1118
794 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
795 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
796} 1121}
797 1122
798=item $handle->rbuf 1123=item $handle->rbuf
799 1124
800Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
801 1126
802You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
803you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
804 1132
805NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
806C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
807automatically manage the read buffer. 1135automatically manage the read buffer.
808 1136
849 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
850 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
851 } 1179 }
852 1180
853 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
854 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
855} 1183}
856 1184
857sub unshift_read { 1185sub unshift_read {
858 my $self = shift; 1186 my $self = shift;
859 my $cb = pop; 1187 my $cb = pop;
863 1191
864 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1192 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
865 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
866 } 1194 }
867 1195
868
869 unshift @{ $self->{_queue} }, $cb; 1196 unshift @{ $self->{_queue} }, $cb;
870 $self->_drain_rbuf unless $self->{_in_drain}; 1197 $self->_drain_rbuf;
871} 1198}
872 1199
873=item $handle->push_read (type => @args, $cb) 1200=item $handle->push_read (type => @args, $cb)
874 1201
875=item $handle->unshift_read (type => @args, $cb) 1202=item $handle->unshift_read (type => @args, $cb)
905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1232 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 1 1233 1
907 } 1234 }
908}; 1235};
909 1236
910# compatibility with older API
911sub push_read_chunk {
912 $_[0]->push_read (chunk => $_[1], $_[2]);
913}
914
915sub unshift_read_chunk {
916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
917}
918
919=item line => [$eol, ]$cb->($handle, $line, $eol) 1237=item line => [$eol, ]$cb->($handle, $line, $eol)
920 1238
921The callback will be called only once a full line (including the end of 1239The callback will be called only once a full line (including the end of
922line marker, C<$eol>) has been read. This line (excluding the end of line 1240line marker, C<$eol>) has been read. This line (excluding the end of line
923marker) will be passed to the callback as second argument (C<$line>), and 1241marker) will be passed to the callback as second argument (C<$line>), and
938=cut 1256=cut
939 1257
940register_read_type line => sub { 1258register_read_type line => sub {
941 my ($self, $cb, $eol) = @_; 1259 my ($self, $cb, $eol) = @_;
942 1260
943 $eol = qr|(\015?\012)| if @_ < 3; 1261 if (@_ < 3) {
1262 # this is more than twice as fast as the generic code below
1263 sub {
1264 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1265
1266 $cb->($_[0], $1, $2);
1267 1
1268 }
1269 } else {
944 $eol = quotemeta $eol unless ref $eol; 1270 $eol = quotemeta $eol unless ref $eol;
945 $eol = qr|^(.*?)($eol)|s; 1271 $eol = qr|^(.*?)($eol)|s;
946 1272
947 sub { 1273 sub {
948 $_[0]{rbuf} =~ s/$eol// or return; 1274 $_[0]{rbuf} =~ s/$eol// or return;
949 1275
950 $cb->($_[0], $1, $2); 1276 $cb->($_[0], $1, $2);
1277 1
951 1 1278 }
952 } 1279 }
953}; 1280};
954
955# compatibility with older API
956sub push_read_line {
957 my $self = shift;
958 $self->push_read (line => @_);
959}
960
961sub unshift_read_line {
962 my $self = shift;
963 $self->unshift_read (line => @_);
964}
965 1281
966=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1282=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
967 1283
968Makes a regex match against the regex object C<$accept> and returns 1284Makes a regex match against the regex object C<$accept> and returns
969everything up to and including the match. 1285everything up to and including the match.
1019 return 1; 1335 return 1;
1020 } 1336 }
1021 1337
1022 # reject 1338 # reject
1023 if ($reject && $$rbuf =~ $reject) { 1339 if ($reject && $$rbuf =~ $reject) {
1024 $self->_error (&Errno::EBADMSG); 1340 $self->_error (Errno::EBADMSG);
1025 } 1341 }
1026 1342
1027 # skip 1343 # skip
1028 if ($skip && $$rbuf =~ $skip) { 1344 if ($skip && $$rbuf =~ $skip) {
1029 $data .= substr $$rbuf, 0, $+[0], ""; 1345 $data .= substr $$rbuf, 0, $+[0], "";
1045 my ($self, $cb) = @_; 1361 my ($self, $cb) = @_;
1046 1362
1047 sub { 1363 sub {
1048 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1364 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1049 if ($_[0]{rbuf} =~ /[^0-9]/) { 1365 if ($_[0]{rbuf} =~ /[^0-9]/) {
1050 $self->_error (&Errno::EBADMSG); 1366 $self->_error (Errno::EBADMSG);
1051 } 1367 }
1052 return; 1368 return;
1053 } 1369 }
1054 1370
1055 my $len = $1; 1371 my $len = $1;
1058 my $string = $_[1]; 1374 my $string = $_[1];
1059 $_[0]->unshift_read (chunk => 1, sub { 1375 $_[0]->unshift_read (chunk => 1, sub {
1060 if ($_[1] eq ",") { 1376 if ($_[1] eq ",") {
1061 $cb->($_[0], $string); 1377 $cb->($_[0], $string);
1062 } else { 1378 } else {
1063 $self->_error (&Errno::EBADMSG); 1379 $self->_error (Errno::EBADMSG);
1064 } 1380 }
1065 }); 1381 });
1066 }); 1382 });
1067 1383
1068 1 1384 1
1074An octet string prefixed with an encoded length. The encoding C<$format> 1390An octet string prefixed with an encoded length. The encoding C<$format>
1075uses the same format as a Perl C<pack> format, but must specify a single 1391uses the same format as a Perl C<pack> format, but must specify a single
1076integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1392integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1077optional C<!>, C<< < >> or C<< > >> modifier). 1393optional C<!>, C<< < >> or C<< > >> modifier).
1078 1394
1079DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1395For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1396EPP uses a prefix of C<N> (4 octtes).
1080 1397
1081Example: read a block of data prefixed by its length in BER-encoded 1398Example: read a block of data prefixed by its length in BER-encoded
1082format (very efficient). 1399format (very efficient).
1083 1400
1084 $handle->push_read (packstring => "w", sub { 1401 $handle->push_read (packstring => "w", sub {
1090register_read_type packstring => sub { 1407register_read_type packstring => sub {
1091 my ($self, $cb, $format) = @_; 1408 my ($self, $cb, $format) = @_;
1092 1409
1093 sub { 1410 sub {
1094 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1411 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1095 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1412 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1096 or return; 1413 or return;
1097 1414
1415 $format = length pack $format, $len;
1416
1417 # bypass unshift if we already have the remaining chunk
1418 if ($format + $len <= length $_[0]{rbuf}) {
1419 my $data = substr $_[0]{rbuf}, $format, $len;
1420 substr $_[0]{rbuf}, 0, $format + $len, "";
1421 $cb->($_[0], $data);
1422 } else {
1098 # remove prefix 1423 # remove prefix
1099 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1424 substr $_[0]{rbuf}, 0, $format, "";
1100 1425
1101 # read rest 1426 # read remaining chunk
1102 $_[0]->unshift_read (chunk => $len, $cb); 1427 $_[0]->unshift_read (chunk => $len, $cb);
1428 }
1103 1429
1104 1 1430 1
1105 } 1431 }
1106}; 1432};
1107 1433
1108=item json => $cb->($handle, $hash_or_arrayref) 1434=item json => $cb->($handle, $hash_or_arrayref)
1109 1435
1110Reads a JSON object or array, decodes it and passes it to the callback. 1436Reads a JSON object or array, decodes it and passes it to the
1437callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1111 1438
1112If a C<json> object was passed to the constructor, then that will be used 1439If a C<json> object was passed to the constructor, then that will be used
1113for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1440for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1114 1441
1115This read type uses the incremental parser available with JSON version 1442This read type uses the incremental parser available with JSON version
1124=cut 1451=cut
1125 1452
1126register_read_type json => sub { 1453register_read_type json => sub {
1127 my ($self, $cb) = @_; 1454 my ($self, $cb) = @_;
1128 1455
1129 require JSON; 1456 my $json = $self->{json} ||= json_coder;
1130 1457
1131 my $data; 1458 my $data;
1132 my $rbuf = \$self->{rbuf}; 1459 my $rbuf = \$self->{rbuf};
1133 1460
1134 my $json = $self->{json} ||= JSON->new->utf8;
1135
1136 sub { 1461 sub {
1137 my $ref = $json->incr_parse ($self->{rbuf}); 1462 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1138 1463
1139 if ($ref) { 1464 if ($ref) {
1140 $self->{rbuf} = $json->incr_text; 1465 $self->{rbuf} = $json->incr_text;
1141 $json->incr_text = ""; 1466 $json->incr_text = "";
1142 $cb->($self, $ref); 1467 $cb->($self, $ref);
1143 1468
1144 1 1469 1
1470 } elsif ($@) {
1471 # error case
1472 $json->incr_skip;
1473
1474 $self->{rbuf} = $json->incr_text;
1475 $json->incr_text = "";
1476
1477 $self->_error (Errno::EBADMSG);
1478
1479 ()
1145 } else { 1480 } else {
1146 $self->{rbuf} = ""; 1481 $self->{rbuf} = "";
1482
1147 () 1483 ()
1148 } 1484 }
1149 } 1485 }
1150}; 1486};
1151 1487
1164 1500
1165 require Storable; 1501 require Storable;
1166 1502
1167 sub { 1503 sub {
1168 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1504 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1169 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1505 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1170 or return; 1506 or return;
1171 1507
1508 my $format = length pack "w", $len;
1509
1510 # bypass unshift if we already have the remaining chunk
1511 if ($format + $len <= length $_[0]{rbuf}) {
1512 my $data = substr $_[0]{rbuf}, $format, $len;
1513 substr $_[0]{rbuf}, 0, $format + $len, "";
1514 $cb->($_[0], Storable::thaw ($data));
1515 } else {
1172 # remove prefix 1516 # remove prefix
1173 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1517 substr $_[0]{rbuf}, 0, $format, "";
1174 1518
1175 # read rest 1519 # read remaining chunk
1176 $_[0]->unshift_read (chunk => $len, sub { 1520 $_[0]->unshift_read (chunk => $len, sub {
1177 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1521 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1178 $cb->($_[0], $ref); 1522 $cb->($_[0], $ref);
1179 } else { 1523 } else {
1180 $self->_error (&Errno::EBADMSG); 1524 $self->_error (Errno::EBADMSG);
1525 }
1181 } 1526 });
1182 }); 1527 }
1528
1529 1
1183 } 1530 }
1184}; 1531};
1185 1532
1186=back 1533=back
1187 1534
1217Note that AnyEvent::Handle will automatically C<start_read> for you when 1564Note that AnyEvent::Handle will automatically C<start_read> for you when
1218you change the C<on_read> callback or push/unshift a read callback, and it 1565you change the C<on_read> callback or push/unshift a read callback, and it
1219will automatically C<stop_read> for you when neither C<on_read> is set nor 1566will automatically C<stop_read> for you when neither C<on_read> is set nor
1220there are any read requests in the queue. 1567there are any read requests in the queue.
1221 1568
1569These methods will have no effect when in TLS mode (as TLS doesn't support
1570half-duplex connections).
1571
1222=cut 1572=cut
1223 1573
1224sub stop_read { 1574sub stop_read {
1225 my ($self) = @_; 1575 my ($self) = @_;
1226 1576
1227 delete $self->{_rw}; 1577 delete $self->{_rw} unless $self->{tls};
1228} 1578}
1229 1579
1230sub start_read { 1580sub start_read {
1231 my ($self) = @_; 1581 my ($self) = @_;
1232 1582
1233 unless ($self->{_rw} || $self->{_eof}) { 1583 unless ($self->{_rw} || $self->{_eof}) {
1234 Scalar::Util::weaken $self; 1584 Scalar::Util::weaken $self;
1235 1585
1236 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1586 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1237 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1587 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1238 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1588 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1239 1589
1240 if ($len > 0) { 1590 if ($len > 0) {
1241 $self->{_activity} = AnyEvent->now; 1591 $self->{_activity} = $self->{_ractivity} = AE::now;
1242 1592
1243 $self->{filter_r} 1593 if ($self->{tls}) {
1244 ? $self->{filter_r}($self, $rbuf) 1594 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1245 : $self->{_in_drain} || $self->_drain_rbuf; 1595
1596 &_dotls ($self);
1597 } else {
1598 $self->_drain_rbuf;
1599 }
1246 1600
1247 } elsif (defined $len) { 1601 } elsif (defined $len) {
1248 delete $self->{_rw}; 1602 delete $self->{_rw};
1249 $self->{_eof} = 1; 1603 $self->{_eof} = 1;
1250 $self->_drain_rbuf unless $self->{_in_drain}; 1604 $self->_drain_rbuf;
1251 1605
1252 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1606 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1253 return $self->_error ($!, 1); 1607 return $self->_error ($!, 1);
1254 } 1608 }
1255 }); 1609 };
1256 } 1610 }
1257} 1611}
1258 1612
1613our $ERROR_SYSCALL;
1614our $ERROR_WANT_READ;
1615
1616sub _tls_error {
1617 my ($self, $err) = @_;
1618
1619 return $self->_error ($!, 1)
1620 if $err == Net::SSLeay::ERROR_SYSCALL ();
1621
1622 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1623
1624 # reduce error string to look less scary
1625 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1626
1627 if ($self->{_on_starttls}) {
1628 (delete $self->{_on_starttls})->($self, undef, $err);
1629 &_freetls;
1630 } else {
1631 &_freetls;
1632 $self->_error (Errno::EPROTO, 1, $err);
1633 }
1634}
1635
1636# poll the write BIO and send the data if applicable
1637# also decode read data if possible
1638# this is basiclaly our TLS state machine
1639# more efficient implementations are possible with openssl,
1640# but not with the buggy and incomplete Net::SSLeay.
1259sub _dotls { 1641sub _dotls {
1260 my ($self) = @_; 1642 my ($self) = @_;
1261 1643
1262 my $buf; 1644 my $tmp;
1263 1645
1264 if (length $self->{_tls_wbuf}) { 1646 if (length $self->{_tls_wbuf}) {
1265 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1647 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1266 substr $self->{_tls_wbuf}, 0, $len, ""; 1648 substr $self->{_tls_wbuf}, 0, $tmp, "";
1267 } 1649 }
1268 }
1269 1650
1651 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1652 return $self->_tls_error ($tmp)
1653 if $tmp != $ERROR_WANT_READ
1654 && ($tmp != $ERROR_SYSCALL || $!);
1655 }
1656
1657 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1658 unless (length $tmp) {
1659 $self->{_on_starttls}
1660 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1661 &_freetls;
1662
1663 if ($self->{on_stoptls}) {
1664 $self->{on_stoptls}($self);
1665 return;
1666 } else {
1667 # let's treat SSL-eof as we treat normal EOF
1668 delete $self->{_rw};
1669 $self->{_eof} = 1;
1670 }
1671 }
1672
1673 $self->{_tls_rbuf} .= $tmp;
1674 $self->_drain_rbuf;
1675 $self->{tls} or return; # tls session might have gone away in callback
1676 }
1677
1678 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1679 return $self->_tls_error ($tmp)
1680 if $tmp != $ERROR_WANT_READ
1681 && ($tmp != $ERROR_SYSCALL || $!);
1682
1270 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1683 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1271 $self->{wbuf} .= $buf; 1684 $self->{wbuf} .= $tmp;
1272 $self->_drain_wbuf; 1685 $self->_drain_wbuf;
1273 } 1686 }
1274 1687
1275 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1688 $self->{_on_starttls}
1276 if (length $buf) { 1689 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1277 $self->{rbuf} .= $buf; 1690 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279 } else {
1280 # let's treat SSL-eof as we treat normal EOF
1281 $self->{_eof} = 1;
1282 $self->_shutdown;
1283 return;
1284 }
1285 }
1286
1287 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1288
1289 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1290 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1291 return $self->_error ($!, 1);
1292 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1293 return $self->_error (&Errno::EIO, 1);
1294 }
1295
1296 # all others are fine for our purposes
1297 }
1298} 1691}
1299 1692
1300=item $handle->starttls ($tls[, $tls_ctx]) 1693=item $handle->starttls ($tls[, $tls_ctx])
1301 1694
1302Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1695Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1303object is created, you can also do that at a later time by calling 1696object is created, you can also do that at a later time by calling
1304C<starttls>. 1697C<starttls>.
1305 1698
1699Starting TLS is currently an asynchronous operation - when you push some
1700write data and then call C<< ->starttls >> then TLS negotiation will start
1701immediately, after which the queued write data is then sent.
1702
1306The first argument is the same as the C<tls> constructor argument (either 1703The first argument is the same as the C<tls> constructor argument (either
1307C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1704C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1308 1705
1309The second argument is the optional C<Net::SSLeay::CTX> object that is 1706The second argument is the optional C<AnyEvent::TLS> object that is used
1310used when AnyEvent::Handle has to create its own TLS connection object. 1707when AnyEvent::Handle has to create its own TLS connection object, or
1708a hash reference with C<< key => value >> pairs that will be used to
1709construct a new context.
1311 1710
1312The TLS connection object will end up in C<< $handle->{tls} >> after this 1711The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1313call and can be used or changed to your liking. Note that the handshake 1712context in C<< $handle->{tls_ctx} >> after this call and can be used or
1314might have already started when this function returns. 1713changed to your liking. Note that the handshake might have already started
1714when this function returns.
1315 1715
1716Due to bugs in OpenSSL, it might or might not be possible to do multiple
1717handshakes on the same stream. Best do not attempt to use the stream after
1718stopping TLS.
1719
1316=cut 1720=cut
1721
1722our %TLS_CACHE; #TODO not yet documented, should we?
1317 1723
1318sub starttls { 1724sub starttls {
1319 my ($self, $ssl, $ctx) = @_; 1725 my ($self, $tls, $ctx) = @_;
1320 1726
1321 $self->stoptls; 1727 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1728 if $self->{tls};
1322 1729
1323 if ($ssl eq "accept") { 1730 $self->{tls} = $tls;
1324 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1731 $self->{tls_ctx} = $ctx if @_ > 2;
1325 Net::SSLeay::set_accept_state ($ssl); 1732
1326 } elsif ($ssl eq "connect") { 1733 return unless $self->{fh};
1327 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1734
1328 Net::SSLeay::set_connect_state ($ssl); 1735 require Net::SSLeay;
1736
1737 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1738 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1739
1740 $tls = delete $self->{tls};
1741 $ctx = $self->{tls_ctx};
1742
1743 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1744
1745 if ("HASH" eq ref $ctx) {
1746 require AnyEvent::TLS;
1747
1748 if ($ctx->{cache}) {
1749 my $key = $ctx+0;
1750 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1751 } else {
1752 $ctx = new AnyEvent::TLS %$ctx;
1753 }
1754 }
1329 } 1755
1330 1756 $self->{tls_ctx} = $ctx || TLS_CTX ();
1331 $self->{tls} = $ssl; 1757 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1332 1758
1333 # basically, this is deep magic (because SSL_read should have the same issues) 1759 # basically, this is deep magic (because SSL_read should have the same issues)
1334 # but the openssl maintainers basically said: "trust us, it just works". 1760 # but the openssl maintainers basically said: "trust us, it just works".
1335 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1761 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1336 # and mismaintained ssleay-module doesn't even offer them). 1762 # and mismaintained ssleay-module doesn't even offer them).
1337 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1763 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1764 #
1765 # in short: this is a mess.
1766 #
1767 # note that we do not try to keep the length constant between writes as we are required to do.
1768 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1769 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1770 # have identity issues in that area.
1338 Net::SSLeay::CTX_set_mode ($self->{tls}, 1771# Net::SSLeay::CTX_set_mode ($ssl,
1339 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1772# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1340 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1773# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1774 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1341 1775
1342 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1776 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1343 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1344 1778
1779 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1780
1345 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1781 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1346 1782
1347 $self->{filter_w} = sub { 1783 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1348 $_[0]{_tls_wbuf} .= ${$_[1]}; 1784 if $self->{on_starttls};
1349 &_dotls; 1785
1350 }; 1786 &_dotls; # need to trigger the initial handshake
1351 $self->{filter_r} = sub { 1787 $self->start_read; # make sure we actually do read
1352 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1353 &_dotls;
1354 };
1355} 1788}
1356 1789
1357=item $handle->stoptls 1790=item $handle->stoptls
1358 1791
1359Destroys the SSL connection, if any. Partial read or write data will be 1792Shuts down the SSL connection - this makes a proper EOF handshake by
1360lost. 1793sending a close notify to the other side, but since OpenSSL doesn't
1794support non-blocking shut downs, it is not guarenteed that you can re-use
1795the stream afterwards.
1361 1796
1362=cut 1797=cut
1363 1798
1364sub stoptls { 1799sub stoptls {
1365 my ($self) = @_; 1800 my ($self) = @_;
1366 1801
1367 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1802 if ($self->{tls}) {
1803 Net::SSLeay::shutdown ($self->{tls});
1368 1804
1369 delete $self->{_rbio}; 1805 &_dotls;
1370 delete $self->{_wbio}; 1806
1371 delete $self->{_tls_wbuf}; 1807# # we don't give a shit. no, we do, but we can't. no...#d#
1372 delete $self->{filter_r}; 1808# # we, we... have to use openssl :/#d#
1373 delete $self->{filter_w}; 1809# &_freetls;#d#
1810 }
1811}
1812
1813sub _freetls {
1814 my ($self) = @_;
1815
1816 return unless $self->{tls};
1817
1818 $self->{tls_ctx}->_put_session (delete $self->{tls})
1819 if $self->{tls} > 0;
1820
1821 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1374} 1822}
1375 1823
1376sub DESTROY { 1824sub DESTROY {
1377 my $self = shift; 1825 my ($self) = @_;
1378 1826
1379 $self->stoptls; 1827 &_freetls;
1380 1828
1381 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1829 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1382 1830
1383 if ($linger && length $self->{wbuf}) { 1831 if ($linger && length $self->{wbuf} && $self->{fh}) {
1384 my $fh = delete $self->{fh}; 1832 my $fh = delete $self->{fh};
1385 my $wbuf = delete $self->{wbuf}; 1833 my $wbuf = delete $self->{wbuf};
1386 1834
1387 my @linger; 1835 my @linger;
1388 1836
1389 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1837 push @linger, AE::io $fh, 1, sub {
1390 my $len = syswrite $fh, $wbuf, length $wbuf; 1838 my $len = syswrite $fh, $wbuf, length $wbuf;
1391 1839
1392 if ($len > 0) { 1840 if ($len > 0) {
1393 substr $wbuf, 0, $len, ""; 1841 substr $wbuf, 0, $len, "";
1394 } else { 1842 } else {
1395 @linger = (); # end 1843 @linger = (); # end
1396 } 1844 }
1397 }); 1845 };
1398 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1846 push @linger, AE::timer $linger, 0, sub {
1399 @linger = (); 1847 @linger = ();
1400 }); 1848 };
1401 } 1849 }
1850}
1851
1852=item $handle->destroy
1853
1854Shuts down the handle object as much as possible - this call ensures that
1855no further callbacks will be invoked and as many resources as possible
1856will be freed. Any method you will call on the handle object after
1857destroying it in this way will be silently ignored (and it will return the
1858empty list).
1859
1860Normally, you can just "forget" any references to an AnyEvent::Handle
1861object and it will simply shut down. This works in fatal error and EOF
1862callbacks, as well as code outside. It does I<NOT> work in a read or write
1863callback, so when you want to destroy the AnyEvent::Handle object from
1864within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1865that case.
1866
1867Destroying the handle object in this way has the advantage that callbacks
1868will be removed as well, so if those are the only reference holders (as
1869is common), then one doesn't need to do anything special to break any
1870reference cycles.
1871
1872The handle might still linger in the background and write out remaining
1873data, as specified by the C<linger> option, however.
1874
1875=cut
1876
1877sub destroy {
1878 my ($self) = @_;
1879
1880 $self->DESTROY;
1881 %$self = ();
1882 bless $self, "AnyEvent::Handle::destroyed";
1883}
1884
1885sub AnyEvent::Handle::destroyed::AUTOLOAD {
1886 #nop
1402} 1887}
1403 1888
1404=item AnyEvent::Handle::TLS_CTX 1889=item AnyEvent::Handle::TLS_CTX
1405 1890
1406This function creates and returns the Net::SSLeay::CTX object used by 1891This function creates and returns the AnyEvent::TLS object used by default
1407default for TLS mode. 1892for TLS mode.
1408 1893
1409The context is created like this: 1894The context is created by calling L<AnyEvent::TLS> without any arguments.
1410
1411 Net::SSLeay::load_error_strings;
1412 Net::SSLeay::SSLeay_add_ssl_algorithms;
1413 Net::SSLeay::randomize;
1414
1415 my $CTX = Net::SSLeay::CTX_new;
1416
1417 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1418 1895
1419=cut 1896=cut
1420 1897
1421our $TLS_CTX; 1898our $TLS_CTX;
1422 1899
1423sub TLS_CTX() { 1900sub TLS_CTX() {
1424 $TLS_CTX || do { 1901 $TLS_CTX ||= do {
1425 require Net::SSLeay; 1902 require AnyEvent::TLS;
1426 1903
1427 Net::SSLeay::load_error_strings (); 1904 new AnyEvent::TLS
1428 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1429 Net::SSLeay::randomize ();
1430
1431 $TLS_CTX = Net::SSLeay::CTX_new ();
1432
1433 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1434
1435 $TLS_CTX
1436 } 1905 }
1437} 1906}
1438 1907
1439=back 1908=back
1909
1910
1911=head1 NONFREQUENTLY ASKED QUESTIONS
1912
1913=over 4
1914
1915=item I C<undef> the AnyEvent::Handle reference inside my callback and
1916still get further invocations!
1917
1918That's because AnyEvent::Handle keeps a reference to itself when handling
1919read or write callbacks.
1920
1921It is only safe to "forget" the reference inside EOF or error callbacks,
1922from within all other callbacks, you need to explicitly call the C<<
1923->destroy >> method.
1924
1925=item I get different callback invocations in TLS mode/Why can't I pause
1926reading?
1927
1928Unlike, say, TCP, TLS connections do not consist of two independent
1929communication channels, one for each direction. Or put differently. The
1930read and write directions are not independent of each other: you cannot
1931write data unless you are also prepared to read, and vice versa.
1932
1933This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1934callback invocations when you are not expecting any read data - the reason
1935is that AnyEvent::Handle always reads in TLS mode.
1936
1937During the connection, you have to make sure that you always have a
1938non-empty read-queue, or an C<on_read> watcher. At the end of the
1939connection (or when you no longer want to use it) you can call the
1940C<destroy> method.
1941
1942=item How do I read data until the other side closes the connection?
1943
1944If you just want to read your data into a perl scalar, the easiest way
1945to achieve this is by setting an C<on_read> callback that does nothing,
1946clearing the C<on_eof> callback and in the C<on_error> callback, the data
1947will be in C<$_[0]{rbuf}>:
1948
1949 $handle->on_read (sub { });
1950 $handle->on_eof (undef);
1951 $handle->on_error (sub {
1952 my $data = delete $_[0]{rbuf};
1953 });
1954
1955The reason to use C<on_error> is that TCP connections, due to latencies
1956and packets loss, might get closed quite violently with an error, when in
1957fact, all data has been received.
1958
1959It is usually better to use acknowledgements when transferring data,
1960to make sure the other side hasn't just died and you got the data
1961intact. This is also one reason why so many internet protocols have an
1962explicit QUIT command.
1963
1964=item I don't want to destroy the handle too early - how do I wait until
1965all data has been written?
1966
1967After writing your last bits of data, set the C<on_drain> callback
1968and destroy the handle in there - with the default setting of
1969C<low_water_mark> this will be called precisely when all data has been
1970written to the socket:
1971
1972 $handle->push_write (...);
1973 $handle->on_drain (sub {
1974 warn "all data submitted to the kernel\n";
1975 undef $handle;
1976 });
1977
1978If you just want to queue some data and then signal EOF to the other side,
1979consider using C<< ->push_shutdown >> instead.
1980
1981=item I want to contact a TLS/SSL server, I don't care about security.
1982
1983If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1984simply connect to it and then create the AnyEvent::Handle with the C<tls>
1985parameter:
1986
1987 tcp_connect $host, $port, sub {
1988 my ($fh) = @_;
1989
1990 my $handle = new AnyEvent::Handle
1991 fh => $fh,
1992 tls => "connect",
1993 on_error => sub { ... };
1994
1995 $handle->push_write (...);
1996 };
1997
1998=item I want to contact a TLS/SSL server, I do care about security.
1999
2000Then you should additionally enable certificate verification, including
2001peername verification, if the protocol you use supports it (see
2002L<AnyEvent::TLS>, C<verify_peername>).
2003
2004E.g. for HTTPS:
2005
2006 tcp_connect $host, $port, sub {
2007 my ($fh) = @_;
2008
2009 my $handle = new AnyEvent::Handle
2010 fh => $fh,
2011 peername => $host,
2012 tls => "connect",
2013 tls_ctx => { verify => 1, verify_peername => "https" },
2014 ...
2015
2016Note that you must specify the hostname you connected to (or whatever
2017"peername" the protocol needs) as the C<peername> argument, otherwise no
2018peername verification will be done.
2019
2020The above will use the system-dependent default set of trusted CA
2021certificates. If you want to check against a specific CA, add the
2022C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2023
2024 tls_ctx => {
2025 verify => 1,
2026 verify_peername => "https",
2027 ca_file => "my-ca-cert.pem",
2028 },
2029
2030=item I want to create a TLS/SSL server, how do I do that?
2031
2032Well, you first need to get a server certificate and key. You have
2033three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2034self-signed certificate (cheap. check the search engine of your choice,
2035there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2036nice program for that purpose).
2037
2038Then create a file with your private key (in PEM format, see
2039L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2040file should then look like this:
2041
2042 -----BEGIN RSA PRIVATE KEY-----
2043 ...header data
2044 ... lots of base64'y-stuff
2045 -----END RSA PRIVATE KEY-----
2046
2047 -----BEGIN CERTIFICATE-----
2048 ... lots of base64'y-stuff
2049 -----END CERTIFICATE-----
2050
2051The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2052specify this file as C<cert_file>:
2053
2054 tcp_server undef, $port, sub {
2055 my ($fh) = @_;
2056
2057 my $handle = new AnyEvent::Handle
2058 fh => $fh,
2059 tls => "accept",
2060 tls_ctx => { cert_file => "my-server-keycert.pem" },
2061 ...
2062
2063When you have intermediate CA certificates that your clients might not
2064know about, just append them to the C<cert_file>.
2065
2066=back
2067
1440 2068
1441=head1 SUBCLASSING AnyEvent::Handle 2069=head1 SUBCLASSING AnyEvent::Handle
1442 2070
1443In many cases, you might want to subclass AnyEvent::Handle. 2071In many cases, you might want to subclass AnyEvent::Handle.
1444 2072
1448=over 4 2076=over 4
1449 2077
1450=item * all constructor arguments become object members. 2078=item * all constructor arguments become object members.
1451 2079
1452At least initially, when you pass a C<tls>-argument to the constructor it 2080At least initially, when you pass a C<tls>-argument to the constructor it
1453will end up in C<< $handle->{tls} >>. Those members might be changes or 2081will end up in C<< $handle->{tls} >>. Those members might be changed or
1454mutated later on (for example C<tls> will hold the TLS connection object). 2082mutated later on (for example C<tls> will hold the TLS connection object).
1455 2083
1456=item * other object member names are prefixed with an C<_>. 2084=item * other object member names are prefixed with an C<_>.
1457 2085
1458All object members not explicitly documented (internal use) are prefixed 2086All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines