ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.183 by root, Thu Sep 3 12:45:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
167=item autocork => <boolean> 264=item autocork => <boolean>
168 265
169When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
174 272
175When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
178 277
179=item no_delay => <boolean> 278=item no_delay => <boolean>
180 279
181When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
184 283
185In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
187 286
188The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified.
190 318
191=item read_size => <bytes> 319=item read_size => <bytes>
192 320
193The default read block size (the amount of bytes this module will try to read 321The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 322try to read during each loop iteration, which affects memory
323requirements). Default: C<8192>.
195 324
196=item low_water_mark => <bytes> 325=item low_water_mark => <bytes>
197 326
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 327Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 328buffer: If the write reaches this size or gets even samller it is
200considered empty. 329considered empty.
201 330
331Sometimes it can be beneficial (for performance reasons) to add data to
332the write buffer before it is fully drained, but this is a rare case, as
333the operating system kernel usually buffers data as well, so the default
334is good in almost all cases.
335
202=item linger => <seconds> 336=item linger => <seconds>
203 337
204If non-zero (default: C<3600>), then the destructor of the 338If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 339AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 340write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 341socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 342system treats outstanding data at socket close time).
209 343
210This will not work for partial TLS data that could not yet been 344This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 345yet. This data will be lost. Calling the C<stoptls> method in time might
346help.
347
348=item peername => $string
349
350A string used to identify the remote site - usually the DNS hostname
351(I<not> IDN!) used to create the connection, rarely the IP address.
352
353Apart from being useful in error messages, this string is also used in TLS
354peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
355verification will be skipped when C<peername> is not specified or
356C<undef>.
212 357
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 358=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 359
215When this parameter is given, it enables TLS (SSL) mode, that means it 360When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 361AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 362established and will transparently encrypt/decrypt data afterwards.
363
364All TLS protocol errors will be signalled as C<EPROTO>, with an
365appropriate error message.
218 366
219TLS mode requires Net::SSLeay to be installed (it will be loaded 367TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 368automatically when you try to create a TLS handle): this module doesn't
369have a dependency on that module, so if your module requires it, you have
370to add the dependency yourself.
221 371
222For the TLS server side, use C<accept>, and for the TLS client side of a 372Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 373C<accept>, and for the TLS client side of a connection, use C<connect>
374mode.
224 375
225You can also provide your own TLS connection object, but you have 376You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 377to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 378or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 379AnyEvent::Handle. Also, this module will take ownership of this connection
380object.
229 381
382At some future point, AnyEvent::Handle might switch to another TLS
383implementation, then the option to use your own session object will go
384away.
385
386B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
387passing in the wrong integer will lead to certain crash. This most often
388happens when one uses a stylish C<< tls => 1 >> and is surprised about the
389segmentation fault.
390
230See the C<starttls> method if you need to start TLS negotiation later. 391See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 392
232=item tls_ctx => $ssl_ctx 393=item tls_ctx => $anyevent_tls
233 394
234Use the given Net::SSLeay::CTX object to create the new TLS connection 395Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 396(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 397missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 398
399Instead of an object, you can also specify a hash reference with C<< key
400=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
401new TLS context object.
402
403=item on_starttls => $cb->($handle, $success[, $error_message])
404
405This callback will be invoked when the TLS/SSL handshake has finished. If
406C<$success> is true, then the TLS handshake succeeded, otherwise it failed
407(C<on_stoptls> will not be called in this case).
408
409The session in C<< $handle->{tls} >> can still be examined in this
410callback, even when the handshake was not successful.
411
412TLS handshake failures will not cause C<on_error> to be invoked when this
413callback is in effect, instead, the error message will be passed to C<on_starttls>.
414
415Without this callback, handshake failures lead to C<on_error> being
416called, as normal.
417
418Note that you cannot call C<starttls> right again in this callback. If you
419need to do that, start an zero-second timer instead whose callback can
420then call C<< ->starttls >> again.
421
422=item on_stoptls => $cb->($handle)
423
424When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
425set, then it will be invoked after freeing the TLS session. If it is not,
426then a TLS shutdown condition will be treated like a normal EOF condition
427on the handle.
428
429The session in C<< $handle->{tls} >> can still be examined in this
430callback.
431
432This callback will only be called on TLS shutdowns, not when the
433underlying handle signals EOF.
434
238=item json => JSON or JSON::XS object 435=item json => JSON or JSON::XS object
239 436
240This is the json coder object used by the C<json> read and write types. 437This is the json coder object used by the C<json> read and write types.
241 438
242If you don't supply it, then AnyEvent::Handle will create and use a 439If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 440suitable one (on demand), which will write and expect UTF-8 encoded JSON
441texts.
244 442
245Note that you are responsible to depend on the JSON module if you want to 443Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 444use this functionality, as AnyEvent does not have a dependency itself.
247 445
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 446=back
255 447
256=cut 448=cut
257 449
258sub new { 450sub new {
259 my $class = shift; 451 my $class = shift;
260
261 my $self = bless { @_ }, $class; 452 my $self = bless { @_ }, $class;
262 453
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 454 if ($self->{fh}) {
455 $self->_start;
456 return unless $self->{fh}; # could be gone by now
457
458 } elsif ($self->{connect}) {
459 require AnyEvent::Socket;
460
461 $self->{peername} = $self->{connect}[0]
462 unless exists $self->{peername};
463
464 $self->{_skip_drain_rbuf} = 1;
465
466 {
467 Scalar::Util::weaken (my $self = $self);
468
469 $self->{_connect} =
470 AnyEvent::Socket::tcp_connect (
471 $self->{connect}[0],
472 $self->{connect}[1],
473 sub {
474 my ($fh, $host, $port, $retry) = @_;
475
476 if ($fh) {
477 $self->{fh} = $fh;
478
479 delete $self->{_skip_drain_rbuf};
480 $self->_start;
481
482 $self->{on_connect}
483 and $self->{on_connect}($self, $host, $port, sub {
484 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
485 $self->{_skip_drain_rbuf} = 1;
486 &$retry;
487 });
488
489 } else {
490 if ($self->{on_connect_error}) {
491 $self->{on_connect_error}($self, "$!");
492 $self->destroy;
493 } else {
494 $self->_error ($!, 1);
495 }
496 }
497 },
498 sub {
499 local $self->{fh} = $_[0];
500
501 $self->{on_prepare}
502 ? $self->{on_prepare}->($self)
503 : ()
504 }
505 );
506 }
507
508 } else {
509 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
510 }
511
512 $self
513}
514
515sub _start {
516 my ($self) = @_;
264 517
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 518 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 519
267 if ($self->{tls}) { 520 $self->{_activity} =
268 require Net::SSLeay; 521 $self->{_ractivity} =
522 $self->{_wactivity} = AE::now;
523
524 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
525 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
526 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
527
528 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
529 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
530
531 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
532
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 533 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
270 } 534 if $self->{tls};
271 535
272 $self->{_activity} = AnyEvent->now;
273 $self->_timeout;
274
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 536 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 537
278 $self->start_read 538 $self->start_read
279 if $self->{on_read}; 539 if $self->{on_read} || @{ $self->{_queue} };
280 540
281 $self 541 $self->_drain_wbuf;
282}
283
284sub _shutdown {
285 my ($self) = @_;
286
287 delete $self->{_tw};
288 delete $self->{_rw};
289 delete $self->{_ww};
290 delete $self->{fh};
291
292 $self->stoptls;
293} 542}
294 543
295sub _error { 544sub _error {
296 my ($self, $errno, $fatal) = @_; 545 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 546
301 $! = $errno; 547 $! = $errno;
548 $message ||= "$!";
302 549
303 if ($self->{on_error}) { 550 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 551 $self->{on_error}($self, $fatal, $message);
305 } else { 552 $self->destroy if $fatal;
553 } elsif ($self->{fh}) {
554 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 555 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 556 }
308} 557}
309 558
310=item $fh = $handle->fh 559=item $fh = $handle->fh
311 560
312This method returns the file handle of the L<AnyEvent::Handle> object. 561This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 562
314=cut 563=cut
315 564
316sub fh { $_[0]{fh} } 565sub fh { $_[0]{fh} }
317 566
335 $_[0]{on_eof} = $_[1]; 584 $_[0]{on_eof} = $_[1];
336} 585}
337 586
338=item $handle->on_timeout ($cb) 587=item $handle->on_timeout ($cb)
339 588
340Replace the current C<on_timeout> callback, or disables the callback 589=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 590
344=cut 591=item $handle->on_wtimeout ($cb)
345 592
346sub on_timeout { 593Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 594callback, or disables the callback (but not the timeout) if C<$cb> =
348} 595C<undef>. See the C<timeout> constructor argument and method.
596
597=cut
598
599# see below
349 600
350=item $handle->autocork ($boolean) 601=item $handle->autocork ($boolean)
351 602
352Enables or disables the current autocork behaviour (see C<autocork> 603Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 604constructor argument). Changes will only take effect on the next write.
354 605
355=cut 606=cut
607
608sub autocork {
609 $_[0]{autocork} = $_[1];
610}
356 611
357=item $handle->no_delay ($boolean) 612=item $handle->no_delay ($boolean)
358 613
359Enables or disables the C<no_delay> setting (see constructor argument of 614Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 615the same name for details).
364sub no_delay { 619sub no_delay {
365 $_[0]{no_delay} = $_[1]; 620 $_[0]{no_delay} = $_[1];
366 621
367 eval { 622 eval {
368 local $SIG{__DIE__}; 623 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 624 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
625 if $_[0]{fh};
370 }; 626 };
371} 627}
372 628
629=item $handle->keepalive ($boolean)
630
631Enables or disables the C<keepalive> setting (see constructor argument of
632the same name for details).
633
634=cut
635
636sub keepalive {
637 $_[0]{keepalive} = $_[1];
638
639 eval {
640 local $SIG{__DIE__};
641 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
642 if $_[0]{fh};
643 };
644}
645
646=item $handle->oobinline ($boolean)
647
648Enables or disables the C<oobinline> setting (see constructor argument of
649the same name for details).
650
651=cut
652
653sub oobinline {
654 $_[0]{oobinline} = $_[1];
655
656 eval {
657 local $SIG{__DIE__};
658 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
659 if $_[0]{fh};
660 };
661}
662
663=item $handle->keepalive ($boolean)
664
665Enables or disables the C<keepalive> setting (see constructor argument of
666the same name for details).
667
668=cut
669
670sub keepalive {
671 $_[0]{keepalive} = $_[1];
672
673 eval {
674 local $SIG{__DIE__};
675 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
676 if $_[0]{fh};
677 };
678}
679
680=item $handle->on_starttls ($cb)
681
682Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
683
684=cut
685
686sub on_starttls {
687 $_[0]{on_starttls} = $_[1];
688}
689
690=item $handle->on_stoptls ($cb)
691
692Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
693
694=cut
695
696sub on_starttls {
697 $_[0]{on_stoptls} = $_[1];
698}
699
700=item $handle->rbuf_max ($max_octets)
701
702Configures the C<rbuf_max> setting (C<undef> disables it).
703
704=cut
705
706sub rbuf_max {
707 $_[0]{rbuf_max} = $_[1];
708}
709
373############################################################################# 710#############################################################################
374 711
375=item $handle->timeout ($seconds) 712=item $handle->timeout ($seconds)
376 713
714=item $handle->rtimeout ($seconds)
715
716=item $handle->wtimeout ($seconds)
717
377Configures (or disables) the inactivity timeout. 718Configures (or disables) the inactivity timeout.
378 719
379=cut 720=item $handle->timeout_reset
380 721
381sub timeout { 722=item $handle->rtimeout_reset
723
724=item $handle->wtimeout_reset
725
726Reset the activity timeout, as if data was received or sent.
727
728These methods are cheap to call.
729
730=cut
731
732for my $dir ("", "r", "w") {
733 my $timeout = "${dir}timeout";
734 my $tw = "_${dir}tw";
735 my $on_timeout = "on_${dir}timeout";
736 my $activity = "_${dir}activity";
737 my $cb;
738
739 *$on_timeout = sub {
740 $_[0]{$on_timeout} = $_[1];
741 };
742
743 *$timeout = sub {
382 my ($self, $timeout) = @_; 744 my ($self, $new_value) = @_;
383 745
384 $self->{timeout} = $timeout; 746 $self->{$timeout} = $new_value;
385 $self->_timeout; 747 delete $self->{$tw}; &$cb;
386} 748 };
387 749
750 *{"${dir}timeout_reset"} = sub {
751 $_[0]{$activity} = AE::now;
752 };
753
754 # main workhorse:
388# reset the timeout watcher, as neccessary 755 # reset the timeout watcher, as neccessary
389# also check for time-outs 756 # also check for time-outs
390sub _timeout { 757 $cb = sub {
391 my ($self) = @_; 758 my ($self) = @_;
392 759
393 if ($self->{timeout}) { 760 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 761 my $NOW = AE::now;
395 762
396 # when would the timeout trigger? 763 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 764 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 765
399 # now or in the past already? 766 # now or in the past already?
400 if ($after <= 0) { 767 if ($after <= 0) {
401 $self->{_activity} = $NOW; 768 $self->{$activity} = $NOW;
402 769
403 if ($self->{on_timeout}) { 770 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 771 $self->{$on_timeout}($self);
405 } else { 772 } else {
406 $self->_error (&Errno::ETIMEDOUT); 773 $self->_error (Errno::ETIMEDOUT);
774 }
775
776 # callback could have changed timeout value, optimise
777 return unless $self->{$timeout};
778
779 # calculate new after
780 $after = $self->{$timeout};
407 } 781 }
408 782
409 # callback could have changed timeout value, optimise 783 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 784 return unless $self; # ->error could have destroyed $self
411 785
412 # calculate new after 786 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 787 delete $self->{$tw};
788 $cb->($self);
789 };
790 } else {
791 delete $self->{$tw};
414 } 792 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 793 }
426} 794}
427 795
428############################################################################# 796#############################################################################
429 797
453 my ($self, $cb) = @_; 821 my ($self, $cb) = @_;
454 822
455 $self->{on_drain} = $cb; 823 $self->{on_drain} = $cb;
456 824
457 $cb->($self) 825 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 826 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 827}
460 828
461=item $handle->push_write ($data) 829=item $handle->push_write ($data)
462 830
463Queues the given scalar to be written. You can push as much data as you 831Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 842 Scalar::Util::weaken $self;
475 843
476 my $cb = sub { 844 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 845 my $len = syswrite $self->{fh}, $self->{wbuf};
478 846
479 if ($len >= 0) { 847 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 848 substr $self->{wbuf}, 0, $len, "";
481 849
482 $self->{_activity} = AnyEvent->now; 850 $self->{_activity} = $self->{_wactivity} = AE::now;
483 851
484 $self->{on_drain}($self) 852 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 853 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 854 && $self->{on_drain};
487 855
488 delete $self->{_ww} unless length $self->{wbuf}; 856 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 857 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 858 $self->_error ($!, 1);
493 861
494 # try to write data immediately 862 # try to write data immediately
495 $cb->() unless $self->{autocork}; 863 $cb->() unless $self->{autocork};
496 864
497 # if still data left in wbuf, we need to poll 865 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 866 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 867 if length $self->{wbuf};
500 }; 868 };
501} 869}
502 870
503our %WH; 871our %WH;
514 882
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 883 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 884 ->($self, @_);
517 } 885 }
518 886
519 if ($self->{filter_w}) { 887 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 888 $self->{_tls_wbuf} .= $_[0];
889 &_dotls ($self) if $self->{fh};
521 } else { 890 } else {
522 $self->{wbuf} .= $_[0]; 891 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 892 $self->_drain_wbuf if $self->{fh};
524 } 893 }
525} 894}
526 895
527=item $handle->push_write (type => @args) 896=item $handle->push_write (type => @args)
528 897
542=cut 911=cut
543 912
544register_write_type netstring => sub { 913register_write_type netstring => sub {
545 my ($self, $string) = @_; 914 my ($self, $string) = @_;
546 915
547 sprintf "%d:%s,", (length $string), $string 916 (length $string) . ":$string,"
548}; 917};
549 918
550=item packstring => $format, $data 919=item packstring => $format, $data
551 920
552An octet string prefixed with an encoded length. The encoding C<$format> 921An octet string prefixed with an encoded length. The encoding C<$format>
592Other languages could read single lines terminated by a newline and pass 961Other languages could read single lines terminated by a newline and pass
593this line into their JSON decoder of choice. 962this line into their JSON decoder of choice.
594 963
595=cut 964=cut
596 965
966sub json_coder() {
967 eval { require JSON::XS; JSON::XS->new->utf8 }
968 || do { require JSON; JSON->new->utf8 }
969}
970
597register_write_type json => sub { 971register_write_type json => sub {
598 my ($self, $ref) = @_; 972 my ($self, $ref) = @_;
599 973
600 require JSON; 974 my $json = $self->{json} ||= json_coder;
601 975
602 $self->{json} ? $self->{json}->encode ($ref) 976 $json->encode ($ref)
603 : JSON::encode_json ($ref)
604}; 977};
605 978
606=item storable => $reference 979=item storable => $reference
607 980
608Freezes the given reference using L<Storable> and writes it to the 981Freezes the given reference using L<Storable> and writes it to the
617 990
618 pack "w/a*", Storable::nfreeze ($ref) 991 pack "w/a*", Storable::nfreeze ($ref)
619}; 992};
620 993
621=back 994=back
995
996=item $handle->push_shutdown
997
998Sometimes you know you want to close the socket after writing your data
999before it was actually written. One way to do that is to replace your
1000C<on_drain> handler by a callback that shuts down the socket (and set
1001C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1002replaces the C<on_drain> callback with:
1003
1004 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1005
1006This simply shuts down the write side and signals an EOF condition to the
1007the peer.
1008
1009You can rely on the normal read queue and C<on_eof> handling
1010afterwards. This is the cleanest way to close a connection.
1011
1012=cut
1013
1014sub push_shutdown {
1015 my ($self) = @_;
1016
1017 delete $self->{low_water_mark};
1018 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1019}
622 1020
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1021=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 1022
625This function (not method) lets you add your own types to C<push_write>. 1023This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 1024Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1118=cut
721 1119
722sub _drain_rbuf { 1120sub _drain_rbuf {
723 my ($self) = @_; 1121 my ($self) = @_;
724 1122
1123 # avoid recursion
1124 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1125 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1126
734 while () { 1127 while () {
1128 # we need to use a separate tls read buffer, as we must not receive data while
1129 # we are draining the buffer, and this can only happen with TLS.
1130 $self->{rbuf} .= delete $self->{_tls_rbuf}
1131 if exists $self->{_tls_rbuf};
1132
735 my $len = length $self->{rbuf}; 1133 my $len = length $self->{rbuf};
736 1134
737 if (my $cb = shift @{ $self->{_queue} }) { 1135 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1136 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1137 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1138 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1139 $self->_error (Errno::EPIPE, 1), return
742 } 1140 if $self->{_eof};
743 1141
744 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
745 last; 1143 last;
746 } 1144 }
747 } elsif ($self->{on_read}) { 1145 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1152 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1153 && $self->{on_read} # but we still have on_read
756 ) { 1154 ) {
757 # no further data will arrive 1155 # no further data will arrive
758 # so no progress can be made 1156 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1157 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1158 if $self->{_eof};
761 1159
762 last; # more data might arrive 1160 last; # more data might arrive
763 } 1161 }
764 } else { 1162 } else {
765 # read side becomes idle 1163 # read side becomes idle
766 delete $self->{_rw}; 1164 delete $self->{_rw} unless $self->{tls};
767 last; 1165 last;
768 } 1166 }
769 } 1167 }
770 1168
1169 if ($self->{_eof}) {
1170 $self->{on_eof}
771 $self->{on_eof}($self) 1171 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1172 : $self->_error (0, 1, "Unexpected end-of-file");
1173
1174 return;
1175 }
1176
1177 if (
1178 defined $self->{rbuf_max}
1179 && $self->{rbuf_max} < length $self->{rbuf}
1180 ) {
1181 $self->_error (Errno::ENOSPC, 1), return;
1182 }
773 1183
774 # may need to restart read watcher 1184 # may need to restart read watcher
775 unless ($self->{_rw}) { 1185 unless ($self->{_rw}) {
776 $self->start_read 1186 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1187 if $self->{on_read} || @{ $self->{_queue} };
788 1198
789sub on_read { 1199sub on_read {
790 my ($self, $cb) = @_; 1200 my ($self, $cb) = @_;
791 1201
792 $self->{on_read} = $cb; 1202 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1203 $self->_drain_rbuf if $cb;
794} 1204}
795 1205
796=item $handle->rbuf 1206=item $handle->rbuf
797 1207
798Returns the read buffer (as a modifiable lvalue). 1208Returns the read buffer (as a modifiable lvalue).
799 1209
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1210You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1211member, if you want. However, the only operation allowed on the
1212read buffer (apart from looking at it) is removing data from its
1213beginning. Otherwise modifying or appending to it is not allowed and will
1214lead to hard-to-track-down bugs.
802 1215
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1216NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1217C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1218automatically manage the read buffer.
806 1219
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1260 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1261 ->($self, $cb, @_);
849 } 1262 }
850 1263
851 push @{ $self->{_queue} }, $cb; 1264 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1265 $self->_drain_rbuf;
853} 1266}
854 1267
855sub unshift_read { 1268sub unshift_read {
856 my $self = shift; 1269 my $self = shift;
857 my $cb = pop; 1270 my $cb = pop;
861 1274
862 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1275 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
863 ->($self, $cb, @_); 1276 ->($self, $cb, @_);
864 } 1277 }
865 1278
866
867 unshift @{ $self->{_queue} }, $cb; 1279 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1280 $self->_drain_rbuf;
869} 1281}
870 1282
871=item $handle->push_read (type => @args, $cb) 1283=item $handle->push_read (type => @args, $cb)
872 1284
873=item $handle->unshift_read (type => @args, $cb) 1285=item $handle->unshift_read (type => @args, $cb)
1006 return 1; 1418 return 1;
1007 } 1419 }
1008 1420
1009 # reject 1421 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1422 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1423 $self->_error (Errno::EBADMSG);
1012 } 1424 }
1013 1425
1014 # skip 1426 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1427 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1428 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1444 my ($self, $cb) = @_;
1033 1445
1034 sub { 1446 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1447 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1448 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1449 $self->_error (Errno::EBADMSG);
1038 } 1450 }
1039 return; 1451 return;
1040 } 1452 }
1041 1453
1042 my $len = $1; 1454 my $len = $1;
1045 my $string = $_[1]; 1457 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1458 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1459 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1460 $cb->($_[0], $string);
1049 } else { 1461 } else {
1050 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1051 } 1463 }
1052 }); 1464 });
1053 }); 1465 });
1054 1466
1055 1 1467 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1473An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1474uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1475integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1476optional C<!>, C<< < >> or C<< > >> modifier).
1065 1477
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1478For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1479EPP uses a prefix of C<N> (4 octtes).
1067 1480
1068Example: read a block of data prefixed by its length in BER-encoded 1481Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1482format (very efficient).
1070 1483
1071 $handle->push_read (packstring => "w", sub { 1484 $handle->push_read (packstring => "w", sub {
1101 } 1514 }
1102}; 1515};
1103 1516
1104=item json => $cb->($handle, $hash_or_arrayref) 1517=item json => $cb->($handle, $hash_or_arrayref)
1105 1518
1106Reads a JSON object or array, decodes it and passes it to the callback. 1519Reads a JSON object or array, decodes it and passes it to the
1520callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1521
1108If a C<json> object was passed to the constructor, then that will be used 1522If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1523for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1524
1111This read type uses the incremental parser available with JSON version 1525This read type uses the incremental parser available with JSON version
1120=cut 1534=cut
1121 1535
1122register_read_type json => sub { 1536register_read_type json => sub {
1123 my ($self, $cb) = @_; 1537 my ($self, $cb) = @_;
1124 1538
1125 require JSON; 1539 my $json = $self->{json} ||= json_coder;
1126 1540
1127 my $data; 1541 my $data;
1128 my $rbuf = \$self->{rbuf}; 1542 my $rbuf = \$self->{rbuf};
1129 1543
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1544 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1545 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1546
1135 if ($ref) { 1547 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1548 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1549 $json->incr_text = "";
1138 $cb->($self, $ref); 1550 $cb->($self, $ref);
1139 1551
1140 1 1552 1
1553 } elsif ($@) {
1554 # error case
1555 $json->incr_skip;
1556
1557 $self->{rbuf} = $json->incr_text;
1558 $json->incr_text = "";
1559
1560 $self->_error (Errno::EBADMSG);
1561
1562 ()
1141 } else { 1563 } else {
1142 $self->{rbuf} = ""; 1564 $self->{rbuf} = "";
1565
1143 () 1566 ()
1144 } 1567 }
1145 } 1568 }
1146}; 1569};
1147 1570
1179 # read remaining chunk 1602 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1603 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1604 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1605 $cb->($_[0], $ref);
1183 } else { 1606 } else {
1184 $self->_error (&Errno::EBADMSG); 1607 $self->_error (Errno::EBADMSG);
1185 } 1608 }
1186 }); 1609 });
1187 } 1610 }
1188 1611
1189 1 1612 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1647Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1648you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1649will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1650there are any read requests in the queue.
1228 1651
1652These methods will have no effect when in TLS mode (as TLS doesn't support
1653half-duplex connections).
1654
1229=cut 1655=cut
1230 1656
1231sub stop_read { 1657sub stop_read {
1232 my ($self) = @_; 1658 my ($self) = @_;
1233 1659
1234 delete $self->{_rw}; 1660 delete $self->{_rw} unless $self->{tls};
1235} 1661}
1236 1662
1237sub start_read { 1663sub start_read {
1238 my ($self) = @_; 1664 my ($self) = @_;
1239 1665
1240 unless ($self->{_rw} || $self->{_eof}) { 1666 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1667 Scalar::Util::weaken $self;
1242 1668
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1669 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1670 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1671 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1672
1247 if ($len > 0) { 1673 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1674 $self->{_activity} = $self->{_ractivity} = AE::now;
1249 1675
1250 $self->{filter_r} 1676 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1677 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1678
1679 &_dotls ($self);
1680 } else {
1681 $self->_drain_rbuf;
1682 }
1253 1683
1254 } elsif (defined $len) { 1684 } elsif (defined $len) {
1255 delete $self->{_rw}; 1685 delete $self->{_rw};
1256 $self->{_eof} = 1; 1686 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1687 $self->_drain_rbuf;
1258 1688
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1689 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1690 return $self->_error ($!, 1);
1261 } 1691 }
1262 }); 1692 };
1263 } 1693 }
1264} 1694}
1265 1695
1696our $ERROR_SYSCALL;
1697our $ERROR_WANT_READ;
1698
1699sub _tls_error {
1700 my ($self, $err) = @_;
1701
1702 return $self->_error ($!, 1)
1703 if $err == Net::SSLeay::ERROR_SYSCALL ();
1704
1705 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1706
1707 # reduce error string to look less scary
1708 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1709
1710 if ($self->{_on_starttls}) {
1711 (delete $self->{_on_starttls})->($self, undef, $err);
1712 &_freetls;
1713 } else {
1714 &_freetls;
1715 $self->_error (Errno::EPROTO, 1, $err);
1716 }
1717}
1718
1719# poll the write BIO and send the data if applicable
1720# also decode read data if possible
1721# this is basiclaly our TLS state machine
1722# more efficient implementations are possible with openssl,
1723# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1724sub _dotls {
1267 my ($self) = @_; 1725 my ($self) = @_;
1268 1726
1269 my $buf; 1727 my $tmp;
1270 1728
1271 if (length $self->{_tls_wbuf}) { 1729 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1730 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1731 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1732 }
1275 }
1276 1733
1734 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1735 return $self->_tls_error ($tmp)
1736 if $tmp != $ERROR_WANT_READ
1737 && ($tmp != $ERROR_SYSCALL || $!);
1738 }
1739
1740 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1741 unless (length $tmp) {
1742 $self->{_on_starttls}
1743 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1744 &_freetls;
1745
1746 if ($self->{on_stoptls}) {
1747 $self->{on_stoptls}($self);
1748 return;
1749 } else {
1750 # let's treat SSL-eof as we treat normal EOF
1751 delete $self->{_rw};
1752 $self->{_eof} = 1;
1753 }
1754 }
1755
1756 $self->{_tls_rbuf} .= $tmp;
1757 $self->_drain_rbuf;
1758 $self->{tls} or return; # tls session might have gone away in callback
1759 }
1760
1761 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1762 return $self->_tls_error ($tmp)
1763 if $tmp != $ERROR_WANT_READ
1764 && ($tmp != $ERROR_SYSCALL || $!);
1765
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1766 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1767 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1768 $self->_drain_wbuf;
1280 } 1769 }
1281 1770
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1771 $self->{_on_starttls}
1283 if (length $buf) { 1772 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1773 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1774}
1306 1775
1307=item $handle->starttls ($tls[, $tls_ctx]) 1776=item $handle->starttls ($tls[, $tls_ctx])
1308 1777
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1778Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1779object is created, you can also do that at a later time by calling
1311C<starttls>. 1780C<starttls>.
1312 1781
1782Starting TLS is currently an asynchronous operation - when you push some
1783write data and then call C<< ->starttls >> then TLS negotiation will start
1784immediately, after which the queued write data is then sent.
1785
1313The first argument is the same as the C<tls> constructor argument (either 1786The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1787C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1788
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1789The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1790when AnyEvent::Handle has to create its own TLS connection object, or
1791a hash reference with C<< key => value >> pairs that will be used to
1792construct a new context.
1318 1793
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1794The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1795context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1796changed to your liking. Note that the handshake might have already started
1797when this function returns.
1322 1798
1799Due to bugs in OpenSSL, it might or might not be possible to do multiple
1800handshakes on the same stream. Best do not attempt to use the stream after
1801stopping TLS.
1802
1323=cut 1803=cut
1804
1805our %TLS_CACHE; #TODO not yet documented, should we?
1324 1806
1325sub starttls { 1807sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1808 my ($self, $tls, $ctx) = @_;
1327 1809
1328 $self->stoptls; 1810 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1811 if $self->{tls};
1329 1812
1330 if ($ssl eq "accept") { 1813 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1814 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1815
1333 } elsif ($ssl eq "connect") { 1816 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817
1335 Net::SSLeay::set_connect_state ($ssl); 1818 require Net::SSLeay;
1819
1820 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1821 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1822
1823 $tls = delete $self->{tls};
1824 $ctx = $self->{tls_ctx};
1825
1826 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1827
1828 if ("HASH" eq ref $ctx) {
1829 require AnyEvent::TLS;
1830
1831 if ($ctx->{cache}) {
1832 my $key = $ctx+0;
1833 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1834 } else {
1835 $ctx = new AnyEvent::TLS %$ctx;
1836 }
1837 }
1336 } 1838
1337 1839 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1840 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1841
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1842 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1843 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1844 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1845 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1846 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1847 #
1848 # in short: this is a mess.
1849 #
1850 # note that we do not try to keep the length constant between writes as we are required to do.
1851 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1852 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1853 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1854# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1855# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1856# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1857 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1858
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1859 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1860 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1861
1862 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1863
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1864 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1865
1354 $self->{filter_w} = sub { 1866 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1867 if $self->{on_starttls};
1356 &_dotls; 1868
1357 }; 1869 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1870 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1871}
1363 1872
1364=item $handle->stoptls 1873=item $handle->stoptls
1365 1874
1366Destroys the SSL connection, if any. Partial read or write data will be 1875Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1876sending a close notify to the other side, but since OpenSSL doesn't
1877support non-blocking shut downs, it is not guarenteed that you can re-use
1878the stream afterwards.
1368 1879
1369=cut 1880=cut
1370 1881
1371sub stoptls { 1882sub stoptls {
1372 my ($self) = @_; 1883 my ($self) = @_;
1373 1884
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1885 if ($self->{tls}) {
1886 Net::SSLeay::shutdown ($self->{tls});
1375 1887
1376 delete $self->{_rbio}; 1888 &_dotls;
1377 delete $self->{_wbio}; 1889
1378 delete $self->{_tls_wbuf}; 1890# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1891# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1892# &_freetls;#d#
1893 }
1894}
1895
1896sub _freetls {
1897 my ($self) = @_;
1898
1899 return unless $self->{tls};
1900
1901 $self->{tls_ctx}->_put_session (delete $self->{tls})
1902 if $self->{tls} > 0;
1903
1904 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1905}
1382 1906
1383sub DESTROY { 1907sub DESTROY {
1384 my $self = shift; 1908 my ($self) = @_;
1385 1909
1386 $self->stoptls; 1910 &_freetls;
1387 1911
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1912 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1913
1390 if ($linger && length $self->{wbuf}) { 1914 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1915 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1916 my $wbuf = delete $self->{wbuf};
1393 1917
1394 my @linger; 1918 my @linger;
1395 1919
1396 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1920 push @linger, AE::io $fh, 1, sub {
1397 my $len = syswrite $fh, $wbuf, length $wbuf; 1921 my $len = syswrite $fh, $wbuf, length $wbuf;
1398 1922
1399 if ($len > 0) { 1923 if ($len > 0) {
1400 substr $wbuf, 0, $len, ""; 1924 substr $wbuf, 0, $len, "";
1401 } else { 1925 } else {
1402 @linger = (); # end 1926 @linger = (); # end
1403 } 1927 }
1404 }); 1928 };
1405 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1929 push @linger, AE::timer $linger, 0, sub {
1406 @linger = (); 1930 @linger = ();
1407 }); 1931 };
1408 } 1932 }
1933}
1934
1935=item $handle->destroy
1936
1937Shuts down the handle object as much as possible - this call ensures that
1938no further callbacks will be invoked and as many resources as possible
1939will be freed. Any method you will call on the handle object after
1940destroying it in this way will be silently ignored (and it will return the
1941empty list).
1942
1943Normally, you can just "forget" any references to an AnyEvent::Handle
1944object and it will simply shut down. This works in fatal error and EOF
1945callbacks, as well as code outside. It does I<NOT> work in a read or write
1946callback, so when you want to destroy the AnyEvent::Handle object from
1947within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1948that case.
1949
1950Destroying the handle object in this way has the advantage that callbacks
1951will be removed as well, so if those are the only reference holders (as
1952is common), then one doesn't need to do anything special to break any
1953reference cycles.
1954
1955The handle might still linger in the background and write out remaining
1956data, as specified by the C<linger> option, however.
1957
1958=cut
1959
1960sub destroy {
1961 my ($self) = @_;
1962
1963 $self->DESTROY;
1964 %$self = ();
1965 bless $self, "AnyEvent::Handle::destroyed";
1966}
1967
1968sub AnyEvent::Handle::destroyed::AUTOLOAD {
1969 #nop
1409} 1970}
1410 1971
1411=item AnyEvent::Handle::TLS_CTX 1972=item AnyEvent::Handle::TLS_CTX
1412 1973
1413This function creates and returns the Net::SSLeay::CTX object used by 1974This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1975for TLS mode.
1415 1976
1416The context is created like this: 1977The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1978
1426=cut 1979=cut
1427 1980
1428our $TLS_CTX; 1981our $TLS_CTX;
1429 1982
1430sub TLS_CTX() { 1983sub TLS_CTX() {
1431 $TLS_CTX || do { 1984 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1985 require AnyEvent::TLS;
1433 1986
1434 Net::SSLeay::load_error_strings (); 1987 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1988 }
1444} 1989}
1445 1990
1446=back 1991=back
1992
1993
1994=head1 NONFREQUENTLY ASKED QUESTIONS
1995
1996=over 4
1997
1998=item I C<undef> the AnyEvent::Handle reference inside my callback and
1999still get further invocations!
2000
2001That's because AnyEvent::Handle keeps a reference to itself when handling
2002read or write callbacks.
2003
2004It is only safe to "forget" the reference inside EOF or error callbacks,
2005from within all other callbacks, you need to explicitly call the C<<
2006->destroy >> method.
2007
2008=item I get different callback invocations in TLS mode/Why can't I pause
2009reading?
2010
2011Unlike, say, TCP, TLS connections do not consist of two independent
2012communication channels, one for each direction. Or put differently. The
2013read and write directions are not independent of each other: you cannot
2014write data unless you are also prepared to read, and vice versa.
2015
2016This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2017callback invocations when you are not expecting any read data - the reason
2018is that AnyEvent::Handle always reads in TLS mode.
2019
2020During the connection, you have to make sure that you always have a
2021non-empty read-queue, or an C<on_read> watcher. At the end of the
2022connection (or when you no longer want to use it) you can call the
2023C<destroy> method.
2024
2025=item How do I read data until the other side closes the connection?
2026
2027If you just want to read your data into a perl scalar, the easiest way
2028to achieve this is by setting an C<on_read> callback that does nothing,
2029clearing the C<on_eof> callback and in the C<on_error> callback, the data
2030will be in C<$_[0]{rbuf}>:
2031
2032 $handle->on_read (sub { });
2033 $handle->on_eof (undef);
2034 $handle->on_error (sub {
2035 my $data = delete $_[0]{rbuf};
2036 });
2037
2038The reason to use C<on_error> is that TCP connections, due to latencies
2039and packets loss, might get closed quite violently with an error, when in
2040fact, all data has been received.
2041
2042It is usually better to use acknowledgements when transferring data,
2043to make sure the other side hasn't just died and you got the data
2044intact. This is also one reason why so many internet protocols have an
2045explicit QUIT command.
2046
2047=item I don't want to destroy the handle too early - how do I wait until
2048all data has been written?
2049
2050After writing your last bits of data, set the C<on_drain> callback
2051and destroy the handle in there - with the default setting of
2052C<low_water_mark> this will be called precisely when all data has been
2053written to the socket:
2054
2055 $handle->push_write (...);
2056 $handle->on_drain (sub {
2057 warn "all data submitted to the kernel\n";
2058 undef $handle;
2059 });
2060
2061If you just want to queue some data and then signal EOF to the other side,
2062consider using C<< ->push_shutdown >> instead.
2063
2064=item I want to contact a TLS/SSL server, I don't care about security.
2065
2066If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2067simply connect to it and then create the AnyEvent::Handle with the C<tls>
2068parameter:
2069
2070 tcp_connect $host, $port, sub {
2071 my ($fh) = @_;
2072
2073 my $handle = new AnyEvent::Handle
2074 fh => $fh,
2075 tls => "connect",
2076 on_error => sub { ... };
2077
2078 $handle->push_write (...);
2079 };
2080
2081=item I want to contact a TLS/SSL server, I do care about security.
2082
2083Then you should additionally enable certificate verification, including
2084peername verification, if the protocol you use supports it (see
2085L<AnyEvent::TLS>, C<verify_peername>).
2086
2087E.g. for HTTPS:
2088
2089 tcp_connect $host, $port, sub {
2090 my ($fh) = @_;
2091
2092 my $handle = new AnyEvent::Handle
2093 fh => $fh,
2094 peername => $host,
2095 tls => "connect",
2096 tls_ctx => { verify => 1, verify_peername => "https" },
2097 ...
2098
2099Note that you must specify the hostname you connected to (or whatever
2100"peername" the protocol needs) as the C<peername> argument, otherwise no
2101peername verification will be done.
2102
2103The above will use the system-dependent default set of trusted CA
2104certificates. If you want to check against a specific CA, add the
2105C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2106
2107 tls_ctx => {
2108 verify => 1,
2109 verify_peername => "https",
2110 ca_file => "my-ca-cert.pem",
2111 },
2112
2113=item I want to create a TLS/SSL server, how do I do that?
2114
2115Well, you first need to get a server certificate and key. You have
2116three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2117self-signed certificate (cheap. check the search engine of your choice,
2118there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2119nice program for that purpose).
2120
2121Then create a file with your private key (in PEM format, see
2122L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2123file should then look like this:
2124
2125 -----BEGIN RSA PRIVATE KEY-----
2126 ...header data
2127 ... lots of base64'y-stuff
2128 -----END RSA PRIVATE KEY-----
2129
2130 -----BEGIN CERTIFICATE-----
2131 ... lots of base64'y-stuff
2132 -----END CERTIFICATE-----
2133
2134The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2135specify this file as C<cert_file>:
2136
2137 tcp_server undef, $port, sub {
2138 my ($fh) = @_;
2139
2140 my $handle = new AnyEvent::Handle
2141 fh => $fh,
2142 tls => "accept",
2143 tls_ctx => { cert_file => "my-server-keycert.pem" },
2144 ...
2145
2146When you have intermediate CA certificates that your clients might not
2147know about, just append them to the C<cert_file>.
2148
2149=back
2150
1447 2151
1448=head1 SUBCLASSING AnyEvent::Handle 2152=head1 SUBCLASSING AnyEvent::Handle
1449 2153
1450In many cases, you might want to subclass AnyEvent::Handle. 2154In many cases, you might want to subclass AnyEvent::Handle.
1451 2155

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines