ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.82 by root, Thu Aug 21 18:45:16 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
85you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86callback and continue writing data, as only the read part has been shut 109timeout is to be used).
87down.
88 110
89While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
90otherwise you might end up with a closed socket while you are still
91waiting for data.
92 112
93If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
94set, then a fatal error will be raised with C<$!> set to <0>.
95 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
96=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
97 138
98This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
99occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
100connect or a read error. 141connect or a read error.
101 142
102Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
103fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
104(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
105errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
106(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
107 155
108Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
109to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
110when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
111C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
112 160
113On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
114error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
115 164
116While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
117you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
118C<croak>. 167C<croak>.
119 168
123and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
124callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
125read buffer). 174read buffer).
126 175
127To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
128method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
129 180
130When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
131feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
132calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
133error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
134 206
135=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
136 208
137This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
138(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
145memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
146the file when the write queue becomes empty. 218the file when the write queue becomes empty.
147 219
148=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
149 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
150If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
151seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
152handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
153missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
154 237
155Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
156any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
157idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
158in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
159 243
160Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
161 245
162=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
163 247
167 251
168=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
169 253
170If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
171when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
172avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
173 257
174For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
175be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
176(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
177amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
178isn't finished). 262isn't finished).
179 263
180=item autocork => <boolean> 264=item autocork => <boolean>
181 265
182When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
183write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
184a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
185inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
186usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
187 272
188When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
189iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
190but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
191 277
192=item no_delay => <boolean> 278=item no_delay => <boolean>
193 279
194When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
195wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
196the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
197 283
198In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
199accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
200 286
201The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
202explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
203 289
204=item read_size => <bytes> 290=item read_size => <bytes>
205 291
206The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
207during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
208 295
209=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
210 297
211Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
212buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
213considered empty. 300considered empty.
214 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
215=item linger => <seconds> 307=item linger => <seconds>
216 308
217If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
218AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
219data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
220will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
221outstanding data at socket close time). 313system treats outstanding data at socket close time).
222 314
223This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
224encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
225 328
226=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
227 330
228When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
229will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
230data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
231 337
232TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
233automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
234 342
235For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
236connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
237 346
238You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
239to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
240or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
241AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
242 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
243See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
244 363
245=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
246 365
247Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
248(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
249missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
250 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
251=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
252 407
253This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
254 409
255If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
256suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
257 413
258Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
259use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
260 416
261=item filter_r => $cb
262
263=item filter_w => $cb
264
265These exist, but are undocumented at this time.
266
267=back 417=back
268 418
269=cut 419=cut
270 420
271sub new { 421sub new {
272 my $class = shift; 422 my $class = shift;
273
274 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
275 424
276 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
277 488
278 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
279 490
280 if ($self->{tls}) { 491 $self->{_activity} =
281 require Net::SSLeay; 492 $self->{_ractivity} =
282 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
283 }
284
285 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
286 $self->_timeout;
287 494
288 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
289 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
290 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
291 $self->start_read 506 $self->start_read
292 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
293 508
294 $self 509 $self->_drain_wbuf;
295}
296
297sub _shutdown {
298 my ($self) = @_;
299
300 delete $self->{_tw};
301 delete $self->{_rw};
302 delete $self->{_ww};
303 delete $self->{fh};
304
305 $self->stoptls;
306
307 delete $self->{on_read};
308 delete $self->{_queue};
309} 510}
310 511
311sub _error { 512sub _error {
312 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
313
314 $self->_shutdown
315 if $fatal;
316 514
317 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
318 517
319 if ($self->{on_error}) { 518 if ($self->{on_error}) {
320 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
321 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
322 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
323 } 524 }
324} 525}
325 526
326=item $fh = $handle->fh 527=item $fh = $handle->fh
327 528
328This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
329 530
330=cut 531=cut
331 532
332sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
333 534
351 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
352} 553}
353 554
354=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
355 556
356Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
357(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
358argument.
359 558
360=cut 559=item $handle->on_wtimeout ($cb)
361 560
362sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
363 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
364} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
365 568
366=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
367 570
368Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
369constructor argument). 572constructor argument). Changes will only take effect on the next write.
370 573
371=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
372 579
373=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
374 581
375Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
376the same name for details). 583the same name for details).
380sub no_delay { 587sub no_delay {
381 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
382 589
383 eval { 590 eval {
384 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
385 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
386 }; 594 };
387} 595}
388 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
389############################################################################# 627#############################################################################
390 628
391=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
392 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
393Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
394 636
395=cut 637=item $handle->timeout_reset
396 638
397sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
398 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
399 662
400 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
401 $self->_timeout; 664 delete $self->{$tw}; &$cb;
402} 665 };
403 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
404# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
405# also check for time-outs 673 # also check for time-outs
406sub _timeout { 674 $cb = sub {
407 my ($self) = @_; 675 my ($self) = @_;
408 676
409 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
410 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
411 679
412 # when would the timeout trigger? 680 # when would the timeout trigger?
413 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
414 682
415 # now or in the past already? 683 # now or in the past already?
416 if ($after <= 0) { 684 if ($after <= 0) {
417 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
418 686
419 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
420 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
421 } else { 689 } else {
422 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
423 } 698 }
424 699
425 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
426 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
427 702
428 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
429 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
430 } 709 }
431
432 Scalar::Util::weaken $self;
433 return unless $self; # ->error could have destroyed $self
434
435 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
436 delete $self->{_tw};
437 $self->_timeout;
438 });
439 } else {
440 delete $self->{_tw};
441 } 710 }
442} 711}
443 712
444############################################################################# 713#############################################################################
445 714
469 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
470 739
471 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
472 741
473 $cb->($self) 742 $cb->($self)
474 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
475} 744}
476 745
477=item $handle->push_write ($data) 746=item $handle->push_write ($data)
478 747
479Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
490 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
491 760
492 my $cb = sub { 761 my $cb = sub {
493 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
494 763
495 if ($len >= 0) { 764 if (defined $len) {
496 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
497 766
498 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
499 768
500 $self->{on_drain}($self) 769 $self->{on_drain}($self)
501 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
502 && $self->{on_drain}; 771 && $self->{on_drain};
503 772
504 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
505 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
506 $self->_error ($!, 1); 775 $self->_error ($!, 1);
509 778
510 # try to write data immediately 779 # try to write data immediately
511 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
512 781
513 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
514 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
515 if length $self->{wbuf}; 784 if length $self->{wbuf};
516 }; 785 };
517} 786}
518 787
519our %WH; 788our %WH;
530 799
531 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
532 ->($self, @_); 801 ->($self, @_);
533 } 802 }
534 803
535 if ($self->{filter_w}) { 804 if ($self->{tls}) {
536 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
537 } else { 807 } else {
538 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
539 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
540 } 810 }
541} 811}
542 812
543=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
544 814
558=cut 828=cut
559 829
560register_write_type netstring => sub { 830register_write_type netstring => sub {
561 my ($self, $string) = @_; 831 my ($self, $string) = @_;
562 832
563 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
564}; 834};
565 835
566=item packstring => $format, $data 836=item packstring => $format, $data
567 837
568An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
608Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
609this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
610 880
611=cut 881=cut
612 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
613register_write_type json => sub { 888register_write_type json => sub {
614 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
615 890
616 require JSON; 891 my $json = $self->{json} ||= json_coder;
617 892
618 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
619 : JSON::encode_json ($ref)
620}; 894};
621 895
622=item storable => $reference 896=item storable => $reference
623 897
624Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
633 907
634 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
635}; 909};
636 910
637=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
638 937
639=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
640 939
641This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
642Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
736=cut 1035=cut
737 1036
738sub _drain_rbuf { 1037sub _drain_rbuf {
739 my ($self) = @_; 1038 my ($self) = @_;
740 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
741 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
742
743 if (
744 defined $self->{rbuf_max}
745 && $self->{rbuf_max} < length $self->{rbuf}
746 ) {
747 $self->_error (&Errno::ENOSPC, 1), return;
748 }
749 1043
750 while () { 1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
751 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
752 1051
753 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
754 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
755 if ($self->{_eof}) { 1054 # no progress can be made
756 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
757 $self->_error (&Errno::EPIPE, 1), return; 1056 $self->_error (Errno::EPIPE, 1), return
758 } 1057 if $self->{_eof};
759 1058
760 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
761 last; 1060 last;
762 } 1061 }
763 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
770 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
771 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
772 ) { 1071 ) {
773 # no further data will arrive 1072 # no further data will arrive
774 # so no progress can be made 1073 # so no progress can be made
775 $self->_error (&Errno::EPIPE, 1), return 1074 $self->_error (Errno::EPIPE, 1), return
776 if $self->{_eof}; 1075 if $self->{_eof};
777 1076
778 last; # more data might arrive 1077 last; # more data might arrive
779 } 1078 }
780 } else { 1079 } else {
781 # read side becomes idle 1080 # read side becomes idle
782 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
783 last; 1082 last;
784 } 1083 }
785 } 1084 }
786 1085
787 if ($self->{_eof}) { 1086 if ($self->{_eof}) {
788 if ($self->{on_eof}) { 1087 $self->{on_eof}
789 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
790 } else { 1089 : $self->_error (0, 1, "Unexpected end-of-file");
791 $self->_error (0, 1); 1090
792 } 1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
793 } 1099 }
794 1100
795 # may need to restart read watcher 1101 # may need to restart read watcher
796 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
797 $self->start_read 1103 $self->start_read
809 1115
810sub on_read { 1116sub on_read {
811 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
812 1118
813 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
814 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
815} 1121}
816 1122
817=item $handle->rbuf 1123=item $handle->rbuf
818 1124
819Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
820 1126
821You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
822you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
823 1132
824NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
825C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
826automatically manage the read buffer. 1135automatically manage the read buffer.
827 1136
868 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
869 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
870 } 1179 }
871 1180
872 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
873 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
874} 1183}
875 1184
876sub unshift_read { 1185sub unshift_read {
877 my $self = shift; 1186 my $self = shift;
878 my $cb = pop; 1187 my $cb = pop;
884 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
885 } 1194 }
886 1195
887 1196
888 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
889 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
890} 1199}
891 1200
892=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
893 1202
894=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
1027 return 1; 1336 return 1;
1028 } 1337 }
1029 1338
1030 # reject 1339 # reject
1031 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
1032 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
1033 } 1342 }
1034 1343
1035 # skip 1344 # skip
1036 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
1037 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
1053 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
1054 1363
1055 sub { 1364 sub {
1056 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1057 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1058 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
1059 } 1368 }
1060 return; 1369 return;
1061 } 1370 }
1062 1371
1063 my $len = $1; 1372 my $len = $1;
1066 my $string = $_[1]; 1375 my $string = $_[1];
1067 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
1068 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
1069 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1070 } else { 1379 } else {
1071 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1072 } 1381 }
1073 }); 1382 });
1074 }); 1383 });
1075 1384
1076 1 1385 1
1082An octet string prefixed with an encoded length. The encoding C<$format> 1391An octet string prefixed with an encoded length. The encoding C<$format>
1083uses the same format as a Perl C<pack> format, but must specify a single 1392uses the same format as a Perl C<pack> format, but must specify a single
1084integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1085optional C<!>, C<< < >> or C<< > >> modifier). 1394optional C<!>, C<< < >> or C<< > >> modifier).
1086 1395
1087DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1088 1398
1089Example: read a block of data prefixed by its length in BER-encoded 1399Example: read a block of data prefixed by its length in BER-encoded
1090format (very efficient). 1400format (very efficient).
1091 1401
1092 $handle->push_read (packstring => "w", sub { 1402 $handle->push_read (packstring => "w", sub {
1122 } 1432 }
1123}; 1433};
1124 1434
1125=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1126 1436
1127Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1128 1439
1129If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1130for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1131 1442
1132This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1141=cut 1452=cut
1142 1453
1143register_read_type json => sub { 1454register_read_type json => sub {
1144 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1145 1456
1146 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1147 1458
1148 my $data; 1459 my $data;
1149 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1150 1461
1151 my $json = $self->{json} ||= JSON->new->utf8;
1152
1153 sub { 1462 sub {
1154 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1155 1464
1156 if ($ref) { 1465 if ($ref) {
1157 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1158 $json->incr_text = ""; 1467 $json->incr_text = "";
1159 $cb->($self, $ref); 1468 $cb->($self, $ref);
1160 1469
1161 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1162 } else { 1481 } else {
1163 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1164 () 1484 ()
1165 } 1485 }
1166 } 1486 }
1167}; 1487};
1168 1488
1200 # read remaining chunk 1520 # read remaining chunk
1201 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1202 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1203 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1204 } else { 1524 } else {
1205 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1206 } 1526 }
1207 }); 1527 });
1208 } 1528 }
1209 1529
1210 1 1530 1
1245Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1246you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1247will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1248there are any read requests in the queue. 1568there are any read requests in the queue.
1249 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1250=cut 1573=cut
1251 1574
1252sub stop_read { 1575sub stop_read {
1253 my ($self) = @_; 1576 my ($self) = @_;
1254 1577
1255 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1256} 1579}
1257 1580
1258sub start_read { 1581sub start_read {
1259 my ($self) = @_; 1582 my ($self) = @_;
1260 1583
1261 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1262 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1263 1586
1264 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1265 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1266 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1267 1590
1268 if ($len > 0) { 1591 if ($len > 0) {
1269 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1270 1593
1271 $self->{filter_r} 1594 if ($self->{tls}) {
1272 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1273 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1274 1601
1275 } elsif (defined $len) { 1602 } elsif (defined $len) {
1276 delete $self->{_rw}; 1603 delete $self->{_rw};
1277 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1278 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1279 1606
1280 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1281 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1282 } 1609 }
1283 }); 1610 };
1284 } 1611 }
1285} 1612}
1286 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1287sub _dotls { 1642sub _dotls {
1288 my ($self) = @_; 1643 my ($self) = @_;
1289 1644
1290 my $buf; 1645 my $tmp;
1291 1646
1292 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1293 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1294 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1295 } 1650 }
1296 }
1297 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1298 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1299 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1300 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1301 } 1687 }
1302 1688
1303 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1304 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1305 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1306 $self->_drain_rbuf unless $self->{_in_drain};
1307 } else {
1308 # let's treat SSL-eof as we treat normal EOF
1309 $self->{_eof} = 1;
1310 $self->_shutdown;
1311 return;
1312 }
1313 }
1314
1315 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1316
1317 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1318 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1319 return $self->_error ($!, 1);
1320 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1321 return $self->_error (&Errno::EIO, 1);
1322 }
1323
1324 # all others are fine for our purposes
1325 }
1326} 1692}
1327 1693
1328=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1329 1695
1330Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1331object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1332C<starttls>. 1698C<starttls>.
1333 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1334The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1335C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1336 1706
1337The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1338used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1339 1711
1340The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1341call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1342might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1343 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1344=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1345 1724
1346sub starttls { 1725sub starttls {
1347 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1348 1727
1349 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1350 1730
1351 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1352 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1353 Net::SSLeay::set_accept_state ($ssl); 1733
1354 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1355 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1356 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1357 } 1756
1358 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1359 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1360 1759
1361 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1362 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1363 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1364 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1365 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1366 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1367 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1368 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1369 1776
1370 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1371 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1373 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1374 1783
1375 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1376 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1377 &_dotls; 1786
1378 }; 1787 &_dotls; # need to trigger the initial handshake
1379 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1380 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1381 &_dotls;
1382 };
1383} 1789}
1384 1790
1385=item $handle->stoptls 1791=item $handle->stoptls
1386 1792
1387Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1388lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1389 1797
1390=cut 1798=cut
1391 1799
1392sub stoptls { 1800sub stoptls {
1393 my ($self) = @_; 1801 my ($self) = @_;
1394 1802
1395 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1396 1805
1397 delete $self->{_rbio}; 1806 &_dotls;
1398 delete $self->{_wbio}; 1807
1399 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1400 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1401 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1402} 1823}
1403 1824
1404sub DESTROY { 1825sub DESTROY {
1405 my $self = shift; 1826 my ($self) = @_;
1406 1827
1407 $self->stoptls; 1828 &_freetls;
1408 1829
1409 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1410 1831
1411 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1412 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1413 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1414 1835
1415 my @linger; 1836 my @linger;
1416 1837
1417 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1418 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1419 1840
1420 if ($len > 0) { 1841 if ($len > 0) {
1421 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1422 } else { 1843 } else {
1423 @linger = (); # end 1844 @linger = (); # end
1424 } 1845 }
1425 }); 1846 };
1426 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1427 @linger = (); 1848 @linger = ();
1428 }); 1849 };
1429 } 1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1430} 1888}
1431 1889
1432=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1433 1891
1434This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1435default for TLS mode. 1893for TLS mode.
1436 1894
1437The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1438
1439 Net::SSLeay::load_error_strings;
1440 Net::SSLeay::SSLeay_add_ssl_algorithms;
1441 Net::SSLeay::randomize;
1442
1443 my $CTX = Net::SSLeay::CTX_new;
1444
1445 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1446 1896
1447=cut 1897=cut
1448 1898
1449our $TLS_CTX; 1899our $TLS_CTX;
1450 1900
1451sub TLS_CTX() { 1901sub TLS_CTX() {
1452 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1453 require Net::SSLeay; 1903 require AnyEvent::TLS;
1454 1904
1455 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1456 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1457 Net::SSLeay::randomize ();
1458
1459 $TLS_CTX = Net::SSLeay::CTX_new ();
1460
1461 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1462
1463 $TLS_CTX
1464 } 1906 }
1465} 1907}
1466 1908
1467=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1468 2069
1469=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1470 2071
1471In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1472 2073

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines