ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.192 by root, Fri Mar 12 23:22:14 2010 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 };
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
61=head1 METHODS 80=head1 METHODS
62 81
63=over 4 82=over 4
64 83
65=item B<new (%args)> 84=item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
66 85
67The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
68 87
69=over 4 88=over 4
70 89
71=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 91
73The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 93NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95that mode.
77 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
78=item on_eof => $cb->($handle) 114=item on_prepare => $cb->($handle)
79 115
80Set the callback to be called when an end-of-file condition is detected, 116This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 117attempted, but after the file handle has been created. It could be used to
82connection cleanly. 118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
83 121
84While not mandatory, it is highly recommended to set an eof callback, 122The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 124timeout is to be used).
87 125
126=item on_connect => $cb->($handle, $host, $port, $retry->())
127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next connection target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). At the time it is called the read and write queues, eof
137status, tls status and similar properties of the handle will have been
138reset.
139
140In most cases, ignoring the C<$retry> parameter is the way to go.
141
142=item on_connect_error => $cb->($handle, $message)
143
144This callback is called when the connection could not be
145established. C<$!> will contain the relevant error code, and C<$message> a
146message describing it (usually the same as C<"$!">).
147
148If this callback isn't specified, then C<on_error> will be called with a
149fatal error instead.
150
151=back
152
88=item on_error => $cb->($handle, $fatal) 153=item on_error => $cb->($handle, $fatal, $message)
89 154
90This is the error callback, which is called when, well, some error 155This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 156occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 157connect or a read error.
93 158
94Some errors are fatal (which is indicated by C<$fatal> being true). On 159Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 160fatal errors the handle object will be destroyed (by a call to C<< ->
161destroy >>) after invoking the error callback (which means you are free to
162examine the handle object). Examples of fatal errors are an EOF condition
163with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164cases where the other side can close the connection at their will it is
165often easiest to not report C<EPIPE> errors in this callback.
166
167AnyEvent::Handle tries to find an appropriate error code for you to check
168against, but in some cases (TLS errors), this does not work well. It is
169recommended to always output the C<$message> argument in human-readable
170error messages (it's usually the same as C<"$!">).
171
96usable. Non-fatal errors can be retried by simply returning, but it is 172Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 173to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 174when this callback is invoked. Examples of non-fatal errors are timeouts
175C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 176
100On callback entrance, the value of C<$!> contains the operating system 177On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 178error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179C<EPROTO>).
102 180
103While not mandatory, it is I<highly> recommended to set this callback, as 181While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 182you will not be notified of errors otherwise. The default simply calls
105C<croak>. 183C<croak>.
106 184
110and no read request is in the queue (unlike read queue callbacks, this 188and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 189callback will only be called when at least one octet of data is in the
112read buffer). 190read buffer).
113 191
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 192To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 193method or access the C<< $handle->{rbuf} >> member directly. Note that you
194must not enlarge or modify the read buffer, you can only remove data at
195the beginning from it.
116 196
117When an EOF condition is detected then AnyEvent::Handle will first try to 197When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 198feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 199calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 200error will be raised (with C<$!> set to C<EPIPE>).
201
202Note that, unlike requests in the read queue, an C<on_read> callback
203doesn't mean you I<require> some data: if there is an EOF and there
204are outstanding read requests then an error will be flagged. With an
205C<on_read> callback, the C<on_eof> callback will be invoked.
206
207=item on_eof => $cb->($handle)
208
209Set the callback to be called when an end-of-file condition is detected,
210i.e. in the case of a socket, when the other side has closed the
211connection cleanly, and there are no outstanding read requests in the
212queue (if there are read requests, then an EOF counts as an unexpected
213connection close and will be flagged as an error).
214
215For sockets, this just means that the other side has stopped sending data,
216you can still try to write data, and, in fact, one can return from the EOF
217callback and continue writing data, as only the read part has been shut
218down.
219
220If an EOF condition has been detected but no C<on_eof> callback has been
221set, then a fatal error will be raised with C<$!> set to <0>.
121 222
122=item on_drain => $cb->($handle) 223=item on_drain => $cb->($handle)
123 224
124This sets the callback that is called when the write buffer becomes empty 225This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 226(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 233memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 234the file when the write queue becomes empty.
134 235
135=item timeout => $fractional_seconds 236=item timeout => $fractional_seconds
136 237
238=item rtimeout => $fractional_seconds
239
240=item wtimeout => $fractional_seconds
241
137If non-zero, then this enables an "inactivity" timeout: whenever this many 242If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 243many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 244file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 245will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246error will be raised).
247
248There are three variants of the timeouts that work fully independent
249of each other, for both read and write, just read, and just write:
250C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 253
142Note that timeout processing is also active when you currently do not have 254Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 255any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 256idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 257in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258restart the timeout.
146 259
147Zero (the default) disables this timeout. 260Zero (the default) disables this timeout.
148 261
149=item on_timeout => $cb->($handle) 262=item on_timeout => $cb->($handle)
150 263
154 267
155=item rbuf_max => <bytes> 268=item rbuf_max => <bytes>
156 269
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 270If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 271when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 272avoid some forms of denial-of-service attacks.
160 273
161For example, a server accepting connections from untrusted sources should 274For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 275be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 276(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 277amount of data without a callback ever being called as long as the line
165isn't finished). 278isn't finished).
166 279
167=item autocork => <boolean> 280=item autocork => <boolean>
168 281
169When disabled (the default), then C<push_write> will try to immediately 282When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 283write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 284a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 285be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 286disadvantage is usually avoided by your kernel's nagle algorithm, see
287C<no_delay>, but this option can save costly syscalls).
174 288
175When enabled, then writes will always be queued till the next event loop 289When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 290iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 291but less efficient when you do a single write only per iteration (or when
292the write buffer often is full). It also increases write latency.
178 293
179=item no_delay => <boolean> 294=item no_delay => <boolean>
180 295
181When doing small writes on sockets, your operating system kernel might 296When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 297wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 298the Nagle algorithm, and usually it is beneficial.
184 299
185In some situations you want as low a delay as possible, which cna be 300In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 301accomplishd by setting this option to a true value.
187 302
188The default is your opertaing system's default behaviour, this option 303The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 304enabled), this option explicitly enables or disables it, if possible.
305
306=item keepalive => <boolean>
307
308Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309normally, TCP connections have no time-out once established, so TCP
310connections, once established, can stay alive forever even when the other
311side has long gone. TCP keepalives are a cheap way to take down long-lived
312TCP connections whent he other side becomes unreachable. While the default
313is OS-dependent, TCP keepalives usually kick in after around two hours,
314and, if the other side doesn't reply, take down the TCP connection some 10
315to 15 minutes later.
316
317It is harmless to specify this option for file handles that do not support
318keepalives, and enabling it on connections that are potentially long-lived
319is usually a good idea.
320
321=item oobinline => <boolean>
322
323BSD majorly fucked up the implementation of TCP urgent data. The result
324is that almost no OS implements TCP according to the specs, and every OS
325implements it slightly differently.
326
327If you want to handle TCP urgent data, then setting this flag (the default
328is enabled) gives you the most portable way of getting urgent data, by
329putting it into the stream.
330
331Since BSD emulation of OOB data on top of TCP's urgent data can have
332security implications, AnyEvent::Handle sets this flag automatically
333unless explicitly specified. Note that setting this flag after
334establishing a connection I<may> be a bit too late (data loss could
335already have occured on BSD systems), but at least it will protect you
336from most attacks.
190 337
191=item read_size => <bytes> 338=item read_size => <bytes>
192 339
193The default read block size (the amount of bytes this module will try to read 340The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 341try to read during each loop iteration, which affects memory
342requirements). Default: C<8192>.
195 343
196=item low_water_mark => <bytes> 344=item low_water_mark => <bytes>
197 345
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 346Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 347buffer: If the write reaches this size or gets even samller it is
200considered empty. 348considered empty.
201 349
350Sometimes it can be beneficial (for performance reasons) to add data to
351the write buffer before it is fully drained, but this is a rare case, as
352the operating system kernel usually buffers data as well, so the default
353is good in almost all cases.
354
202=item linger => <seconds> 355=item linger => <seconds>
203 356
204If non-zero (default: C<3600>), then the destructor of the 357If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 358AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 359write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 360socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 361system treats outstanding data at socket close time).
209 362
210This will not work for partial TLS data that could not yet been 363This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 364yet. This data will be lost. Calling the C<stoptls> method in time might
365help.
366
367=item peername => $string
368
369A string used to identify the remote site - usually the DNS hostname
370(I<not> IDN!) used to create the connection, rarely the IP address.
371
372Apart from being useful in error messages, this string is also used in TLS
373peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374verification will be skipped when C<peername> is not specified or
375C<undef>.
212 376
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 377=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 378
215When this parameter is given, it enables TLS (SSL) mode, that means it 379When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 380AnyEvent will start a TLS handshake as soon as the connection has been
217data. 381established and will transparently encrypt/decrypt data afterwards.
382
383All TLS protocol errors will be signalled as C<EPROTO>, with an
384appropriate error message.
218 385
219TLS mode requires Net::SSLeay to be installed (it will be loaded 386TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 387automatically when you try to create a TLS handle): this module doesn't
388have a dependency on that module, so if your module requires it, you have
389to add the dependency yourself.
221 390
222For the TLS server side, use C<accept>, and for the TLS client side of a 391Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 392C<accept>, and for the TLS client side of a connection, use C<connect>
393mode.
224 394
225You can also provide your own TLS connection object, but you have 395You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 396to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 397or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 398AnyEvent::Handle. Also, this module will take ownership of this connection
399object.
229 400
401At some future point, AnyEvent::Handle might switch to another TLS
402implementation, then the option to use your own session object will go
403away.
404
405B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406passing in the wrong integer will lead to certain crash. This most often
407happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408segmentation fault.
409
230See the C<starttls> method if you need to start TLS negotiation later. 410See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 411
232=item tls_ctx => $ssl_ctx 412=item tls_ctx => $anyevent_tls
233 413
234Use the given Net::SSLeay::CTX object to create the new TLS connection 414Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 415(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 416missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 417
418Instead of an object, you can also specify a hash reference with C<< key
419=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420new TLS context object.
421
422=item on_starttls => $cb->($handle, $success[, $error_message])
423
424This callback will be invoked when the TLS/SSL handshake has finished. If
425C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426(C<on_stoptls> will not be called in this case).
427
428The session in C<< $handle->{tls} >> can still be examined in this
429callback, even when the handshake was not successful.
430
431TLS handshake failures will not cause C<on_error> to be invoked when this
432callback is in effect, instead, the error message will be passed to C<on_starttls>.
433
434Without this callback, handshake failures lead to C<on_error> being
435called, as normal.
436
437Note that you cannot call C<starttls> right again in this callback. If you
438need to do that, start an zero-second timer instead whose callback can
439then call C<< ->starttls >> again.
440
441=item on_stoptls => $cb->($handle)
442
443When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444set, then it will be invoked after freeing the TLS session. If it is not,
445then a TLS shutdown condition will be treated like a normal EOF condition
446on the handle.
447
448The session in C<< $handle->{tls} >> can still be examined in this
449callback.
450
451This callback will only be called on TLS shutdowns, not when the
452underlying handle signals EOF.
453
238=item json => JSON or JSON::XS object 454=item json => JSON or JSON::XS object
239 455
240This is the json coder object used by the C<json> read and write types. 456This is the json coder object used by the C<json> read and write types.
241 457
242If you don't supply it, then AnyEvent::Handle will create and use a 458If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 459suitable one (on demand), which will write and expect UTF-8 encoded JSON
460texts.
244 461
245Note that you are responsible to depend on the JSON module if you want to 462Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 463use this functionality, as AnyEvent does not have a dependency itself.
247 464
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 465=back
255 466
256=cut 467=cut
257 468
258sub new { 469sub new {
259 my $class = shift; 470 my $class = shift;
260
261 my $self = bless { @_ }, $class; 471 my $self = bless { @_ }, $class;
262 472
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 473 if ($self->{fh}) {
474 $self->_start;
475 return unless $self->{fh}; # could be gone by now
476
477 } elsif ($self->{connect}) {
478 require AnyEvent::Socket;
479
480 $self->{peername} = $self->{connect}[0]
481 unless exists $self->{peername};
482
483 $self->{_skip_drain_rbuf} = 1;
484
485 {
486 Scalar::Util::weaken (my $self = $self);
487
488 $self->{_connect} =
489 AnyEvent::Socket::tcp_connect (
490 $self->{connect}[0],
491 $self->{connect}[1],
492 sub {
493 my ($fh, $host, $port, $retry) = @_;
494
495 if ($fh) {
496 $self->{fh} = $fh;
497
498 delete $self->{_skip_drain_rbuf};
499 $self->_start;
500
501 $self->{on_connect}
502 and $self->{on_connect}($self, $host, $port, sub {
503 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 $self->{_skip_drain_rbuf} = 1;
505 &$retry;
506 });
507
508 } else {
509 if ($self->{on_connect_error}) {
510 $self->{on_connect_error}($self, "$!");
511 $self->destroy;
512 } else {
513 $self->_error ($!, 1);
514 }
515 }
516 },
517 sub {
518 local $self->{fh} = $_[0];
519
520 $self->{on_prepare}
521 ? $self->{on_prepare}->($self)
522 : ()
523 }
524 );
525 }
526
527 } else {
528 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529 }
530
531 $self
532}
533
534sub _start {
535 my ($self) = @_;
264 536
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 537 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 538
267 if ($self->{tls}) { 539 $self->{_activity} =
268 require Net::SSLeay; 540 $self->{_ractivity} =
541 $self->{_wactivity} = AE::now;
542
543 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546
547 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549
550 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 552 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
270 } 553 if $self->{tls};
271 554
272 $self->{_activity} = AnyEvent->now;
273 $self->_timeout;
274
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 555 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 556
278 $self->start_read 557 $self->start_read
279 if $self->{on_read}; 558 if $self->{on_read} || @{ $self->{_queue} };
280 559
281 $self 560 $self->_drain_wbuf;
282}
283
284sub _shutdown {
285 my ($self) = @_;
286
287 delete $self->{_tw};
288 delete $self->{_rw};
289 delete $self->{_ww};
290 delete $self->{fh};
291
292 $self->stoptls;
293} 561}
294 562
295sub _error { 563sub _error {
296 my ($self, $errno, $fatal) = @_; 564 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 565
301 $! = $errno; 566 $! = $errno;
567 $message ||= "$!";
302 568
303 if ($self->{on_error}) { 569 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 570 $self->{on_error}($self, $fatal, $message);
305 } else { 571 $self->destroy if $fatal;
572 } elsif ($self->{fh} || $self->{connect}) {
573 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 574 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 575 }
308} 576}
309 577
310=item $fh = $handle->fh 578=item $fh = $handle->fh
311 579
312This method returns the file handle of the L<AnyEvent::Handle> object. 580This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 581
314=cut 582=cut
315 583
316sub fh { $_[0]{fh} } 584sub fh { $_[0]{fh} }
317 585
335 $_[0]{on_eof} = $_[1]; 603 $_[0]{on_eof} = $_[1];
336} 604}
337 605
338=item $handle->on_timeout ($cb) 606=item $handle->on_timeout ($cb)
339 607
340Replace the current C<on_timeout> callback, or disables the callback 608=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 609
344=cut 610=item $handle->on_wtimeout ($cb)
345 611
346sub on_timeout { 612Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 613callback, or disables the callback (but not the timeout) if C<$cb> =
348} 614C<undef>. See the C<timeout> constructor argument and method.
615
616=cut
617
618# see below
349 619
350=item $handle->autocork ($boolean) 620=item $handle->autocork ($boolean)
351 621
352Enables or disables the current autocork behaviour (see C<autocork> 622Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 623constructor argument). Changes will only take effect on the next write.
354 624
355=cut 625=cut
626
627sub autocork {
628 $_[0]{autocork} = $_[1];
629}
356 630
357=item $handle->no_delay ($boolean) 631=item $handle->no_delay ($boolean)
358 632
359Enables or disables the C<no_delay> setting (see constructor argument of 633Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 634the same name for details).
364sub no_delay { 638sub no_delay {
365 $_[0]{no_delay} = $_[1]; 639 $_[0]{no_delay} = $_[1];
366 640
367 eval { 641 eval {
368 local $SIG{__DIE__}; 642 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 643 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644 if $_[0]{fh};
370 }; 645 };
371} 646}
372 647
648=item $handle->keepalive ($boolean)
649
650Enables or disables the C<keepalive> setting (see constructor argument of
651the same name for details).
652
653=cut
654
655sub keepalive {
656 $_[0]{keepalive} = $_[1];
657
658 eval {
659 local $SIG{__DIE__};
660 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661 if $_[0]{fh};
662 };
663}
664
665=item $handle->oobinline ($boolean)
666
667Enables or disables the C<oobinline> setting (see constructor argument of
668the same name for details).
669
670=cut
671
672sub oobinline {
673 $_[0]{oobinline} = $_[1];
674
675 eval {
676 local $SIG{__DIE__};
677 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678 if $_[0]{fh};
679 };
680}
681
682=item $handle->keepalive ($boolean)
683
684Enables or disables the C<keepalive> setting (see constructor argument of
685the same name for details).
686
687=cut
688
689sub keepalive {
690 $_[0]{keepalive} = $_[1];
691
692 eval {
693 local $SIG{__DIE__};
694 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 if $_[0]{fh};
696 };
697}
698
699=item $handle->on_starttls ($cb)
700
701Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702
703=cut
704
705sub on_starttls {
706 $_[0]{on_starttls} = $_[1];
707}
708
709=item $handle->on_stoptls ($cb)
710
711Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712
713=cut
714
715sub on_stoptls {
716 $_[0]{on_stoptls} = $_[1];
717}
718
719=item $handle->rbuf_max ($max_octets)
720
721Configures the C<rbuf_max> setting (C<undef> disables it).
722
723=cut
724
725sub rbuf_max {
726 $_[0]{rbuf_max} = $_[1];
727}
728
373############################################################################# 729#############################################################################
374 730
375=item $handle->timeout ($seconds) 731=item $handle->timeout ($seconds)
376 732
733=item $handle->rtimeout ($seconds)
734
735=item $handle->wtimeout ($seconds)
736
377Configures (or disables) the inactivity timeout. 737Configures (or disables) the inactivity timeout.
378 738
379=cut 739=item $handle->timeout_reset
380 740
381sub timeout { 741=item $handle->rtimeout_reset
742
743=item $handle->wtimeout_reset
744
745Reset the activity timeout, as if data was received or sent.
746
747These methods are cheap to call.
748
749=cut
750
751for my $dir ("", "r", "w") {
752 my $timeout = "${dir}timeout";
753 my $tw = "_${dir}tw";
754 my $on_timeout = "on_${dir}timeout";
755 my $activity = "_${dir}activity";
756 my $cb;
757
758 *$on_timeout = sub {
759 $_[0]{$on_timeout} = $_[1];
760 };
761
762 *$timeout = sub {
382 my ($self, $timeout) = @_; 763 my ($self, $new_value) = @_;
383 764
384 $self->{timeout} = $timeout; 765 $self->{$timeout} = $new_value;
385 $self->_timeout; 766 delete $self->{$tw}; &$cb;
386} 767 };
387 768
769 *{"${dir}timeout_reset"} = sub {
770 $_[0]{$activity} = AE::now;
771 };
772
773 # main workhorse:
388# reset the timeout watcher, as neccessary 774 # reset the timeout watcher, as neccessary
389# also check for time-outs 775 # also check for time-outs
390sub _timeout { 776 $cb = sub {
391 my ($self) = @_; 777 my ($self) = @_;
392 778
393 if ($self->{timeout}) { 779 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 780 my $NOW = AE::now;
395 781
396 # when would the timeout trigger? 782 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 783 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 784
399 # now or in the past already? 785 # now or in the past already?
400 if ($after <= 0) { 786 if ($after <= 0) {
401 $self->{_activity} = $NOW; 787 $self->{$activity} = $NOW;
402 788
403 if ($self->{on_timeout}) { 789 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 790 $self->{$on_timeout}($self);
405 } else { 791 } else {
406 $self->_error (&Errno::ETIMEDOUT); 792 $self->_error (Errno::ETIMEDOUT);
793 }
794
795 # callback could have changed timeout value, optimise
796 return unless $self->{$timeout};
797
798 # calculate new after
799 $after = $self->{$timeout};
407 } 800 }
408 801
409 # callback could have changed timeout value, optimise 802 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 803 return unless $self; # ->error could have destroyed $self
411 804
412 # calculate new after 805 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 806 delete $self->{$tw};
807 $cb->($self);
808 };
809 } else {
810 delete $self->{$tw};
414 } 811 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 812 }
426} 813}
427 814
428############################################################################# 815#############################################################################
429 816
453 my ($self, $cb) = @_; 840 my ($self, $cb) = @_;
454 841
455 $self->{on_drain} = $cb; 842 $self->{on_drain} = $cb;
456 843
457 $cb->($self) 844 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 845 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 846}
460 847
461=item $handle->push_write ($data) 848=item $handle->push_write ($data)
462 849
463Queues the given scalar to be written. You can push as much data as you 850Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 861 Scalar::Util::weaken $self;
475 862
476 my $cb = sub { 863 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 864 my $len = syswrite $self->{fh}, $self->{wbuf};
478 865
479 if ($len >= 0) { 866 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 867 substr $self->{wbuf}, 0, $len, "";
481 868
482 $self->{_activity} = AnyEvent->now; 869 $self->{_activity} = $self->{_wactivity} = AE::now;
483 870
484 $self->{on_drain}($self) 871 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 872 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 873 && $self->{on_drain};
487 874
488 delete $self->{_ww} unless length $self->{wbuf}; 875 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 876 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 877 $self->_error ($!, 1);
493 880
494 # try to write data immediately 881 # try to write data immediately
495 $cb->() unless $self->{autocork}; 882 $cb->() unless $self->{autocork};
496 883
497 # if still data left in wbuf, we need to poll 884 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 885 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 886 if length $self->{wbuf};
500 }; 887 };
501} 888}
502 889
503our %WH; 890our %WH;
504 891
892# deprecated
505sub register_write_type($$) { 893sub register_write_type($$) {
506 $WH{$_[0]} = $_[1]; 894 $WH{$_[0]} = $_[1];
507} 895}
508 896
509sub push_write { 897sub push_write {
510 my $self = shift; 898 my $self = shift;
511 899
512 if (@_ > 1) { 900 if (@_ > 1) {
513 my $type = shift; 901 my $type = shift;
514 902
903 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 904 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 905 ->($self, @_);
517 } 906 }
518 907
908 # we downgrade here to avoid hard-to-track-down bugs,
909 # and diagnose the problem earlier and better.
910
519 if ($self->{filter_w}) { 911 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 912 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
913 &_dotls ($self) if $self->{fh};
521 } else { 914 } else {
522 $self->{wbuf} .= $_[0]; 915 utf8::downgrade $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 916 $self->_drain_wbuf if $self->{fh};
524 } 917 }
525} 918}
526 919
527=item $handle->push_write (type => @args) 920=item $handle->push_write (type => @args)
528 921
529Instead of formatting your data yourself, you can also let this module do 922Instead of formatting your data yourself, you can also let this module
530the job by specifying a type and type-specific arguments. 923do the job by specifying a type and type-specific arguments. You
924can also specify the (fully qualified) name of a package, in which
925case AnyEvent tries to load the package and then expects to find the
926C<anyevent_read_type> function inside (see "custom write types", below).
531 927
532Predefined types are (if you have ideas for additional types, feel free to 928Predefined types are (if you have ideas for additional types, feel free to
533drop by and tell us): 929drop by and tell us):
534 930
535=over 4 931=over 4
542=cut 938=cut
543 939
544register_write_type netstring => sub { 940register_write_type netstring => sub {
545 my ($self, $string) = @_; 941 my ($self, $string) = @_;
546 942
547 sprintf "%d:%s,", (length $string), $string 943 (length $string) . ":$string,"
548}; 944};
549 945
550=item packstring => $format, $data 946=item packstring => $format, $data
551 947
552An octet string prefixed with an encoded length. The encoding C<$format> 948An octet string prefixed with an encoded length. The encoding C<$format>
592Other languages could read single lines terminated by a newline and pass 988Other languages could read single lines terminated by a newline and pass
593this line into their JSON decoder of choice. 989this line into their JSON decoder of choice.
594 990
595=cut 991=cut
596 992
993sub json_coder() {
994 eval { require JSON::XS; JSON::XS->new->utf8 }
995 || do { require JSON; JSON->new->utf8 }
996}
997
597register_write_type json => sub { 998register_write_type json => sub {
598 my ($self, $ref) = @_; 999 my ($self, $ref) = @_;
599 1000
600 require JSON; 1001 my $json = $self->{json} ||= json_coder;
601 1002
602 $self->{json} ? $self->{json}->encode ($ref) 1003 $json->encode ($ref)
603 : JSON::encode_json ($ref)
604}; 1004};
605 1005
606=item storable => $reference 1006=item storable => $reference
607 1007
608Freezes the given reference using L<Storable> and writes it to the 1008Freezes the given reference using L<Storable> and writes it to the
618 pack "w/a*", Storable::nfreeze ($ref) 1018 pack "w/a*", Storable::nfreeze ($ref)
619}; 1019};
620 1020
621=back 1021=back
622 1022
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1023=item $handle->push_shutdown
624 1024
625This function (not method) lets you add your own types to C<push_write>. 1025Sometimes you know you want to close the socket after writing your data
1026before it was actually written. One way to do that is to replace your
1027C<on_drain> handler by a callback that shuts down the socket (and set
1028C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1029replaces the C<on_drain> callback with:
1030
1031 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1032
1033This simply shuts down the write side and signals an EOF condition to the
1034the peer.
1035
1036You can rely on the normal read queue and C<on_eof> handling
1037afterwards. This is the cleanest way to close a connection.
1038
1039=cut
1040
1041sub push_shutdown {
1042 my ($self) = @_;
1043
1044 delete $self->{low_water_mark};
1045 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1046}
1047
1048=item custom write types - Package::anyevent_write_type $handle, @args
1049
1050Instead of one of the predefined types, you can also specify the name of
1051a package. AnyEvent will try to load the package and then expects to find
1052a function named C<anyevent_write_type> inside. If it isn't found, it
1053progressively tries to load the parent package until it either finds the
1054function (good) or runs out of packages (bad).
1055
626Whenever the given C<type> is used, C<push_write> will invoke the code 1056Whenever the given C<type> is used, C<push_write> will the function with
627reference with the handle object and the remaining arguments. 1057the handle object and the remaining arguments.
628 1058
629The code reference is supposed to return a single octet string that will 1059The function is supposed to return a single octet string that will be
630be appended to the write buffer. 1060appended to the write buffer, so you cna mentally treat this function as a
1061"arguments to on-the-wire-format" converter.
631 1062
632Note that this is a function, and all types registered this way will be 1063Example: implement a custom write type C<join> that joins the remaining
633global, so try to use unique names. 1064arguments using the first one.
1065
1066 $handle->push_write (My::Type => " ", 1,2,3);
1067
1068 # uses the following package, which can be defined in the "My::Type" or in
1069 # the "My" modules to be auto-loaded, or just about anywhere when the
1070 # My::Type::anyevent_write_type is defined before invoking it.
1071
1072 package My::Type;
1073
1074 sub anyevent_write_type {
1075 my ($handle, $delim, @args) = @_;
1076
1077 join $delim, @args
1078 }
634 1079
635=cut 1080=cut
636 1081
637############################################################################# 1082#############################################################################
638 1083
720=cut 1165=cut
721 1166
722sub _drain_rbuf { 1167sub _drain_rbuf {
723 my ($self) = @_; 1168 my ($self) = @_;
724 1169
1170 # avoid recursion
1171 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1172 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1173
734 while () { 1174 while () {
1175 # we need to use a separate tls read buffer, as we must not receive data while
1176 # we are draining the buffer, and this can only happen with TLS.
1177 $self->{rbuf} .= delete $self->{_tls_rbuf}
1178 if exists $self->{_tls_rbuf};
1179
735 my $len = length $self->{rbuf}; 1180 my $len = length $self->{rbuf};
736 1181
737 if (my $cb = shift @{ $self->{_queue} }) { 1182 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1183 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1184 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1185 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1186 $self->_error (Errno::EPIPE, 1), return
742 } 1187 if $self->{_eof};
743 1188
744 unshift @{ $self->{_queue} }, $cb; 1189 unshift @{ $self->{_queue} }, $cb;
745 last; 1190 last;
746 } 1191 }
747 } elsif ($self->{on_read}) { 1192 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1199 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1200 && $self->{on_read} # but we still have on_read
756 ) { 1201 ) {
757 # no further data will arrive 1202 # no further data will arrive
758 # so no progress can be made 1203 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1204 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1205 if $self->{_eof};
761 1206
762 last; # more data might arrive 1207 last; # more data might arrive
763 } 1208 }
764 } else { 1209 } else {
765 # read side becomes idle 1210 # read side becomes idle
766 delete $self->{_rw}; 1211 delete $self->{_rw} unless $self->{tls};
767 last; 1212 last;
768 } 1213 }
769 } 1214 }
770 1215
1216 if ($self->{_eof}) {
1217 $self->{on_eof}
771 $self->{on_eof}($self) 1218 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1219 : $self->_error (0, 1, "Unexpected end-of-file");
1220
1221 return;
1222 }
1223
1224 if (
1225 defined $self->{rbuf_max}
1226 && $self->{rbuf_max} < length $self->{rbuf}
1227 ) {
1228 $self->_error (Errno::ENOSPC, 1), return;
1229 }
773 1230
774 # may need to restart read watcher 1231 # may need to restart read watcher
775 unless ($self->{_rw}) { 1232 unless ($self->{_rw}) {
776 $self->start_read 1233 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1234 if $self->{on_read} || @{ $self->{_queue} };
788 1245
789sub on_read { 1246sub on_read {
790 my ($self, $cb) = @_; 1247 my ($self, $cb) = @_;
791 1248
792 $self->{on_read} = $cb; 1249 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1250 $self->_drain_rbuf if $cb;
794} 1251}
795 1252
796=item $handle->rbuf 1253=item $handle->rbuf
797 1254
798Returns the read buffer (as a modifiable lvalue). 1255Returns the read buffer (as a modifiable lvalue).
799 1256
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1257You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1258member, if you want. However, the only operation allowed on the
1259read buffer (apart from looking at it) is removing data from its
1260beginning. Otherwise modifying or appending to it is not allowed and will
1261lead to hard-to-track-down bugs.
802 1262
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1263NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1264C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1265automatically manage the read buffer.
806 1266
842 my $cb = pop; 1302 my $cb = pop;
843 1303
844 if (@_) { 1304 if (@_) {
845 my $type = shift; 1305 my $type = shift;
846 1306
1307 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1308 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1309 ->($self, $cb, @_);
849 } 1310 }
850 1311
851 push @{ $self->{_queue} }, $cb; 1312 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1313 $self->_drain_rbuf;
853} 1314}
854 1315
855sub unshift_read { 1316sub unshift_read {
856 my $self = shift; 1317 my $self = shift;
857 my $cb = pop; 1318 my $cb = pop;
861 1322
862 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1323 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
863 ->($self, $cb, @_); 1324 ->($self, $cb, @_);
864 } 1325 }
865 1326
866
867 unshift @{ $self->{_queue} }, $cb; 1327 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1328 $self->_drain_rbuf;
869} 1329}
870 1330
871=item $handle->push_read (type => @args, $cb) 1331=item $handle->push_read (type => @args, $cb)
872 1332
873=item $handle->unshift_read (type => @args, $cb) 1333=item $handle->unshift_read (type => @args, $cb)
874 1334
875Instead of providing a callback that parses the data itself you can chose 1335Instead of providing a callback that parses the data itself you can chose
876between a number of predefined parsing formats, for chunks of data, lines 1336between a number of predefined parsing formats, for chunks of data, lines
877etc. 1337etc. You can also specify the (fully qualified) name of a package, in
1338which case AnyEvent tries to load the package and then expects to find the
1339C<anyevent_read_type> function inside (see "custom read types", below).
878 1340
879Predefined types are (if you have ideas for additional types, feel free to 1341Predefined types are (if you have ideas for additional types, feel free to
880drop by and tell us): 1342drop by and tell us):
881 1343
882=over 4 1344=over 4
1006 return 1; 1468 return 1;
1007 } 1469 }
1008 1470
1009 # reject 1471 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1472 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1473 $self->_error (Errno::EBADMSG);
1012 } 1474 }
1013 1475
1014 # skip 1476 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1477 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1478 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1494 my ($self, $cb) = @_;
1033 1495
1034 sub { 1496 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1497 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1498 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1499 $self->_error (Errno::EBADMSG);
1038 } 1500 }
1039 return; 1501 return;
1040 } 1502 }
1041 1503
1042 my $len = $1; 1504 my $len = $1;
1045 my $string = $_[1]; 1507 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1508 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1509 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1510 $cb->($_[0], $string);
1049 } else { 1511 } else {
1050 $self->_error (&Errno::EBADMSG); 1512 $self->_error (Errno::EBADMSG);
1051 } 1513 }
1052 }); 1514 });
1053 }); 1515 });
1054 1516
1055 1 1517 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1523An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1524uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1525integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1526optional C<!>, C<< < >> or C<< > >> modifier).
1065 1527
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1528For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1529EPP uses a prefix of C<N> (4 octtes).
1067 1530
1068Example: read a block of data prefixed by its length in BER-encoded 1531Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1532format (very efficient).
1070 1533
1071 $handle->push_read (packstring => "w", sub { 1534 $handle->push_read (packstring => "w", sub {
1101 } 1564 }
1102}; 1565};
1103 1566
1104=item json => $cb->($handle, $hash_or_arrayref) 1567=item json => $cb->($handle, $hash_or_arrayref)
1105 1568
1106Reads a JSON object or array, decodes it and passes it to the callback. 1569Reads a JSON object or array, decodes it and passes it to the
1570callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1571
1108If a C<json> object was passed to the constructor, then that will be used 1572If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1573for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1574
1111This read type uses the incremental parser available with JSON version 1575This read type uses the incremental parser available with JSON version
1120=cut 1584=cut
1121 1585
1122register_read_type json => sub { 1586register_read_type json => sub {
1123 my ($self, $cb) = @_; 1587 my ($self, $cb) = @_;
1124 1588
1125 require JSON; 1589 my $json = $self->{json} ||= json_coder;
1126 1590
1127 my $data; 1591 my $data;
1128 my $rbuf = \$self->{rbuf}; 1592 my $rbuf = \$self->{rbuf};
1129 1593
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1594 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1595 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1596
1135 if ($ref) { 1597 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1598 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1599 $json->incr_text = "";
1138 $cb->($self, $ref); 1600 $cb->($self, $ref);
1139 1601
1140 1 1602 1
1603 } elsif ($@) {
1604 # error case
1605 $json->incr_skip;
1606
1607 $self->{rbuf} = $json->incr_text;
1608 $json->incr_text = "";
1609
1610 $self->_error (Errno::EBADMSG);
1611
1612 ()
1141 } else { 1613 } else {
1142 $self->{rbuf} = ""; 1614 $self->{rbuf} = "";
1615
1143 () 1616 ()
1144 } 1617 }
1145 } 1618 }
1146}; 1619};
1147 1620
1179 # read remaining chunk 1652 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1653 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1654 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1655 $cb->($_[0], $ref);
1183 } else { 1656 } else {
1184 $self->_error (&Errno::EBADMSG); 1657 $self->_error (Errno::EBADMSG);
1185 } 1658 }
1186 }); 1659 });
1187 } 1660 }
1188 1661
1189 1 1662 1
1190 } 1663 }
1191}; 1664};
1192 1665
1193=back 1666=back
1194 1667
1195=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1668=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1196 1669
1197This function (not method) lets you add your own types to C<push_read>. 1670Instead of one of the predefined types, you can also specify the name
1671of a package. AnyEvent will try to load the package and then expects to
1672find a function named C<anyevent_read_type> inside. If it isn't found, it
1673progressively tries to load the parent package until it either finds the
1674function (good) or runs out of packages (bad).
1198 1675
1199Whenever the given C<type> is used, C<push_read> will invoke the code 1676Whenever this type is used, C<push_read> will invoke the function with the
1200reference with the handle object, the callback and the remaining 1677handle object, the original callback and the remaining arguments.
1201arguments.
1202 1678
1203The code reference is supposed to return a callback (usually a closure) 1679The function is supposed to return a callback (usually a closure) that
1204that works as a plain read callback (see C<< ->push_read ($cb) >>). 1680works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1681mentally treat the function as a "configurable read type to read callback"
1682converter.
1205 1683
1206It should invoke the passed callback when it is done reading (remember to 1684It should invoke the original callback when it is done reading (remember
1207pass C<$handle> as first argument as all other callbacks do that). 1685to pass C<$handle> as first argument as all other callbacks do that,
1686although there is no strict requirement on this).
1208 1687
1209Note that this is a function, and all types registered this way will be
1210global, so try to use unique names.
1211
1212For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1688For examples, see the source of this module (F<perldoc -m
1213search for C<register_read_type>)). 1689AnyEvent::Handle>, search for C<register_read_type>)).
1214 1690
1215=item $handle->stop_read 1691=item $handle->stop_read
1216 1692
1217=item $handle->start_read 1693=item $handle->start_read
1218 1694
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1700Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1701you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1702will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1703there are any read requests in the queue.
1228 1704
1705These methods will have no effect when in TLS mode (as TLS doesn't support
1706half-duplex connections).
1707
1229=cut 1708=cut
1230 1709
1231sub stop_read { 1710sub stop_read {
1232 my ($self) = @_; 1711 my ($self) = @_;
1233 1712
1234 delete $self->{_rw}; 1713 delete $self->{_rw} unless $self->{tls};
1235} 1714}
1236 1715
1237sub start_read { 1716sub start_read {
1238 my ($self) = @_; 1717 my ($self) = @_;
1239 1718
1240 unless ($self->{_rw} || $self->{_eof}) { 1719 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1241 Scalar::Util::weaken $self; 1720 Scalar::Util::weaken $self;
1242 1721
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1722 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1723 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1724 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1725
1247 if ($len > 0) { 1726 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1727 $self->{_activity} = $self->{_ractivity} = AE::now;
1249 1728
1250 $self->{filter_r} 1729 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1730 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1731
1732 &_dotls ($self);
1733 } else {
1734 $self->_drain_rbuf;
1735 }
1253 1736
1254 } elsif (defined $len) { 1737 } elsif (defined $len) {
1255 delete $self->{_rw}; 1738 delete $self->{_rw};
1256 $self->{_eof} = 1; 1739 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1740 $self->_drain_rbuf;
1258 1741
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1742 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1743 return $self->_error ($!, 1);
1261 } 1744 }
1262 }); 1745 };
1263 } 1746 }
1264} 1747}
1265 1748
1749our $ERROR_SYSCALL;
1750our $ERROR_WANT_READ;
1751
1752sub _tls_error {
1753 my ($self, $err) = @_;
1754
1755 return $self->_error ($!, 1)
1756 if $err == Net::SSLeay::ERROR_SYSCALL ();
1757
1758 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1759
1760 # reduce error string to look less scary
1761 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1762
1763 if ($self->{_on_starttls}) {
1764 (delete $self->{_on_starttls})->($self, undef, $err);
1765 &_freetls;
1766 } else {
1767 &_freetls;
1768 $self->_error (Errno::EPROTO, 1, $err);
1769 }
1770}
1771
1772# poll the write BIO and send the data if applicable
1773# also decode read data if possible
1774# this is basiclaly our TLS state machine
1775# more efficient implementations are possible with openssl,
1776# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1777sub _dotls {
1267 my ($self) = @_; 1778 my ($self) = @_;
1268 1779
1269 my $buf; 1780 my $tmp;
1270 1781
1271 if (length $self->{_tls_wbuf}) { 1782 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1783 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1784 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1785 }
1275 }
1276 1786
1787 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1788 return $self->_tls_error ($tmp)
1789 if $tmp != $ERROR_WANT_READ
1790 && ($tmp != $ERROR_SYSCALL || $!);
1791 }
1792
1793 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1794 unless (length $tmp) {
1795 $self->{_on_starttls}
1796 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1797 &_freetls;
1798
1799 if ($self->{on_stoptls}) {
1800 $self->{on_stoptls}($self);
1801 return;
1802 } else {
1803 # let's treat SSL-eof as we treat normal EOF
1804 delete $self->{_rw};
1805 $self->{_eof} = 1;
1806 }
1807 }
1808
1809 $self->{_tls_rbuf} .= $tmp;
1810 $self->_drain_rbuf;
1811 $self->{tls} or return; # tls session might have gone away in callback
1812 }
1813
1814 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1815 return $self->_tls_error ($tmp)
1816 if $tmp != $ERROR_WANT_READ
1817 && ($tmp != $ERROR_SYSCALL || $!);
1818
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1819 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1820 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1821 $self->_drain_wbuf;
1822 $self->{tls} or return; # tls session might have gone away in callback
1280 } 1823 }
1281 1824
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1825 $self->{_on_starttls}
1283 if (length $buf) { 1826 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1827 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1828}
1306 1829
1307=item $handle->starttls ($tls[, $tls_ctx]) 1830=item $handle->starttls ($tls[, $tls_ctx])
1308 1831
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1832Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1833object is created, you can also do that at a later time by calling
1311C<starttls>. 1834C<starttls>.
1312 1835
1836Starting TLS is currently an asynchronous operation - when you push some
1837write data and then call C<< ->starttls >> then TLS negotiation will start
1838immediately, after which the queued write data is then sent.
1839
1313The first argument is the same as the C<tls> constructor argument (either 1840The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1841C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1842
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1843The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1844when AnyEvent::Handle has to create its own TLS connection object, or
1845a hash reference with C<< key => value >> pairs that will be used to
1846construct a new context.
1318 1847
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1848The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1849context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1850changed to your liking. Note that the handshake might have already started
1851when this function returns.
1322 1852
1853Due to bugs in OpenSSL, it might or might not be possible to do multiple
1854handshakes on the same stream. Best do not attempt to use the stream after
1855stopping TLS.
1856
1323=cut 1857=cut
1858
1859our %TLS_CACHE; #TODO not yet documented, should we?
1324 1860
1325sub starttls { 1861sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1862 my ($self, $tls, $ctx) = @_;
1327 1863
1328 $self->stoptls; 1864 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1865 if $self->{tls};
1329 1866
1330 if ($ssl eq "accept") { 1867 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1868 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1869
1333 } elsif ($ssl eq "connect") { 1870 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1871
1335 Net::SSLeay::set_connect_state ($ssl); 1872 require Net::SSLeay;
1873
1874 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1875 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1876
1877 $tls = delete $self->{tls};
1878 $ctx = $self->{tls_ctx};
1879
1880 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1881
1882 if ("HASH" eq ref $ctx) {
1883 require AnyEvent::TLS;
1884
1885 if ($ctx->{cache}) {
1886 my $key = $ctx+0;
1887 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1888 } else {
1889 $ctx = new AnyEvent::TLS %$ctx;
1890 }
1891 }
1336 } 1892
1337 1893 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1894 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1895
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1896 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1897 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1898 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1899 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1900 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1901 #
1902 # in short: this is a mess.
1903 #
1904 # note that we do not try to keep the length constant between writes as we are required to do.
1905 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1906 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1907 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1908# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1909# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1910# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1911 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1912
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1913 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1914 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1915
1916 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1917
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1918 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1919
1354 $self->{filter_w} = sub { 1920 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1921 if $self->{on_starttls};
1356 &_dotls; 1922
1357 }; 1923 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1924 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1925}
1363 1926
1364=item $handle->stoptls 1927=item $handle->stoptls
1365 1928
1366Destroys the SSL connection, if any. Partial read or write data will be 1929Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1930sending a close notify to the other side, but since OpenSSL doesn't
1931support non-blocking shut downs, it is not guaranteed that you can re-use
1932the stream afterwards.
1368 1933
1369=cut 1934=cut
1370 1935
1371sub stoptls { 1936sub stoptls {
1372 my ($self) = @_; 1937 my ($self) = @_;
1373 1938
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1939 if ($self->{tls} && $self->{fh}) {
1940 Net::SSLeay::shutdown ($self->{tls});
1375 1941
1376 delete $self->{_rbio}; 1942 &_dotls;
1377 delete $self->{_wbio}; 1943
1378 delete $self->{_tls_wbuf}; 1944# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1945# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1946# &_freetls;#d#
1947 }
1948}
1949
1950sub _freetls {
1951 my ($self) = @_;
1952
1953 return unless $self->{tls};
1954
1955 $self->{tls_ctx}->_put_session (delete $self->{tls})
1956 if $self->{tls} > 0;
1957
1958 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1959}
1382 1960
1383sub DESTROY { 1961sub DESTROY {
1384 my $self = shift; 1962 my ($self) = @_;
1385 1963
1386 $self->stoptls; 1964 &_freetls;
1387 1965
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1966 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1967
1390 if ($linger && length $self->{wbuf}) { 1968 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1969 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1970 my $wbuf = delete $self->{wbuf};
1393 1971
1394 my @linger; 1972 my @linger;
1395 1973
1396 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1974 push @linger, AE::io $fh, 1, sub {
1397 my $len = syswrite $fh, $wbuf, length $wbuf; 1975 my $len = syswrite $fh, $wbuf, length $wbuf;
1398 1976
1399 if ($len > 0) { 1977 if ($len > 0) {
1400 substr $wbuf, 0, $len, ""; 1978 substr $wbuf, 0, $len, "";
1401 } else { 1979 } else {
1402 @linger = (); # end 1980 @linger = (); # end
1403 } 1981 }
1404 }); 1982 };
1405 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1983 push @linger, AE::timer $linger, 0, sub {
1406 @linger = (); 1984 @linger = ();
1407 }); 1985 };
1408 } 1986 }
1409} 1987}
1988
1989=item $handle->destroy
1990
1991Shuts down the handle object as much as possible - this call ensures that
1992no further callbacks will be invoked and as many resources as possible
1993will be freed. Any method you will call on the handle object after
1994destroying it in this way will be silently ignored (and it will return the
1995empty list).
1996
1997Normally, you can just "forget" any references to an AnyEvent::Handle
1998object and it will simply shut down. This works in fatal error and EOF
1999callbacks, as well as code outside. It does I<NOT> work in a read or write
2000callback, so when you want to destroy the AnyEvent::Handle object from
2001within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2002that case.
2003
2004Destroying the handle object in this way has the advantage that callbacks
2005will be removed as well, so if those are the only reference holders (as
2006is common), then one doesn't need to do anything special to break any
2007reference cycles.
2008
2009The handle might still linger in the background and write out remaining
2010data, as specified by the C<linger> option, however.
2011
2012=cut
2013
2014sub destroy {
2015 my ($self) = @_;
2016
2017 $self->DESTROY;
2018 %$self = ();
2019 bless $self, "AnyEvent::Handle::destroyed";
2020}
2021
2022sub AnyEvent::Handle::destroyed::AUTOLOAD {
2023 #nop
2024}
2025
2026=item $handle->destroyed
2027
2028Returns false as long as the handle hasn't been destroyed by a call to C<<
2029->destroy >>, true otherwise.
2030
2031Can be useful to decide whether the handle is still valid after some
2032callback possibly destroyed the handle. For example, C<< ->push_write >>,
2033C<< ->starttls >> and other methods can call user callbacks, which in turn
2034can destroy the handle, so work can be avoided by checking sometimes:
2035
2036 $hdl->starttls ("accept");
2037 return if $hdl->destroyed;
2038 $hdl->push_write (...
2039
2040Note that the call to C<push_write> will silently be ignored if the handle
2041has been destroyed, so often you can just ignore the possibility of the
2042handle being destroyed.
2043
2044=cut
2045
2046sub destroyed { 0 }
2047sub AnyEvent::Handle::destroyed::destroyed { 1 }
1410 2048
1411=item AnyEvent::Handle::TLS_CTX 2049=item AnyEvent::Handle::TLS_CTX
1412 2050
1413This function creates and returns the Net::SSLeay::CTX object used by 2051This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 2052for TLS mode.
1415 2053
1416The context is created like this: 2054The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 2055
1426=cut 2056=cut
1427 2057
1428our $TLS_CTX; 2058our $TLS_CTX;
1429 2059
1430sub TLS_CTX() { 2060sub TLS_CTX() {
1431 $TLS_CTX || do { 2061 $TLS_CTX ||= do {
1432 require Net::SSLeay; 2062 require AnyEvent::TLS;
1433 2063
1434 Net::SSLeay::load_error_strings (); 2064 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 2065 }
1444} 2066}
1445 2067
1446=back 2068=back
2069
2070
2071=head1 NONFREQUENTLY ASKED QUESTIONS
2072
2073=over 4
2074
2075=item I C<undef> the AnyEvent::Handle reference inside my callback and
2076still get further invocations!
2077
2078That's because AnyEvent::Handle keeps a reference to itself when handling
2079read or write callbacks.
2080
2081It is only safe to "forget" the reference inside EOF or error callbacks,
2082from within all other callbacks, you need to explicitly call the C<<
2083->destroy >> method.
2084
2085=item I get different callback invocations in TLS mode/Why can't I pause
2086reading?
2087
2088Unlike, say, TCP, TLS connections do not consist of two independent
2089communication channels, one for each direction. Or put differently. The
2090read and write directions are not independent of each other: you cannot
2091write data unless you are also prepared to read, and vice versa.
2092
2093This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2094callback invocations when you are not expecting any read data - the reason
2095is that AnyEvent::Handle always reads in TLS mode.
2096
2097During the connection, you have to make sure that you always have a
2098non-empty read-queue, or an C<on_read> watcher. At the end of the
2099connection (or when you no longer want to use it) you can call the
2100C<destroy> method.
2101
2102=item How do I read data until the other side closes the connection?
2103
2104If you just want to read your data into a perl scalar, the easiest way
2105to achieve this is by setting an C<on_read> callback that does nothing,
2106clearing the C<on_eof> callback and in the C<on_error> callback, the data
2107will be in C<$_[0]{rbuf}>:
2108
2109 $handle->on_read (sub { });
2110 $handle->on_eof (undef);
2111 $handle->on_error (sub {
2112 my $data = delete $_[0]{rbuf};
2113 });
2114
2115The reason to use C<on_error> is that TCP connections, due to latencies
2116and packets loss, might get closed quite violently with an error, when in
2117fact, all data has been received.
2118
2119It is usually better to use acknowledgements when transferring data,
2120to make sure the other side hasn't just died and you got the data
2121intact. This is also one reason why so many internet protocols have an
2122explicit QUIT command.
2123
2124=item I don't want to destroy the handle too early - how do I wait until
2125all data has been written?
2126
2127After writing your last bits of data, set the C<on_drain> callback
2128and destroy the handle in there - with the default setting of
2129C<low_water_mark> this will be called precisely when all data has been
2130written to the socket:
2131
2132 $handle->push_write (...);
2133 $handle->on_drain (sub {
2134 warn "all data submitted to the kernel\n";
2135 undef $handle;
2136 });
2137
2138If you just want to queue some data and then signal EOF to the other side,
2139consider using C<< ->push_shutdown >> instead.
2140
2141=item I want to contact a TLS/SSL server, I don't care about security.
2142
2143If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2144simply connect to it and then create the AnyEvent::Handle with the C<tls>
2145parameter:
2146
2147 tcp_connect $host, $port, sub {
2148 my ($fh) = @_;
2149
2150 my $handle = new AnyEvent::Handle
2151 fh => $fh,
2152 tls => "connect",
2153 on_error => sub { ... };
2154
2155 $handle->push_write (...);
2156 };
2157
2158=item I want to contact a TLS/SSL server, I do care about security.
2159
2160Then you should additionally enable certificate verification, including
2161peername verification, if the protocol you use supports it (see
2162L<AnyEvent::TLS>, C<verify_peername>).
2163
2164E.g. for HTTPS:
2165
2166 tcp_connect $host, $port, sub {
2167 my ($fh) = @_;
2168
2169 my $handle = new AnyEvent::Handle
2170 fh => $fh,
2171 peername => $host,
2172 tls => "connect",
2173 tls_ctx => { verify => 1, verify_peername => "https" },
2174 ...
2175
2176Note that you must specify the hostname you connected to (or whatever
2177"peername" the protocol needs) as the C<peername> argument, otherwise no
2178peername verification will be done.
2179
2180The above will use the system-dependent default set of trusted CA
2181certificates. If you want to check against a specific CA, add the
2182C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2183
2184 tls_ctx => {
2185 verify => 1,
2186 verify_peername => "https",
2187 ca_file => "my-ca-cert.pem",
2188 },
2189
2190=item I want to create a TLS/SSL server, how do I do that?
2191
2192Well, you first need to get a server certificate and key. You have
2193three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2194self-signed certificate (cheap. check the search engine of your choice,
2195there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2196nice program for that purpose).
2197
2198Then create a file with your private key (in PEM format, see
2199L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2200file should then look like this:
2201
2202 -----BEGIN RSA PRIVATE KEY-----
2203 ...header data
2204 ... lots of base64'y-stuff
2205 -----END RSA PRIVATE KEY-----
2206
2207 -----BEGIN CERTIFICATE-----
2208 ... lots of base64'y-stuff
2209 -----END CERTIFICATE-----
2210
2211The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2212specify this file as C<cert_file>:
2213
2214 tcp_server undef, $port, sub {
2215 my ($fh) = @_;
2216
2217 my $handle = new AnyEvent::Handle
2218 fh => $fh,
2219 tls => "accept",
2220 tls_ctx => { cert_file => "my-server-keycert.pem" },
2221 ...
2222
2223When you have intermediate CA certificates that your clients might not
2224know about, just append them to the C<cert_file>.
2225
2226=back
2227
1447 2228
1448=head1 SUBCLASSING AnyEvent::Handle 2229=head1 SUBCLASSING AnyEvent::Handle
1449 2230
1450In many cases, you might want to subclass AnyEvent::Handle. 2231In many cases, you might want to subclass AnyEvent::Handle.
1451 2232

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines