ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.6 by elmex, Mon Apr 28 09:27:47 2008 UTC vs.
Revision 1.82 by root, Thu Aug 21 18:45:16 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent; 6use AnyEvent ();
7use IO::Handle; 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
8use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
9 12
10=head1 NAME 13=head1 NAME
11 14
12AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 16
14=head1 VERSION
15
16Version 0.01
17
18=cut 17=cut
19 18
20our $VERSION = '0.01'; 19our $VERSION = 4.232;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
26 25
27 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
28 27
29 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
30
31 $ae_fh->on_eof (sub { $cv->broadcast });
32
33 $ae_fh->readlines (sub {
34 my ($ae_fh, @lines) = @_;
35 for (@lines) {
36 chomp;
37 print "Line: $_";
38 }
39 });
40
41 # or use the constructor to pass the callback:
42
43 my $ae_fh2 =
44 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
45 fh => \*STDIN, 30 fh => \*STDIN,
46 on_eof => sub { 31 on_eof => sub {
47 $cv->broadcast; 32 $cv->broadcast;
48 }, 33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48=head1 DESCRIPTION
49
50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>.
53
54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well.
57
58All callbacks will be invoked with the handle object as their first
59argument.
60
61=head1 METHODS
62
63=over 4
64
65=item B<new (%args)>
66
67The constructor supports these arguments (all as key => value pairs).
68
69=over 4
70
71=item fh => $filehandle [MANDATORY]
72
73The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using
76AnyEvent::Util::fh_nonblocking).
77
78=item on_eof => $cb->($handle)
79
80Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the
82connection cleanly.
83
84For sockets, this just means that the other side has stopped sending data,
85you can still try to write data, and, in fact, one can return from the eof
86callback and continue writing data, as only the read part has been shut
87down.
88
89While not mandatory, it is I<highly> recommended to set an eof callback,
90otherwise you might end up with a closed socket while you are still
91waiting for data.
92
93If an EOF condition has been detected but no C<on_eof> callback has been
94set, then a fatal error will be raised with C<$!> set to <0>.
95
96=item on_error => $cb->($handle, $fatal)
97
98This is the error callback, which is called when, well, some error
99occured, such as not being able to resolve the hostname, failure to
100connect or a read error.
101
102Some errors are fatal (which is indicated by C<$fatal> being true). On
103fatal errors the handle object will be shut down and will not be usable
104(but you are free to look at the current C< ->rbuf >). Examples of fatal
105errors are an EOF condition with active (but unsatisifable) read watchers
106(C<EPIPE>) or I/O errors.
107
108Non-fatal errors can be retried by simply returning, but it is recommended
109to simply ignore this parameter and instead abondon the handle object
110when this callback is invoked. Examples of non-fatal errors are timeouts
111C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
112
113On callback entrance, the value of C<$!> contains the operating system
114error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
115
116While not mandatory, it is I<highly> recommended to set this callback, as
117you will not be notified of errors otherwise. The default simply calls
118C<croak>.
119
120=item on_read => $cb->($handle)
121
122This sets the default read callback, which is called when data arrives
123and no read request is in the queue (unlike read queue callbacks, this
124callback will only be called when at least one octet of data is in the
125read buffer).
126
127To access (and remove data from) the read buffer, use the C<< ->rbuf >>
128method or access the C<$handle->{rbuf}> member directly.
129
130When an EOF condition is detected then AnyEvent::Handle will first try to
131feed all the remaining data to the queued callbacks and C<on_read> before
132calling the C<on_eof> callback. If no progress can be made, then a fatal
133error will be raised (with C<$!> set to C<EPIPE>).
134
135=item on_drain => $cb->($handle)
136
137This sets the callback that is called when the write buffer becomes empty
138(or when the callback is set and the buffer is empty already).
139
140To append to the write buffer, use the C<< ->push_write >> method.
141
142This callback is useful when you don't want to put all of your write data
143into the queue at once, for example, when you want to write the contents
144of some file to the socket you might not want to read the whole file into
145memory and push it into the queue, but instead only read more data from
146the file when the write queue becomes empty.
147
148=item timeout => $fractional_seconds
149
150If non-zero, then this enables an "inactivity" timeout: whenever this many
151seconds pass without a successful read or write on the underlying file
152handle, the C<on_timeout> callback will be invoked (and if that one is
153missing, an C<ETIMEDOUT> error will be raised).
154
155Note that timeout processing is also active when you currently do not have
156any outstanding read or write requests: If you plan to keep the connection
157idle then you should disable the timout temporarily or ignore the timeout
158in the C<on_timeout> callback.
159
160Zero (the default) disables this timeout.
161
162=item on_timeout => $cb->($handle)
163
164Called whenever the inactivity timeout passes. If you return from this
165callback, then the timeout will be reset as if some activity had happened,
166so this condition is not fatal in any way.
167
168=item rbuf_max => <bytes>
169
170If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
171when the read buffer ever (strictly) exceeds this size. This is useful to
172avoid denial-of-service attacks.
173
174For example, a server accepting connections from untrusted sources should
175be configured to accept only so-and-so much data that it cannot act on
176(for example, when expecting a line, an attacker could send an unlimited
177amount of data without a callback ever being called as long as the line
178isn't finished).
179
180=item autocork => <boolean>
181
182When disabled (the default), then C<push_write> will try to immediately
183write the data to the handle if possible. This avoids having to register
184a write watcher and wait for the next event loop iteration, but can be
185inefficient if you write multiple small chunks (this disadvantage is
186usually avoided by your kernel's nagle algorithm, see C<low_delay>).
187
188When enabled, then writes will always be queued till the next event loop
189iteration. This is efficient when you do many small writes per iteration,
190but less efficient when you do a single write only.
191
192=item no_delay => <boolean>
193
194When doing small writes on sockets, your operating system kernel might
195wait a bit for more data before actually sending it out. This is called
196the Nagle algorithm, and usually it is beneficial.
197
198In some situations you want as low a delay as possible, which cna be
199accomplishd by setting this option to true.
200
201The default is your opertaing system's default behaviour, this option
202explicitly enables or disables it, if possible.
203
204=item read_size => <bytes>
205
206The default read block size (the amount of bytes this module will try to read
207during each (loop iteration). Default: C<8192>.
208
209=item low_water_mark => <bytes>
210
211Sets the amount of bytes (default: C<0>) that make up an "empty" write
212buffer: If the write reaches this size or gets even samller it is
213considered empty.
214
215=item linger => <seconds>
216
217If non-zero (default: C<3600>), then the destructor of the
218AnyEvent::Handle object will check wether there is still outstanding write
219data and will install a watcher that will write out this data. No errors
220will be reported (this mostly matches how the operating system treats
221outstanding data at socket close time).
222
223This will not work for partial TLS data that could not yet been
224encoded. This data will be lost.
225
226=item tls => "accept" | "connect" | Net::SSLeay::SSL object
227
228When this parameter is given, it enables TLS (SSL) mode, that means it
229will start making tls handshake and will transparently encrypt/decrypt
230data.
231
232TLS mode requires Net::SSLeay to be installed (it will be loaded
233automatically when you try to create a TLS handle).
234
235For the TLS server side, use C<accept>, and for the TLS client side of a
236connection, use C<connect> mode.
237
238You can also provide your own TLS connection object, but you have
239to make sure that you call either C<Net::SSLeay::set_connect_state>
240or C<Net::SSLeay::set_accept_state> on it before you pass it to
241AnyEvent::Handle.
242
243See the C<starttls> method if you need to start TLS negotiation later.
244
245=item tls_ctx => $ssl_ctx
246
247Use the given Net::SSLeay::CTX object to create the new TLS connection
248(unless a connection object was specified directly). If this parameter is
249missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
250
251=item json => JSON or JSON::XS object
252
253This is the json coder object used by the C<json> read and write types.
254
255If you don't supply it, then AnyEvent::Handle will create and use a
256suitable one, which will write and expect UTF-8 encoded JSON texts.
257
258Note that you are responsible to depend on the JSON module if you want to
259use this functionality, as AnyEvent does not have a dependency itself.
260
261=item filter_r => $cb
262
263=item filter_w => $cb
264
265These exist, but are undocumented at this time.
266
267=back
268
269=cut
270
271sub new {
272 my $class = shift;
273
274 my $self = bless { @_ }, $class;
275
276 $self->{fh} or Carp::croak "mandatory argument fh is missing";
277
278 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
279
280 if ($self->{tls}) {
281 require Net::SSLeay;
282 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
283 }
284
285 $self->{_activity} = AnyEvent->now;
286 $self->_timeout;
287
288 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
289 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
290
291 $self->start_read
292 if $self->{on_read};
293
294 $self
295}
296
297sub _shutdown {
298 my ($self) = @_;
299
300 delete $self->{_tw};
301 delete $self->{_rw};
302 delete $self->{_ww};
303 delete $self->{fh};
304
305 $self->stoptls;
306
307 delete $self->{on_read};
308 delete $self->{_queue};
309}
310
311sub _error {
312 my ($self, $errno, $fatal) = @_;
313
314 $self->_shutdown
315 if $fatal;
316
317 $! = $errno;
318
319 if ($self->{on_error}) {
320 $self->{on_error}($self, $fatal);
321 } else {
322 Carp::croak "AnyEvent::Handle uncaught error: $!";
323 }
324}
325
326=item $fh = $handle->fh
327
328This method returns the file handle of the L<AnyEvent::Handle> object.
329
330=cut
331
332sub fh { $_[0]{fh} }
333
334=item $handle->on_error ($cb)
335
336Replace the current C<on_error> callback (see the C<on_error> constructor argument).
337
338=cut
339
340sub on_error {
341 $_[0]{on_error} = $_[1];
342}
343
344=item $handle->on_eof ($cb)
345
346Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
347
348=cut
349
350sub on_eof {
351 $_[0]{on_eof} = $_[1];
352}
353
354=item $handle->on_timeout ($cb)
355
356Replace the current C<on_timeout> callback, or disables the callback
357(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
358argument.
359
360=cut
361
362sub on_timeout {
363 $_[0]{on_timeout} = $_[1];
364}
365
366=item $handle->autocork ($boolean)
367
368Enables or disables the current autocork behaviour (see C<autocork>
369constructor argument).
370
371=cut
372
373=item $handle->no_delay ($boolean)
374
375Enables or disables the C<no_delay> setting (see constructor argument of
376the same name for details).
377
378=cut
379
380sub no_delay {
381 $_[0]{no_delay} = $_[1];
382
383 eval {
384 local $SIG{__DIE__};
385 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
386 };
387}
388
389#############################################################################
390
391=item $handle->timeout ($seconds)
392
393Configures (or disables) the inactivity timeout.
394
395=cut
396
397sub timeout {
398 my ($self, $timeout) = @_;
399
400 $self->{timeout} = $timeout;
401 $self->_timeout;
402}
403
404# reset the timeout watcher, as neccessary
405# also check for time-outs
406sub _timeout {
407 my ($self) = @_;
408
409 if ($self->{timeout}) {
410 my $NOW = AnyEvent->now;
411
412 # when would the timeout trigger?
413 my $after = $self->{_activity} + $self->{timeout} - $NOW;
414
415 # now or in the past already?
416 if ($after <= 0) {
417 $self->{_activity} = $NOW;
418
419 if ($self->{on_timeout}) {
420 $self->{on_timeout}($self);
421 } else {
422 $self->_error (&Errno::ETIMEDOUT);
423 }
424
425 # callback could have changed timeout value, optimise
426 return unless $self->{timeout};
427
428 # calculate new after
429 $after = $self->{timeout};
430 }
431
432 Scalar::Util::weaken $self;
433 return unless $self; # ->error could have destroyed $self
434
435 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
436 delete $self->{_tw};
437 $self->_timeout;
438 });
439 } else {
440 delete $self->{_tw};
441 }
442}
443
444#############################################################################
445
446=back
447
448=head2 WRITE QUEUE
449
450AnyEvent::Handle manages two queues per handle, one for writing and one
451for reading.
452
453The write queue is very simple: you can add data to its end, and
454AnyEvent::Handle will automatically try to get rid of it for you.
455
456When data could be written and the write buffer is shorter then the low
457water mark, the C<on_drain> callback will be invoked.
458
459=over 4
460
461=item $handle->on_drain ($cb)
462
463Sets the C<on_drain> callback or clears it (see the description of
464C<on_drain> in the constructor).
465
466=cut
467
468sub on_drain {
469 my ($self, $cb) = @_;
470
471 $self->{on_drain} = $cb;
472
473 $cb->($self)
474 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
475}
476
477=item $handle->push_write ($data)
478
479Queues the given scalar to be written. You can push as much data as you
480want (only limited by the available memory), as C<AnyEvent::Handle>
481buffers it independently of the kernel.
482
483=cut
484
485sub _drain_wbuf {
486 my ($self) = @_;
487
488 if (!$self->{_ww} && length $self->{wbuf}) {
489
490 Scalar::Util::weaken $self;
491
492 my $cb = sub {
493 my $len = syswrite $self->{fh}, $self->{wbuf};
494
495 if ($len >= 0) {
496 substr $self->{wbuf}, 0, $len, "";
497
498 $self->{_activity} = AnyEvent->now;
499
500 $self->{on_drain}($self)
501 if $self->{low_water_mark} >= length $self->{wbuf}
502 && $self->{on_drain};
503
504 delete $self->{_ww} unless length $self->{wbuf};
505 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
506 $self->_error ($!, 1);
507 }
508 };
509
510 # try to write data immediately
511 $cb->() unless $self->{autocork};
512
513 # if still data left in wbuf, we need to poll
514 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
515 if length $self->{wbuf};
516 };
517}
518
519our %WH;
520
521sub register_write_type($$) {
522 $WH{$_[0]} = $_[1];
523}
524
525sub push_write {
526 my $self = shift;
527
528 if (@_ > 1) {
529 my $type = shift;
530
531 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
532 ->($self, @_);
533 }
534
535 if ($self->{filter_w}) {
536 $self->{filter_w}($self, \$_[0]);
537 } else {
538 $self->{wbuf} .= $_[0];
539 $self->_drain_wbuf;
540 }
541}
542
543=item $handle->push_write (type => @args)
544
545Instead of formatting your data yourself, you can also let this module do
546the job by specifying a type and type-specific arguments.
547
548Predefined types are (if you have ideas for additional types, feel free to
549drop by and tell us):
550
551=over 4
552
553=item netstring => $string
554
555Formats the given value as netstring
556(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
557
558=cut
559
560register_write_type netstring => sub {
561 my ($self, $string) = @_;
562
563 sprintf "%d:%s,", (length $string), $string
564};
565
566=item packstring => $format, $data
567
568An octet string prefixed with an encoded length. The encoding C<$format>
569uses the same format as a Perl C<pack> format, but must specify a single
570integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
571optional C<!>, C<< < >> or C<< > >> modifier).
572
573=cut
574
575register_write_type packstring => sub {
576 my ($self, $format, $string) = @_;
577
578 pack "$format/a*", $string
579};
580
581=item json => $array_or_hashref
582
583Encodes the given hash or array reference into a JSON object. Unless you
584provide your own JSON object, this means it will be encoded to JSON text
585in UTF-8.
586
587JSON objects (and arrays) are self-delimiting, so you can write JSON at
588one end of a handle and read them at the other end without using any
589additional framing.
590
591The generated JSON text is guaranteed not to contain any newlines: While
592this module doesn't need delimiters after or between JSON texts to be
593able to read them, many other languages depend on that.
594
595A simple RPC protocol that interoperates easily with others is to send
596JSON arrays (or objects, although arrays are usually the better choice as
597they mimic how function argument passing works) and a newline after each
598JSON text:
599
600 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
601 $handle->push_write ("\012");
602
603An AnyEvent::Handle receiver would simply use the C<json> read type and
604rely on the fact that the newline will be skipped as leading whitespace:
605
606 $handle->push_read (json => sub { my $array = $_[1]; ... });
607
608Other languages could read single lines terminated by a newline and pass
609this line into their JSON decoder of choice.
610
611=cut
612
613register_write_type json => sub {
614 my ($self, $ref) = @_;
615
616 require JSON;
617
618 $self->{json} ? $self->{json}->encode ($ref)
619 : JSON::encode_json ($ref)
620};
621
622=item storable => $reference
623
624Freezes the given reference using L<Storable> and writes it to the
625handle. Uses the C<nfreeze> format.
626
627=cut
628
629register_write_type storable => sub {
630 my ($self, $ref) = @_;
631
632 require Storable;
633
634 pack "w/a*", Storable::nfreeze ($ref)
635};
636
637=back
638
639=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
640
641This function (not method) lets you add your own types to C<push_write>.
642Whenever the given C<type> is used, C<push_write> will invoke the code
643reference with the handle object and the remaining arguments.
644
645The code reference is supposed to return a single octet string that will
646be appended to the write buffer.
647
648Note that this is a function, and all types registered this way will be
649global, so try to use unique names.
650
651=cut
652
653#############################################################################
654
655=back
656
657=head2 READ QUEUE
658
659AnyEvent::Handle manages two queues per handle, one for writing and one
660for reading.
661
662The read queue is more complex than the write queue. It can be used in two
663ways, the "simple" way, using only C<on_read> and the "complex" way, using
664a queue.
665
666In the simple case, you just install an C<on_read> callback and whenever
667new data arrives, it will be called. You can then remove some data (if
668enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
669leave the data there if you want to accumulate more (e.g. when only a
670partial message has been received so far).
671
672In the more complex case, you want to queue multiple callbacks. In this
673case, AnyEvent::Handle will call the first queued callback each time new
674data arrives (also the first time it is queued) and removes it when it has
675done its job (see C<push_read>, below).
676
677This way you can, for example, push three line-reads, followed by reading
678a chunk of data, and AnyEvent::Handle will execute them in order.
679
680Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
681the specified number of bytes which give an XML datagram.
682
683 # in the default state, expect some header bytes
684 $handle->on_read (sub {
685 # some data is here, now queue the length-header-read (4 octets)
686 shift->unshift_read (chunk => 4, sub {
687 # header arrived, decode
688 my $len = unpack "N", $_[1];
689
690 # now read the payload
691 shift->unshift_read (chunk => $len, sub {
692 my $xml = $_[1];
693 # handle xml
694 });
695 });
696 });
697
698Example 2: Implement a client for a protocol that replies either with "OK"
699and another line or "ERROR" for the first request that is sent, and 64
700bytes for the second request. Due to the availability of a queue, we can
701just pipeline sending both requests and manipulate the queue as necessary
702in the callbacks.
703
704When the first callback is called and sees an "OK" response, it will
705C<unshift> another line-read. This line-read will be queued I<before> the
70664-byte chunk callback.
707
708 # request one, returns either "OK + extra line" or "ERROR"
709 $handle->push_write ("request 1\015\012");
710
711 # we expect "ERROR" or "OK" as response, so push a line read
712 $handle->push_read (line => sub {
713 # if we got an "OK", we have to _prepend_ another line,
714 # so it will be read before the second request reads its 64 bytes
715 # which are already in the queue when this callback is called
716 # we don't do this in case we got an error
717 if ($_[1] eq "OK") {
49 on_readline => sub { 718 $_[0]->unshift_read (line => sub {
50 my ($ae_fh, @lines) = @_; 719 my $response = $_[1];
51 for (@lines) { 720 ...
52 chomp; 721 });
53 print "Line: $_"; 722 }
723 });
724
725 # request two, simply returns 64 octets
726 $handle->push_write ("request 2\015\012");
727
728 # simply read 64 bytes, always
729 $handle->push_read (chunk => 64, sub {
730 my $response = $_[1];
731 ...
732 });
733
734=over 4
735
736=cut
737
738sub _drain_rbuf {
739 my ($self) = @_;
740
741 local $self->{_in_drain} = 1;
742
743 if (
744 defined $self->{rbuf_max}
745 && $self->{rbuf_max} < length $self->{rbuf}
746 ) {
747 $self->_error (&Errno::ENOSPC, 1), return;
748 }
749
750 while () {
751 my $len = length $self->{rbuf};
752
753 if (my $cb = shift @{ $self->{_queue} }) {
754 unless ($cb->($self)) {
755 if ($self->{_eof}) {
756 # no progress can be made (not enough data and no data forthcoming)
757 $self->_error (&Errno::EPIPE, 1), return;
54 } 758 }
759
760 unshift @{ $self->{_queue} }, $cb;
761 last;
55 } 762 }
56 );
57
58 $cv->wait;
59
60=head1 DESCRIPTION
61
62This module is a helper module to make it easier to do non-blocking I/O
63on filehandles (and sockets, see L<AnyEvent::Socket>).
64
65The event loop is provided by L<AnyEvent>.
66
67=head1 METHODS
68
69=over 4
70
71=item B<new (%args)>
72
73The constructor has these arguments:
74
75=over 4
76
77=item fh => $filehandle
78
79The filehandle this L<AnyEvent::Handle> object will operate on.
80
81NOTE: The filehandle will be set to non-blocking.
82
83=item read_block_size => $size
84
85The default read block size use for reads via the C<on_read>
86method.
87
88=item on_read => $cb
89
90=item on_eof => $cb
91
92=item on_error => $cb
93
94These are shortcuts, that will call the corresponding method and set the callback to C<$cb>.
95
96=item on_readline => $cb
97
98The C<readlines> method is called with the default seperator and C<$cb> as callback
99for you.
100
101=back
102
103=cut
104
105sub new {
106 my $this = shift;
107 my $class = ref($this) || $this;
108 my $self = {
109 read_block_size => 4096,
110 rbuf => '',
111 @_
112 };
113 bless $self, $class;
114
115 $self->{fh}->blocking (0) if $self->{fh};
116
117 if ($self->{on_read}) {
118 $self->on_read ($self->{on_read});
119
120 } elsif ($self->{on_readline}) { 763 } elsif ($self->{on_read}) {
121 $self->readlines ($self->{on_readline}); 764 last unless $len;
122 765
766 $self->{on_read}($self);
767
768 if (
769 $len == length $self->{rbuf} # if no data has been consumed
770 && !@{ $self->{_queue} } # and the queue is still empty
771 && $self->{on_read} # but we still have on_read
772 ) {
773 # no further data will arrive
774 # so no progress can be made
775 $self->_error (&Errno::EPIPE, 1), return
776 if $self->{_eof};
777
778 last; # more data might arrive
779 }
780 } else {
781 # read side becomes idle
782 delete $self->{_rw};
783 last;
784 }
785 }
786
123 } elsif ($self->{on_eof}) { 787 if ($self->{_eof}) {
124 $self->on_eof ($self->{on_eof});
125
126 } elsif ($self->{on_error}) { 788 if ($self->{on_eof}) {
127 $self->on_eof ($self->{on_error}); 789 $self->{on_eof}($self)
790 } else {
791 $self->_error (0, 1);
792 }
128 } 793 }
129 794
130 return $self 795 # may need to restart read watcher
796 unless ($self->{_rw}) {
797 $self->start_read
798 if $self->{on_read} || @{ $self->{_queue} };
799 }
131} 800}
132 801
133=item B<fh> 802=item $handle->on_read ($cb)
134 803
135This method returns the filehandle of the L<AnyEvent::Handle> object. 804This replaces the currently set C<on_read> callback, or clears it (when
136 805the new callback is C<undef>). See the description of C<on_read> in the
137=cut 806constructor.
138
139sub fh { $_[0]->{fh} }
140
141=item B<on_read ($callback)>
142
143This method installs a C<$callback> that will be called
144when new data arrived. You can access the read buffer via the C<rbuf>
145method (see below).
146
147The first argument of the C<$callback> will be the L<AnyEvent::Handle> object.
148 807
149=cut 808=cut
150 809
151sub on_read { 810sub on_read {
152 my ($self, $cb) = @_; 811 my ($self, $cb) = @_;
812
153 $self->{on_read} = $cb; 813 $self->{on_read} = $cb;
814 $self->_drain_rbuf if $cb && !$self->{_in_drain};
815}
154 816
155 unless (defined $self->{on_read}) { 817=item $handle->rbuf
156 delete $self->{on_read_w}; 818
819Returns the read buffer (as a modifiable lvalue).
820
821You can access the read buffer directly as the C<< ->{rbuf} >> member, if
822you want.
823
824NOTE: The read buffer should only be used or modified if the C<on_read>,
825C<push_read> or C<unshift_read> methods are used. The other read methods
826automatically manage the read buffer.
827
828=cut
829
830sub rbuf : lvalue {
831 $_[0]{rbuf}
832}
833
834=item $handle->push_read ($cb)
835
836=item $handle->unshift_read ($cb)
837
838Append the given callback to the end of the queue (C<push_read>) or
839prepend it (C<unshift_read>).
840
841The callback is called each time some additional read data arrives.
842
843It must check whether enough data is in the read buffer already.
844
845If not enough data is available, it must return the empty list or a false
846value, in which case it will be called repeatedly until enough data is
847available (or an error condition is detected).
848
849If enough data was available, then the callback must remove all data it is
850interested in (which can be none at all) and return a true value. After returning
851true, it will be removed from the queue.
852
853=cut
854
855our %RH;
856
857sub register_read_type($$) {
858 $RH{$_[0]} = $_[1];
859}
860
861sub push_read {
862 my $self = shift;
863 my $cb = pop;
864
865 if (@_) {
866 my $type = shift;
867
868 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
869 ->($self, $cb, @_);
870 }
871
872 push @{ $self->{_queue} }, $cb;
873 $self->_drain_rbuf unless $self->{_in_drain};
874}
875
876sub unshift_read {
877 my $self = shift;
878 my $cb = pop;
879
880 if (@_) {
881 my $type = shift;
882
883 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
884 ->($self, $cb, @_);
885 }
886
887
888 unshift @{ $self->{_queue} }, $cb;
889 $self->_drain_rbuf unless $self->{_in_drain};
890}
891
892=item $handle->push_read (type => @args, $cb)
893
894=item $handle->unshift_read (type => @args, $cb)
895
896Instead of providing a callback that parses the data itself you can chose
897between a number of predefined parsing formats, for chunks of data, lines
898etc.
899
900Predefined types are (if you have ideas for additional types, feel free to
901drop by and tell us):
902
903=over 4
904
905=item chunk => $octets, $cb->($handle, $data)
906
907Invoke the callback only once C<$octets> bytes have been read. Pass the
908data read to the callback. The callback will never be called with less
909data.
910
911Example: read 2 bytes.
912
913 $handle->push_read (chunk => 2, sub {
914 warn "yay ", unpack "H*", $_[1];
915 });
916
917=cut
918
919register_read_type chunk => sub {
920 my ($self, $cb, $len) = @_;
921
922 sub {
923 $len <= length $_[0]{rbuf} or return;
924 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
925 1
926 }
927};
928
929=item line => [$eol, ]$cb->($handle, $line, $eol)
930
931The callback will be called only once a full line (including the end of
932line marker, C<$eol>) has been read. This line (excluding the end of line
933marker) will be passed to the callback as second argument (C<$line>), and
934the end of line marker as the third argument (C<$eol>).
935
936The end of line marker, C<$eol>, can be either a string, in which case it
937will be interpreted as a fixed record end marker, or it can be a regex
938object (e.g. created by C<qr>), in which case it is interpreted as a
939regular expression.
940
941The end of line marker argument C<$eol> is optional, if it is missing (NOT
942undef), then C<qr|\015?\012|> is used (which is good for most internet
943protocols).
944
945Partial lines at the end of the stream will never be returned, as they are
946not marked by the end of line marker.
947
948=cut
949
950register_read_type line => sub {
951 my ($self, $cb, $eol) = @_;
952
953 if (@_ < 3) {
954 # this is more than twice as fast as the generic code below
955 sub {
956 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
957
958 $cb->($_[0], $1, $2);
959 1
960 }
961 } else {
962 $eol = quotemeta $eol unless ref $eol;
963 $eol = qr|^(.*?)($eol)|s;
964
965 sub {
966 $_[0]{rbuf} =~ s/$eol// or return;
967
968 $cb->($_[0], $1, $2);
969 1
970 }
971 }
972};
973
974=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
975
976Makes a regex match against the regex object C<$accept> and returns
977everything up to and including the match.
978
979Example: read a single line terminated by '\n'.
980
981 $handle->push_read (regex => qr<\n>, sub { ... });
982
983If C<$reject> is given and not undef, then it determines when the data is
984to be rejected: it is matched against the data when the C<$accept> regex
985does not match and generates an C<EBADMSG> error when it matches. This is
986useful to quickly reject wrong data (to avoid waiting for a timeout or a
987receive buffer overflow).
988
989Example: expect a single decimal number followed by whitespace, reject
990anything else (not the use of an anchor).
991
992 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
993
994If C<$skip> is given and not C<undef>, then it will be matched against
995the receive buffer when neither C<$accept> nor C<$reject> match,
996and everything preceding and including the match will be accepted
997unconditionally. This is useful to skip large amounts of data that you
998know cannot be matched, so that the C<$accept> or C<$reject> regex do not
999have to start matching from the beginning. This is purely an optimisation
1000and is usually worth only when you expect more than a few kilobytes.
1001
1002Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1003expect the header to be very large (it isn't in practise, but...), we use
1004a skip regex to skip initial portions. The skip regex is tricky in that
1005it only accepts something not ending in either \015 or \012, as these are
1006required for the accept regex.
1007
1008 $handle->push_read (regex =>
1009 qr<\015\012\015\012>,
1010 undef, # no reject
1011 qr<^.*[^\015\012]>,
1012 sub { ... });
1013
1014=cut
1015
1016register_read_type regex => sub {
1017 my ($self, $cb, $accept, $reject, $skip) = @_;
1018
1019 my $data;
1020 my $rbuf = \$self->{rbuf};
1021
1022 sub {
1023 # accept
1024 if ($$rbuf =~ $accept) {
1025 $data .= substr $$rbuf, 0, $+[0], "";
1026 $cb->($self, $data);
157 return; 1027 return 1;
1028 }
1029
1030 # reject
1031 if ($reject && $$rbuf =~ $reject) {
1032 $self->_error (&Errno::EBADMSG);
1033 }
1034
1035 # skip
1036 if ($skip && $$rbuf =~ $skip) {
1037 $data .= substr $$rbuf, 0, $+[0], "";
1038 }
1039
1040 ()
158 } 1041 }
159 1042};
160 $self->{on_read_w} = 1043
161 AnyEvent->io (poll => 'r', fh => $self->{fh}, cb => sub { 1044=item netstring => $cb->($handle, $string)
162 #d# warn "READ:[$self->{read_size}] $self->{read_block_size} : ".length ($self->{rbuf})."\n"; 1045
163 my $rbuf_len = length $self->{rbuf}; 1046A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
164 my $l; 1047
165 if (defined $self->{read_size}) { 1048Throws an error with C<$!> set to EBADMSG on format violations.
166 $l = sysread $self->{fh}, $self->{rbuf}, 1049
167 ($self->{read_size} - $rbuf_len), $rbuf_len; 1050=cut
168 } else { 1051
169 $l = sysread $self->{fh}, $self->{rbuf}, $self->{read_block_size}, $rbuf_len; 1052register_read_type netstring => sub {
1053 my ($self, $cb) = @_;
1054
1055 sub {
1056 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1057 if ($_[0]{rbuf} =~ /[^0-9]/) {
1058 $self->_error (&Errno::EBADMSG);
170 } 1059 }
171 #d# warn "READL $l [$self->{rbuf}]\n"; 1060 return;
1061 }
172 1062
173 if (not defined $l) { 1063 my $len = $1;
174 return if $! == EAGAIN || $! == EINTR;
175 $self->{on_error}->($self) if $self->{on_error};
176 delete $self->{on_read_w};
177 1064
178 } elsif ($l == 0) { 1065 $self->unshift_read (chunk => $len, sub {
179 $self->{on_eof}->($self) if $self->{on_eof}; 1066 my $string = $_[1];
180 delete $self->{on_read_w}; 1067 $_[0]->unshift_read (chunk => 1, sub {
181 1068 if ($_[1] eq ",") {
1069 $cb->($_[0], $string);
182 } else { 1070 } else {
183 $self->{on_read}->($self); 1071 $self->_error (&Errno::EBADMSG);
1072 }
1073 });
1074 });
1075
1076 1
1077 }
1078};
1079
1080=item packstring => $format, $cb->($handle, $string)
1081
1082An octet string prefixed with an encoded length. The encoding C<$format>
1083uses the same format as a Perl C<pack> format, but must specify a single
1084integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1085optional C<!>, C<< < >> or C<< > >> modifier).
1086
1087DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1088
1089Example: read a block of data prefixed by its length in BER-encoded
1090format (very efficient).
1091
1092 $handle->push_read (packstring => "w", sub {
1093 my ($handle, $data) = @_;
1094 });
1095
1096=cut
1097
1098register_read_type packstring => sub {
1099 my ($self, $cb, $format) = @_;
1100
1101 sub {
1102 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1103 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1104 or return;
1105
1106 $format = length pack $format, $len;
1107
1108 # bypass unshift if we already have the remaining chunk
1109 if ($format + $len <= length $_[0]{rbuf}) {
1110 my $data = substr $_[0]{rbuf}, $format, $len;
1111 substr $_[0]{rbuf}, 0, $format + $len, "";
1112 $cb->($_[0], $data);
1113 } else {
1114 # remove prefix
1115 substr $_[0]{rbuf}, 0, $format, "";
1116
1117 # read remaining chunk
1118 $_[0]->unshift_read (chunk => $len, $cb);
1119 }
1120
1121 1
1122 }
1123};
1124
1125=item json => $cb->($handle, $hash_or_arrayref)
1126
1127Reads a JSON object or array, decodes it and passes it to the callback.
1128
1129If a C<json> object was passed to the constructor, then that will be used
1130for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1131
1132This read type uses the incremental parser available with JSON version
11332.09 (and JSON::XS version 2.2) and above. You have to provide a
1134dependency on your own: this module will load the JSON module, but
1135AnyEvent does not depend on it itself.
1136
1137Since JSON texts are fully self-delimiting, the C<json> read and write
1138types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1139the C<json> write type description, above, for an actual example.
1140
1141=cut
1142
1143register_read_type json => sub {
1144 my ($self, $cb) = @_;
1145
1146 require JSON;
1147
1148 my $data;
1149 my $rbuf = \$self->{rbuf};
1150
1151 my $json = $self->{json} ||= JSON->new->utf8;
1152
1153 sub {
1154 my $ref = $json->incr_parse ($self->{rbuf});
1155
1156 if ($ref) {
1157 $self->{rbuf} = $json->incr_text;
1158 $json->incr_text = "";
1159 $cb->($self, $ref);
1160
1161 1
1162 } else {
1163 $self->{rbuf} = "";
1164 ()
1165 }
1166 }
1167};
1168
1169=item storable => $cb->($handle, $ref)
1170
1171Deserialises a L<Storable> frozen representation as written by the
1172C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1173data).
1174
1175Raises C<EBADMSG> error if the data could not be decoded.
1176
1177=cut
1178
1179register_read_type storable => sub {
1180 my ($self, $cb) = @_;
1181
1182 require Storable;
1183
1184 sub {
1185 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1186 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1187 or return;
1188
1189 my $format = length pack "w", $len;
1190
1191 # bypass unshift if we already have the remaining chunk
1192 if ($format + $len <= length $_[0]{rbuf}) {
1193 my $data = substr $_[0]{rbuf}, $format, $len;
1194 substr $_[0]{rbuf}, 0, $format + $len, "";
1195 $cb->($_[0], Storable::thaw ($data));
1196 } else {
1197 # remove prefix
1198 substr $_[0]{rbuf}, 0, $format, "";
1199
1200 # read remaining chunk
1201 $_[0]->unshift_read (chunk => $len, sub {
1202 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1203 $cb->($_[0], $ref);
1204 } else {
1205 $self->_error (&Errno::EBADMSG);
1206 }
1207 });
1208 }
1209
1210 1
1211 }
1212};
1213
1214=back
1215
1216=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1217
1218This function (not method) lets you add your own types to C<push_read>.
1219
1220Whenever the given C<type> is used, C<push_read> will invoke the code
1221reference with the handle object, the callback and the remaining
1222arguments.
1223
1224The code reference is supposed to return a callback (usually a closure)
1225that works as a plain read callback (see C<< ->push_read ($cb) >>).
1226
1227It should invoke the passed callback when it is done reading (remember to
1228pass C<$handle> as first argument as all other callbacks do that).
1229
1230Note that this is a function, and all types registered this way will be
1231global, so try to use unique names.
1232
1233For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1234search for C<register_read_type>)).
1235
1236=item $handle->stop_read
1237
1238=item $handle->start_read
1239
1240In rare cases you actually do not want to read anything from the
1241socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1242any queued callbacks will be executed then. To start reading again, call
1243C<start_read>.
1244
1245Note that AnyEvent::Handle will automatically C<start_read> for you when
1246you change the C<on_read> callback or push/unshift a read callback, and it
1247will automatically C<stop_read> for you when neither C<on_read> is set nor
1248there are any read requests in the queue.
1249
1250=cut
1251
1252sub stop_read {
1253 my ($self) = @_;
1254
1255 delete $self->{_rw};
1256}
1257
1258sub start_read {
1259 my ($self) = @_;
1260
1261 unless ($self->{_rw} || $self->{_eof}) {
1262 Scalar::Util::weaken $self;
1263
1264 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1265 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1266 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1267
1268 if ($len > 0) {
1269 $self->{_activity} = AnyEvent->now;
1270
1271 $self->{filter_r}
1272 ? $self->{filter_r}($self, $rbuf)
1273 : $self->{_in_drain} || $self->_drain_rbuf;
1274
1275 } elsif (defined $len) {
1276 delete $self->{_rw};
1277 $self->{_eof} = 1;
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279
1280 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1281 return $self->_error ($!, 1);
184 } 1282 }
185 }); 1283 });
1284 }
186} 1285}
187 1286
188=item B<on_error ($callback)> 1287sub _dotls {
189
190Whenever a read or write operation resulted in an error the C<$callback>
191will be called.
192
193The first argument of C<$callback> will be the L<AnyEvent::Handle> object itself.
194The error is given as errno in C<$!>.
195
196=cut
197
198sub on_error {
199 $_[0]->{on_error} = $_[1];
200}
201
202=item B<on_eof ($callback)>
203
204Installs the C<$callback> that will be called when the end of file is
205encountered in a read operation this C<$callback> will be called. The first
206argument will be the L<AnyEvent::Handle> object itself.
207
208=cut
209
210sub on_eof {
211 $_[0]->{on_eof} = $_[1];
212}
213
214=item B<rbuf>
215
216Returns a reference to the read buffer.
217
218NOTE: The read buffer should only be used or modified if the C<on_read>
219method is used directly. The C<read> and C<readlines> methods will provide
220the read data to their callbacks.
221
222=cut
223
224sub rbuf : lvalue {
225 $_[0]->{rbuf}
226}
227
228=item B<read ($len, $callback)>
229
230Will read exactly C<$len> bytes from the filehandle and call the C<$callback>
231if done so. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
232object itself and the second argument the read data.
233
234NOTE: This method will override any callbacks installed via the C<on_read> method.
235
236=cut
237
238sub read {
239 my ($self, $len, $cb) = @_; 1288 my ($self) = @_;
240 1289
241 $self->{read_cb} = $cb; 1290 my $buf;
242 my $old_blk_size = $self->{read_block_size};
243 $self->{read_block_size} = $len;
244 1291
245 $self->on_read (sub { 1292 if (length $self->{_tls_wbuf}) {
246 #d# warn "OFOFO $len || ".length($_[0]->{rbuf})."||\n"; 1293 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
247 1294 substr $self->{_tls_wbuf}, 0, $len, "";
248 if ($len == length $_[0]->{rbuf}) {
249 $_[0]->{read_block_size} = $old_blk_size;
250 $_[0]->on_read (undef);
251 $_[0]->{read_cb}->($_[0], (substr $self->{rbuf}, 0, $len, ''));
252 } 1295 }
253 }); 1296 }
254}
255 1297
256=item B<readlines ($callback)> 1298 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
257 1299 $self->{wbuf} .= $buf;
258=item B<readlines ($sep, $callback)> 1300 $self->_drain_wbuf;
259
260This method will read lines from the filehandle, seperated by C<$sep> or C<"\n">
261if C<$sep> is not provided. C<$sep> will be used as "line" seperator.
262
263The C<$callback> will be called when at least one
264line could be read. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
265object itself and the rest of the arguments will be the read lines.
266
267NOTE: This method will override any callbacks installed via the C<on_read> method.
268
269=cut
270
271sub readlines {
272 my ($self, $sep, $cb) = @_;
273
274 if (ref $sep) {
275 $cb = $sep;
276 $sep = "\n";
277
278 } elsif (not defined $sep) {
279 $sep = "\n";
280 } 1301 }
281 1302
282 my $sep_len = length $sep; 1303 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
283 1304 if (length $buf) {
284 $self->{on_readline} = $cb; 1305 $self->{rbuf} .= $buf;
285 1306 $self->_drain_rbuf unless $self->{_in_drain};
286 $self->on_read (sub { 1307 } else {
287 my @lines; 1308 # let's treat SSL-eof as we treat normal EOF
288 my $rb = \$_[0]->{rbuf}; 1309 $self->{_eof} = 1;
289 my $pos; 1310 $self->_shutdown;
290 while (($pos = index ($$rb, $sep)) >= 0) { 1311 return;
291 push @lines, substr $$rb, 0, $pos + $sep_len, '';
292 } 1312 }
293 $self->{on_readline}->($_[0], @lines); 1313 }
1314
1315 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1316
1317 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1318 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1319 return $self->_error ($!, 1);
1320 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1321 return $self->_error (&Errno::EIO, 1);
1322 }
1323
1324 # all others are fine for our purposes
1325 }
1326}
1327
1328=item $handle->starttls ($tls[, $tls_ctx])
1329
1330Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1331object is created, you can also do that at a later time by calling
1332C<starttls>.
1333
1334The first argument is the same as the C<tls> constructor argument (either
1335C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1336
1337The second argument is the optional C<Net::SSLeay::CTX> object that is
1338used when AnyEvent::Handle has to create its own TLS connection object.
1339
1340The TLS connection object will end up in C<< $handle->{tls} >> after this
1341call and can be used or changed to your liking. Note that the handshake
1342might have already started when this function returns.
1343
1344=cut
1345
1346sub starttls {
1347 my ($self, $ssl, $ctx) = @_;
1348
1349 $self->stoptls;
1350
1351 if ($ssl eq "accept") {
1352 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1353 Net::SSLeay::set_accept_state ($ssl);
1354 } elsif ($ssl eq "connect") {
1355 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1356 Net::SSLeay::set_connect_state ($ssl);
1357 }
1358
1359 $self->{tls} = $ssl;
1360
1361 # basically, this is deep magic (because SSL_read should have the same issues)
1362 # but the openssl maintainers basically said: "trust us, it just works".
1363 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1364 # and mismaintained ssleay-module doesn't even offer them).
1365 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1366 Net::SSLeay::CTX_set_mode ($self->{tls},
1367 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1368 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1369
1370 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1371 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372
1373 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1374
1375 $self->{filter_w} = sub {
1376 $_[0]{_tls_wbuf} .= ${$_[1]};
1377 &_dotls;
294 }); 1378 };
1379 $self->{filter_r} = sub {
1380 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1381 &_dotls;
1382 };
295} 1383}
296 1384
297=item B<write ($data)> 1385=item $handle->stoptls
298 1386
299=item B<write ($callback)> 1387Destroys the SSL connection, if any. Partial read or write data will be
1388lost.
300 1389
301=item B<write ($data, $callback)>
302
303This method will write C<$data> to the filehandle and call the C<$callback>
304afterwards. If only C<$callback> is provided it will be called when the
305write buffer becomes empty the next time (or immediately if it already is empty).
306
307=cut 1390=cut
308 1391
309sub write { 1392sub stoptls {
310 my ($self, $data, $cb) = @_;
311 if (ref $data) { $cb = $data; undef $data }
312 push @{$self->{write_bufs}}, [$data, $cb];
313 $self->_check_writer;
314}
315
316sub _check_writer {
317 my ($self) = @_; 1393 my ($self) = @_;
318 1394
319 if ($self->{write_w}) { 1395 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
320 unless ($self->{write_cb}) {
321 while (@{$self->{write_bufs}} && not defined $self->{write_bufs}->[0]->[1]) {
322 my $wba = shift @{$self->{write_bufs}};
323 $self->{wbuf} .= $wba->[0];
324 }
325 }
326 return;
327 }
328 1396
329 my $wba = shift @{$self->{write_bufs}} 1397 delete $self->{_rbio};
330 or return; 1398 delete $self->{_wbio};
1399 delete $self->{_tls_wbuf};
1400 delete $self->{filter_r};
1401 delete $self->{filter_w};
1402}
331 1403
332 unless (defined $wba->[0]) { 1404sub DESTROY {
333 $wba->[1]->($self) if $wba->[1]; 1405 my $self = shift;
334 $self->_check_writer;
335 return;
336 }
337 1406
338 $self->{wbuf} = $wba->[0]; 1407 $self->stoptls;
339 $self->{write_cb} = $wba->[1];
340 1408
341 $self->{write_w} = 1409 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
342 AnyEvent->io (poll => 'w', fh => $self->{fh}, cb => sub { 1410
1411 if ($linger && length $self->{wbuf}) {
1412 my $fh = delete $self->{fh};
1413 my $wbuf = delete $self->{wbuf};
1414
1415 my @linger;
1416
1417 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
343 my $l = syswrite $self->{fh}, $self->{wbuf}, length $self->{wbuf}; 1418 my $len = syswrite $fh, $wbuf, length $wbuf;
344 1419
345 if (not defined $l) { 1420 if ($len > 0) {
346 return if $! == EAGAIN || $! == EINTR; 1421 substr $wbuf, 0, $len, "";
347 delete $self->{write_w};
348 $self->{on_error}->($self) if $self->{on_error};
349
350 } else { 1422 } else {
351 substr $self->{wbuf}, 0, $l, ''; 1423 @linger = (); # end
352
353 if (length ($self->{wbuf}) == 0) {
354 $self->{write_cb}->($self) if $self->{write_cb};
355
356 delete $self->{write_w};
357 delete $self->{wbuf};
358 delete $self->{write_cb};
359
360 $self->_check_writer;
361 }
362 } 1424 }
363 }); 1425 });
1426 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1427 @linger = ();
1428 });
1429 }
1430}
1431
1432=item AnyEvent::Handle::TLS_CTX
1433
1434This function creates and returns the Net::SSLeay::CTX object used by
1435default for TLS mode.
1436
1437The context is created like this:
1438
1439 Net::SSLeay::load_error_strings;
1440 Net::SSLeay::SSLeay_add_ssl_algorithms;
1441 Net::SSLeay::randomize;
1442
1443 my $CTX = Net::SSLeay::CTX_new;
1444
1445 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1446
1447=cut
1448
1449our $TLS_CTX;
1450
1451sub TLS_CTX() {
1452 $TLS_CTX || do {
1453 require Net::SSLeay;
1454
1455 Net::SSLeay::load_error_strings ();
1456 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1457 Net::SSLeay::randomize ();
1458
1459 $TLS_CTX = Net::SSLeay::CTX_new ();
1460
1461 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1462
1463 $TLS_CTX
1464 }
364} 1465}
365 1466
366=back 1467=back
367 1468
1469=head1 SUBCLASSING AnyEvent::Handle
1470
1471In many cases, you might want to subclass AnyEvent::Handle.
1472
1473To make this easier, a given version of AnyEvent::Handle uses these
1474conventions:
1475
1476=over 4
1477
1478=item * all constructor arguments become object members.
1479
1480At least initially, when you pass a C<tls>-argument to the constructor it
1481will end up in C<< $handle->{tls} >>. Those members might be changed or
1482mutated later on (for example C<tls> will hold the TLS connection object).
1483
1484=item * other object member names are prefixed with an C<_>.
1485
1486All object members not explicitly documented (internal use) are prefixed
1487with an underscore character, so the remaining non-C<_>-namespace is free
1488for use for subclasses.
1489
1490=item * all members not documented here and not prefixed with an underscore
1491are free to use in subclasses.
1492
1493Of course, new versions of AnyEvent::Handle may introduce more "public"
1494member variables, but thats just life, at least it is documented.
1495
1496=back
1497
368=head1 AUTHOR 1498=head1 AUTHOR
369 1499
370Robin Redeker, C<< <elmex at ta-sa.org> >> 1500Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
371 1501
372=cut 1502=cut
373 1503
3741; # End of AnyEvent::Handle 15041; # End of AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines