ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.11 by root, Sun May 11 17:54:13 2008 UTC vs.
Revision 1.85 by root, Thu Aug 21 19:53:19 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.02'; 19our $VERSION = 4.232;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
29
30 #TODO
31
32 # or use the constructor to pass the callback:
33
34 my $ae_fh2 =
35 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
36 fh => \*STDIN, 30 fh => \*STDIN,
37 on_eof => sub { 31 on_eof => sub {
38 $cv->broadcast; 32 $cv->broadcast;
39 }, 33 },
40 #TODO
41 ); 34 );
42 35
43 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
44 47
45=head1 DESCRIPTION 48=head1 DESCRIPTION
46 49
47This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
48filehandles (and sockets, see L<AnyEvent::Socket> for an easy way to make 51filehandles. For utility functions for doing non-blocking connects and accepts
49non-blocking resolves and connects). 52on sockets see L<AnyEvent::Util>.
53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
50 56
51In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
52means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
53treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
54 60
67 73
68=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
69 75
70The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
71 77
72NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
73AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
74 81
75=item on_eof => $cb->($self) [MANDATORY]
76
77Set the callback to be called on EOF.
78
79=item on_error => $cb->($self) 82=item on_eof => $cb->($handle)
80 83
84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
81This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
82ocurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
83or a read error. 104connect or a read error.
84 105
85The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
86called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
87 116
88On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
89error (or C<ENOSPC> or C<EPIPE>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
90 119
91While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
92you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
93die. 122C<croak>.
94 123
95=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
96 125
97This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
98and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
99 130
100To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
101method or acces sthe C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
102 133
103When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
104feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
105calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
106error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
107 138
108=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
109 140
110This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
111(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
112 143
113To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
114 171
115=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
116 173
117If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
118when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
122be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
123(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
124amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
125isn't finished). 182isn't finished).
126 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
127=item read_size => <bytes> 208=item read_size => <bytes>
128 209
129The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
130on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
131 212
132=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
133 214
134Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
135buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
136considered empty. 217considered empty.
137 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect>
241mode.
242
243You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle.
247
248See the C<starttls> method for when need to start TLS negotiation later.
249
250=item tls_ctx => $ssl_ctx
251
252Use the given Net::SSLeay::CTX object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255
256=item json => JSON or JSON::XS object
257
258This is the json coder object used by the C<json> read and write types.
259
260If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one, which will write and expect UTF-8 encoded JSON texts.
262
263Note that you are responsible to depend on the JSON module if you want to
264use this functionality, as AnyEvent does not have a dependency itself.
265
266=item filter_r => $cb
267
268=item filter_w => $cb
269
270These exist, but are undocumented at this time.
271
138=back 272=back
139 273
140=cut 274=cut
141 275
142sub new { 276sub new {
146 280
147 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 281 $self->{fh} or Carp::croak "mandatory argument fh is missing";
148 282
149 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 283 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
150 284
151 $self->on_eof ((delete $self->{on_eof} ) or Carp::croak "mandatory argument on_eof is missing"); 285 if ($self->{tls}) {
286 require Net::SSLeay;
287 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
288 }
152 289
153 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 290 $self->{_activity} = AnyEvent->now;
291 $self->_timeout;
292
154 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 293 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
155 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 294 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
156 295
157 $self->start_read; 296 $self->start_read
297 if $self->{on_read};
158 298
159 $self 299 $self
160} 300}
161 301
162sub _shutdown { 302sub _shutdown {
163 my ($self) = @_; 303 my ($self) = @_;
164 304
305 delete $self->{_tw};
165 delete $self->{rw}; 306 delete $self->{_rw};
166 delete $self->{ww}; 307 delete $self->{_ww};
167 delete $self->{fh}; 308 delete $self->{fh};
168}
169 309
310 $self->stoptls;
311
312 delete $self->{on_read};
313 delete $self->{_queue};
314}
315
170sub error { 316sub _error {
171 my ($self) = @_; 317 my ($self, $errno, $fatal) = @_;
172 318
173 {
174 local $!;
175 $self->_shutdown; 319 $self->_shutdown
176 } 320 if $fatal;
321
322 $! = $errno;
177 323
178 if ($self->{on_error}) { 324 if ($self->{on_error}) {
179 $self->{on_error}($self); 325 $self->{on_error}($self, $fatal);
180 } else { 326 } else {
181 die "AnyEvent::Handle uncaught fatal error: $!"; 327 Carp::croak "AnyEvent::Handle uncaught error: $!";
182 } 328 }
183} 329}
184 330
185=item $fh = $handle->fh 331=item $fh = $handle->fh
186 332
187This method returns the filehandle of the L<AnyEvent::Handle> object. 333This method returns the file handle of the L<AnyEvent::Handle> object.
188 334
189=cut 335=cut
190 336
191sub fh { $_[0]->{fh} } 337sub fh { $_[0]{fh} }
192 338
193=item $handle->on_error ($cb) 339=item $handle->on_error ($cb)
194 340
195Replace the current C<on_error> callback (see the C<on_error> constructor argument). 341Replace the current C<on_error> callback (see the C<on_error> constructor argument).
196 342
208 354
209sub on_eof { 355sub on_eof {
210 $_[0]{on_eof} = $_[1]; 356 $_[0]{on_eof} = $_[1];
211} 357}
212 358
359=item $handle->on_timeout ($cb)
360
361Replace the current C<on_timeout> callback, or disables the callback
362(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
363argument.
364
365=cut
366
367sub on_timeout {
368 $_[0]{on_timeout} = $_[1];
369}
370
371=item $handle->autocork ($boolean)
372
373Enables or disables the current autocork behaviour (see C<autocork>
374constructor argument).
375
376=cut
377
378=item $handle->no_delay ($boolean)
379
380Enables or disables the C<no_delay> setting (see constructor argument of
381the same name for details).
382
383=cut
384
385sub no_delay {
386 $_[0]{no_delay} = $_[1];
387
388 eval {
389 local $SIG{__DIE__};
390 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
391 };
392}
393
394#############################################################################
395
396=item $handle->timeout ($seconds)
397
398Configures (or disables) the inactivity timeout.
399
400=cut
401
402sub timeout {
403 my ($self, $timeout) = @_;
404
405 $self->{timeout} = $timeout;
406 $self->_timeout;
407}
408
409# reset the timeout watcher, as neccessary
410# also check for time-outs
411sub _timeout {
412 my ($self) = @_;
413
414 if ($self->{timeout}) {
415 my $NOW = AnyEvent->now;
416
417 # when would the timeout trigger?
418 my $after = $self->{_activity} + $self->{timeout} - $NOW;
419
420 # now or in the past already?
421 if ($after <= 0) {
422 $self->{_activity} = $NOW;
423
424 if ($self->{on_timeout}) {
425 $self->{on_timeout}($self);
426 } else {
427 $self->_error (&Errno::ETIMEDOUT);
428 }
429
430 # callback could have changed timeout value, optimise
431 return unless $self->{timeout};
432
433 # calculate new after
434 $after = $self->{timeout};
435 }
436
437 Scalar::Util::weaken $self;
438 return unless $self; # ->error could have destroyed $self
439
440 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
441 delete $self->{_tw};
442 $self->_timeout;
443 });
444 } else {
445 delete $self->{_tw};
446 }
447}
448
213############################################################################# 449#############################################################################
214 450
215=back 451=back
216 452
217=head2 WRITE QUEUE 453=head2 WRITE QUEUE
220for reading. 456for reading.
221 457
222The write queue is very simple: you can add data to its end, and 458The write queue is very simple: you can add data to its end, and
223AnyEvent::Handle will automatically try to get rid of it for you. 459AnyEvent::Handle will automatically try to get rid of it for you.
224 460
225When data could be writtena nd the write buffer is shorter then the low 461When data could be written and the write buffer is shorter then the low
226water mark, the C<on_drain> callback will be invoked. 462water mark, the C<on_drain> callback will be invoked.
227 463
228=over 4 464=over 4
229 465
230=item $handle->on_drain ($cb) 466=item $handle->on_drain ($cb)
249want (only limited by the available memory), as C<AnyEvent::Handle> 485want (only limited by the available memory), as C<AnyEvent::Handle>
250buffers it independently of the kernel. 486buffers it independently of the kernel.
251 487
252=cut 488=cut
253 489
254sub push_write { 490sub _drain_wbuf {
255 my ($self, $data) = @_; 491 my ($self) = @_;
256 492
257 $self->{wbuf} .= $data; 493 if (!$self->{_ww} && length $self->{wbuf}) {
258 494
259 unless ($self->{ww}) {
260 Scalar::Util::weaken $self; 495 Scalar::Util::weaken $self;
496
261 my $cb = sub { 497 my $cb = sub {
262 my $len = syswrite $self->{fh}, $self->{wbuf}; 498 my $len = syswrite $self->{fh}, $self->{wbuf};
263 499
264 if ($len > 0) { 500 if ($len >= 0) {
265 substr $self->{wbuf}, 0, $len, ""; 501 substr $self->{wbuf}, 0, $len, "";
266 502
503 $self->{_activity} = AnyEvent->now;
267 504
268 $self->{on_drain}($self) 505 $self->{on_drain}($self)
269 if $self->{low_water_mark} >= length $self->{wbuf} 506 if $self->{low_water_mark} >= length $self->{wbuf}
270 && $self->{on_drain}; 507 && $self->{on_drain};
271 508
272 delete $self->{ww} unless length $self->{wbuf}; 509 delete $self->{_ww} unless length $self->{wbuf};
273 } elsif ($! != EAGAIN && $! != EINTR) { 510 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
274 $self->error; 511 $self->_error ($!, 1);
275 } 512 }
276 }; 513 };
277 514
515 # try to write data immediately
516 $cb->() unless $self->{autocork};
517
518 # if still data left in wbuf, we need to poll
278 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 519 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
279 520 if length $self->{wbuf};
280 $cb->($self);
281 }; 521 };
282} 522}
523
524our %WH;
525
526sub register_write_type($$) {
527 $WH{$_[0]} = $_[1];
528}
529
530sub push_write {
531 my $self = shift;
532
533 if (@_ > 1) {
534 my $type = shift;
535
536 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
537 ->($self, @_);
538 }
539
540 if ($self->{filter_w}) {
541 $self->{filter_w}($self, \$_[0]);
542 } else {
543 $self->{wbuf} .= $_[0];
544 $self->_drain_wbuf;
545 }
546}
547
548=item $handle->push_write (type => @args)
549
550Instead of formatting your data yourself, you can also let this module do
551the job by specifying a type and type-specific arguments.
552
553Predefined types are (if you have ideas for additional types, feel free to
554drop by and tell us):
555
556=over 4
557
558=item netstring => $string
559
560Formats the given value as netstring
561(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
562
563=cut
564
565register_write_type netstring => sub {
566 my ($self, $string) = @_;
567
568 sprintf "%d:%s,", (length $string), $string
569};
570
571=item packstring => $format, $data
572
573An octet string prefixed with an encoded length. The encoding C<$format>
574uses the same format as a Perl C<pack> format, but must specify a single
575integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
576optional C<!>, C<< < >> or C<< > >> modifier).
577
578=cut
579
580register_write_type packstring => sub {
581 my ($self, $format, $string) = @_;
582
583 pack "$format/a*", $string
584};
585
586=item json => $array_or_hashref
587
588Encodes the given hash or array reference into a JSON object. Unless you
589provide your own JSON object, this means it will be encoded to JSON text
590in UTF-8.
591
592JSON objects (and arrays) are self-delimiting, so you can write JSON at
593one end of a handle and read them at the other end without using any
594additional framing.
595
596The generated JSON text is guaranteed not to contain any newlines: While
597this module doesn't need delimiters after or between JSON texts to be
598able to read them, many other languages depend on that.
599
600A simple RPC protocol that interoperates easily with others is to send
601JSON arrays (or objects, although arrays are usually the better choice as
602they mimic how function argument passing works) and a newline after each
603JSON text:
604
605 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
606 $handle->push_write ("\012");
607
608An AnyEvent::Handle receiver would simply use the C<json> read type and
609rely on the fact that the newline will be skipped as leading whitespace:
610
611 $handle->push_read (json => sub { my $array = $_[1]; ... });
612
613Other languages could read single lines terminated by a newline and pass
614this line into their JSON decoder of choice.
615
616=cut
617
618register_write_type json => sub {
619 my ($self, $ref) = @_;
620
621 require JSON;
622
623 $self->{json} ? $self->{json}->encode ($ref)
624 : JSON::encode_json ($ref)
625};
626
627=item storable => $reference
628
629Freezes the given reference using L<Storable> and writes it to the
630handle. Uses the C<nfreeze> format.
631
632=cut
633
634register_write_type storable => sub {
635 my ($self, $ref) = @_;
636
637 require Storable;
638
639 pack "w/a*", Storable::nfreeze ($ref)
640};
641
642=back
643
644=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
645
646This function (not method) lets you add your own types to C<push_write>.
647Whenever the given C<type> is used, C<push_write> will invoke the code
648reference with the handle object and the remaining arguments.
649
650The code reference is supposed to return a single octet string that will
651be appended to the write buffer.
652
653Note that this is a function, and all types registered this way will be
654global, so try to use unique names.
655
656=cut
283 657
284############################################################################# 658#############################################################################
285 659
286=back 660=back
287 661
294ways, the "simple" way, using only C<on_read> and the "complex" way, using 668ways, the "simple" way, using only C<on_read> and the "complex" way, using
295a queue. 669a queue.
296 670
297In the simple case, you just install an C<on_read> callback and whenever 671In the simple case, you just install an C<on_read> callback and whenever
298new data arrives, it will be called. You can then remove some data (if 672new data arrives, it will be called. You can then remove some data (if
299enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 673enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
300or not. 674leave the data there if you want to accumulate more (e.g. when only a
675partial message has been received so far).
301 676
302In the more complex case, you want to queue multiple callbacks. In this 677In the more complex case, you want to queue multiple callbacks. In this
303case, AnyEvent::Handle will call the first queued callback each time new 678case, AnyEvent::Handle will call the first queued callback each time new
304data arrives and removes it when it has done its job (see C<push_read>, 679data arrives (also the first time it is queued) and removes it when it has
305below). 680done its job (see C<push_read>, below).
306 681
307This way you can, for example, push three line-reads, followed by reading 682This way you can, for example, push three line-reads, followed by reading
308a chunk of data, and AnyEvent::Handle will execute them in order. 683a chunk of data, and AnyEvent::Handle will execute them in order.
309 684
310Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 685Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
311the specified number of bytes which give an XML datagram. 686the specified number of bytes which give an XML datagram.
312 687
313 # in the default state, expect some header bytes 688 # in the default state, expect some header bytes
314 $handle->on_read (sub { 689 $handle->on_read (sub {
315 # some data is here, now queue the length-header-read (4 octets) 690 # some data is here, now queue the length-header-read (4 octets)
316 shift->unshift_read_chunk (4, sub { 691 shift->unshift_read (chunk => 4, sub {
317 # header arrived, decode 692 # header arrived, decode
318 my $len = unpack "N", $_[1]; 693 my $len = unpack "N", $_[1];
319 694
320 # now read the payload 695 # now read the payload
321 shift->unshift_read_chunk ($len, sub { 696 shift->unshift_read (chunk => $len, sub {
322 my $xml = $_[1]; 697 my $xml = $_[1];
323 # handle xml 698 # handle xml
324 }); 699 });
325 }); 700 });
326 }); 701 });
327 702
328Example 2: Implement a client for a protocol that replies either with 703Example 2: Implement a client for a protocol that replies either with "OK"
329"OK" and another line or "ERROR" for one request, and 64 bytes for the 704and another line or "ERROR" for the first request that is sent, and 64
330second request. Due tot he availability of a full queue, we can just 705bytes for the second request. Due to the availability of a queue, we can
331pipeline sending both requests and manipulate the queue as necessary in 706just pipeline sending both requests and manipulate the queue as necessary
332the callbacks: 707in the callbacks.
333 708
334 # request one 709When the first callback is called and sees an "OK" response, it will
710C<unshift> another line-read. This line-read will be queued I<before> the
71164-byte chunk callback.
712
713 # request one, returns either "OK + extra line" or "ERROR"
335 $handle->push_write ("request 1\015\012"); 714 $handle->push_write ("request 1\015\012");
336 715
337 # we expect "ERROR" or "OK" as response, so push a line read 716 # we expect "ERROR" or "OK" as response, so push a line read
338 $handle->push_read_line (sub { 717 $handle->push_read (line => sub {
339 # if we got an "OK", we have to _prepend_ another line, 718 # if we got an "OK", we have to _prepend_ another line,
340 # so it will be read before the second request reads its 64 bytes 719 # so it will be read before the second request reads its 64 bytes
341 # which are already in the queue when this callback is called 720 # which are already in the queue when this callback is called
342 # we don't do this in case we got an error 721 # we don't do this in case we got an error
343 if ($_[1] eq "OK") { 722 if ($_[1] eq "OK") {
344 $_[0]->unshift_read_line (sub { 723 $_[0]->unshift_read (line => sub {
345 my $response = $_[1]; 724 my $response = $_[1];
346 ... 725 ...
347 }); 726 });
348 } 727 }
349 }); 728 });
350 729
351 # request two 730 # request two, simply returns 64 octets
352 $handle->push_write ("request 2\015\012"); 731 $handle->push_write ("request 2\015\012");
353 732
354 # simply read 64 bytes, always 733 # simply read 64 bytes, always
355 $handle->push_read_chunk (64, sub { 734 $handle->push_read (chunk => 64, sub {
356 my $response = $_[1]; 735 my $response = $_[1];
357 ... 736 ...
358 }); 737 });
359 738
360=over 4 739=over 4
362=cut 741=cut
363 742
364sub _drain_rbuf { 743sub _drain_rbuf {
365 my ($self) = @_; 744 my ($self) = @_;
366 745
367 return if $self->{in_drain};
368 local $self->{in_drain} = 1; 746 local $self->{_in_drain} = 1;
369 747
748 if (
749 defined $self->{rbuf_max}
750 && $self->{rbuf_max} < length $self->{rbuf}
751 ) {
752 $self->_error (&Errno::ENOSPC, 1), return;
753 }
754
755 while () {
370 while (my $len = length $self->{rbuf}) { 756 my $len = length $self->{rbuf};
371 no strict 'refs'; 757
372 if (my $cb = shift @{ $self->{queue} }) { 758 if (my $cb = shift @{ $self->{_queue} }) {
373 if (!$cb->($self)) { 759 unless ($cb->($self)) {
374 if ($self->{eof}) { 760 if ($self->{_eof}) {
375 # no progress can be made (not enough data and no data forthcoming) 761 # no progress can be made (not enough data and no data forthcoming)
376 $! = &Errno::EPIPE; return $self->error; 762 $self->_error (&Errno::EPIPE, 1), return;
377 } 763 }
378 764
379 unshift @{ $self->{queue} }, $cb; 765 unshift @{ $self->{_queue} }, $cb;
380 return; 766 last;
381 } 767 }
382 } elsif ($self->{on_read}) { 768 } elsif ($self->{on_read}) {
769 last unless $len;
770
383 $self->{on_read}($self); 771 $self->{on_read}($self);
384 772
385 if ( 773 if (
386 $self->{eof} # if no further data will arrive
387 && $len == length $self->{rbuf} # and no data has been consumed 774 $len == length $self->{rbuf} # if no data has been consumed
388 && !@{ $self->{queue} } # and the queue is still empty 775 && !@{ $self->{_queue} } # and the queue is still empty
389 && $self->{on_read} # and we still want to read data 776 && $self->{on_read} # but we still have on_read
390 ) { 777 ) {
778 # no further data will arrive
391 # then no progress can be made 779 # so no progress can be made
392 $! = &Errno::EPIPE; return $self->error; 780 $self->_error (&Errno::EPIPE, 1), return
781 if $self->{_eof};
782
783 last; # more data might arrive
393 } 784 }
394 } else { 785 } else {
395 # read side becomes idle 786 # read side becomes idle
396 delete $self->{rw}; 787 delete $self->{_rw};
397 return; 788 last;
398 } 789 }
399 } 790 }
400 791
401 if ($self->{eof}) { 792 if ($self->{_eof}) {
402 $self->_shutdown; 793 if ($self->{on_eof}) {
403 $self->{on_eof}($self); 794 $self->{on_eof}($self)
795 } else {
796 $self->_error (0, 1);
797 }
798 }
799
800 # may need to restart read watcher
801 unless ($self->{_rw}) {
802 $self->start_read
803 if $self->{on_read} || @{ $self->{_queue} };
404 } 804 }
405} 805}
406 806
407=item $handle->on_read ($cb) 807=item $handle->on_read ($cb)
408 808
414 814
415sub on_read { 815sub on_read {
416 my ($self, $cb) = @_; 816 my ($self, $cb) = @_;
417 817
418 $self->{on_read} = $cb; 818 $self->{on_read} = $cb;
819 $self->_drain_rbuf if $cb && !$self->{_in_drain};
419} 820}
420 821
421=item $handle->rbuf 822=item $handle->rbuf
422 823
423Returns the read buffer (as a modifiable lvalue). 824Returns the read buffer (as a modifiable lvalue).
442Append the given callback to the end of the queue (C<push_read>) or 843Append the given callback to the end of the queue (C<push_read>) or
443prepend it (C<unshift_read>). 844prepend it (C<unshift_read>).
444 845
445The callback is called each time some additional read data arrives. 846The callback is called each time some additional read data arrives.
446 847
447It must check wether enough data is in the read buffer already. 848It must check whether enough data is in the read buffer already.
448 849
449If not enough data is available, it must return the empty list or a false 850If not enough data is available, it must return the empty list or a false
450value, in which case it will be called repeatedly until enough data is 851value, in which case it will be called repeatedly until enough data is
451available (or an error condition is detected). 852available (or an error condition is detected).
452 853
454interested in (which can be none at all) and return a true value. After returning 855interested in (which can be none at all) and return a true value. After returning
455true, it will be removed from the queue. 856true, it will be removed from the queue.
456 857
457=cut 858=cut
458 859
860our %RH;
861
862sub register_read_type($$) {
863 $RH{$_[0]} = $_[1];
864}
865
459sub push_read { 866sub push_read {
460 my ($self, $cb) = @_; 867 my $self = shift;
868 my $cb = pop;
461 869
870 if (@_) {
871 my $type = shift;
872
873 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
874 ->($self, $cb, @_);
875 }
876
462 push @{ $self->{queue} }, $cb; 877 push @{ $self->{_queue} }, $cb;
463 $self->_drain_rbuf; 878 $self->_drain_rbuf unless $self->{_in_drain};
464} 879}
465 880
466sub unshift_read { 881sub unshift_read {
467 my ($self, $cb) = @_; 882 my $self = shift;
883 my $cb = pop;
468 884
885 if (@_) {
886 my $type = shift;
887
888 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
889 ->($self, $cb, @_);
890 }
891
892
469 push @{ $self->{queue} }, $cb; 893 unshift @{ $self->{_queue} }, $cb;
470 $self->_drain_rbuf; 894 $self->_drain_rbuf unless $self->{_in_drain};
471} 895}
472 896
473=item $handle->push_read_chunk ($len, $cb->($self, $data)) 897=item $handle->push_read (type => @args, $cb)
474 898
475=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 899=item $handle->unshift_read (type => @args, $cb)
476 900
477Append the given callback to the end of the queue (C<push_read_chunk>) or 901Instead of providing a callback that parses the data itself you can chose
478prepend it (C<unshift_read_chunk>). 902between a number of predefined parsing formats, for chunks of data, lines
903etc.
479 904
480The callback will be called only once C<$len> bytes have been read, and 905Predefined types are (if you have ideas for additional types, feel free to
481these C<$len> bytes will be passed to the callback. 906drop by and tell us):
482 907
483=cut 908=over 4
484 909
485sub _read_chunk($$) { 910=item chunk => $octets, $cb->($handle, $data)
911
912Invoke the callback only once C<$octets> bytes have been read. Pass the
913data read to the callback. The callback will never be called with less
914data.
915
916Example: read 2 bytes.
917
918 $handle->push_read (chunk => 2, sub {
919 warn "yay ", unpack "H*", $_[1];
920 });
921
922=cut
923
924register_read_type chunk => sub {
486 my ($self, $len, $cb) = @_; 925 my ($self, $cb, $len) = @_;
487 926
488 sub { 927 sub {
489 $len <= length $_[0]{rbuf} or return; 928 $len <= length $_[0]{rbuf} or return;
490 $cb->($self, $_[0], substr $_[0]{rbuf}, 0, $len, ""); 929 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
491 1 930 1
492 } 931 }
493} 932};
494 933
495sub push_read_chunk { 934=item line => [$eol, ]$cb->($handle, $line, $eol)
496 $_[0]->push_read (&_read_chunk);
497}
498
499
500sub unshift_read_chunk {
501 $_[0]->unshift_read (&_read_chunk);
502}
503
504=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
505
506=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
507
508Append the given callback to the end of the queue (C<push_read_line>) or
509prepend it (C<unshift_read_line>).
510 935
511The callback will be called only once a full line (including the end of 936The callback will be called only once a full line (including the end of
512line marker, C<$eol>) has been read. This line (excluding the end of line 937line marker, C<$eol>) has been read. This line (excluding the end of line
513marker) will be passed to the callback as second argument (C<$line>), and 938marker) will be passed to the callback as second argument (C<$line>), and
514the end of line marker as the third argument (C<$eol>). 939the end of line marker as the third argument (C<$eol>).
525Partial lines at the end of the stream will never be returned, as they are 950Partial lines at the end of the stream will never be returned, as they are
526not marked by the end of line marker. 951not marked by the end of line marker.
527 952
528=cut 953=cut
529 954
530sub _read_line($$) { 955register_read_type line => sub {
531 my $self = shift; 956 my ($self, $cb, $eol) = @_;
532 my $cb = pop;
533 my $eol = @_ ? shift : qr|(\015?\012)|;
534 my $pos;
535 957
958 if (@_ < 3) {
959 # this is more than twice as fast as the generic code below
960 sub {
961 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
962
963 $cb->($_[0], $1, $2);
964 1
965 }
966 } else {
536 $eol = qr|(\Q$eol\E)| unless ref $eol; 967 $eol = quotemeta $eol unless ref $eol;
537 $eol = qr|^(.*?)($eol)|; 968 $eol = qr|^(.*?)($eol)|s;
969
970 sub {
971 $_[0]{rbuf} =~ s/$eol// or return;
972
973 $cb->($_[0], $1, $2);
974 1
975 }
976 }
977};
978
979=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
980
981Makes a regex match against the regex object C<$accept> and returns
982everything up to and including the match.
983
984Example: read a single line terminated by '\n'.
985
986 $handle->push_read (regex => qr<\n>, sub { ... });
987
988If C<$reject> is given and not undef, then it determines when the data is
989to be rejected: it is matched against the data when the C<$accept> regex
990does not match and generates an C<EBADMSG> error when it matches. This is
991useful to quickly reject wrong data (to avoid waiting for a timeout or a
992receive buffer overflow).
993
994Example: expect a single decimal number followed by whitespace, reject
995anything else (not the use of an anchor).
996
997 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
998
999If C<$skip> is given and not C<undef>, then it will be matched against
1000the receive buffer when neither C<$accept> nor C<$reject> match,
1001and everything preceding and including the match will be accepted
1002unconditionally. This is useful to skip large amounts of data that you
1003know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1004have to start matching from the beginning. This is purely an optimisation
1005and is usually worth only when you expect more than a few kilobytes.
1006
1007Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1008expect the header to be very large (it isn't in practise, but...), we use
1009a skip regex to skip initial portions. The skip regex is tricky in that
1010it only accepts something not ending in either \015 or \012, as these are
1011required for the accept regex.
1012
1013 $handle->push_read (regex =>
1014 qr<\015\012\015\012>,
1015 undef, # no reject
1016 qr<^.*[^\015\012]>,
1017 sub { ... });
1018
1019=cut
1020
1021register_read_type regex => sub {
1022 my ($self, $cb, $accept, $reject, $skip) = @_;
1023
1024 my $data;
1025 my $rbuf = \$self->{rbuf};
538 1026
539 sub { 1027 sub {
540 $_[0]{rbuf} =~ s/$eol// or return; 1028 # accept
541 1029 if ($$rbuf =~ $accept) {
1030 $data .= substr $$rbuf, 0, $+[0], "";
542 $cb->($self, $1, $2); 1031 $cb->($self, $data);
1032 return 1;
1033 }
1034
1035 # reject
1036 if ($reject && $$rbuf =~ $reject) {
1037 $self->_error (&Errno::EBADMSG);
1038 }
1039
1040 # skip
1041 if ($skip && $$rbuf =~ $skip) {
1042 $data .= substr $$rbuf, 0, $+[0], "";
1043 }
1044
1045 ()
1046 }
1047};
1048
1049=item netstring => $cb->($handle, $string)
1050
1051A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1052
1053Throws an error with C<$!> set to EBADMSG on format violations.
1054
1055=cut
1056
1057register_read_type netstring => sub {
1058 my ($self, $cb) = @_;
1059
1060 sub {
1061 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1062 if ($_[0]{rbuf} =~ /[^0-9]/) {
1063 $self->_error (&Errno::EBADMSG);
1064 }
1065 return;
1066 }
1067
1068 my $len = $1;
1069
1070 $self->unshift_read (chunk => $len, sub {
1071 my $string = $_[1];
1072 $_[0]->unshift_read (chunk => 1, sub {
1073 if ($_[1] eq ",") {
1074 $cb->($_[0], $string);
1075 } else {
1076 $self->_error (&Errno::EBADMSG);
1077 }
1078 });
1079 });
1080
543 1 1081 1
544 } 1082 }
545} 1083};
546 1084
547sub push_read_line { 1085=item packstring => $format, $cb->($handle, $string)
548 $_[0]->push_read (&_read_line);
549}
550 1086
551sub unshift_read_line { 1087An octet string prefixed with an encoded length. The encoding C<$format>
552 $_[0]->unshift_read (&_read_line); 1088uses the same format as a Perl C<pack> format, but must specify a single
553} 1089integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1090optional C<!>, C<< < >> or C<< > >> modifier).
1091
1092DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1093
1094Example: read a block of data prefixed by its length in BER-encoded
1095format (very efficient).
1096
1097 $handle->push_read (packstring => "w", sub {
1098 my ($handle, $data) = @_;
1099 });
1100
1101=cut
1102
1103register_read_type packstring => sub {
1104 my ($self, $cb, $format) = @_;
1105
1106 sub {
1107 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1108 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1109 or return;
1110
1111 $format = length pack $format, $len;
1112
1113 # bypass unshift if we already have the remaining chunk
1114 if ($format + $len <= length $_[0]{rbuf}) {
1115 my $data = substr $_[0]{rbuf}, $format, $len;
1116 substr $_[0]{rbuf}, 0, $format + $len, "";
1117 $cb->($_[0], $data);
1118 } else {
1119 # remove prefix
1120 substr $_[0]{rbuf}, 0, $format, "";
1121
1122 # read remaining chunk
1123 $_[0]->unshift_read (chunk => $len, $cb);
1124 }
1125
1126 1
1127 }
1128};
1129
1130=item json => $cb->($handle, $hash_or_arrayref)
1131
1132Reads a JSON object or array, decodes it and passes it to the callback.
1133
1134If a C<json> object was passed to the constructor, then that will be used
1135for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1136
1137This read type uses the incremental parser available with JSON version
11382.09 (and JSON::XS version 2.2) and above. You have to provide a
1139dependency on your own: this module will load the JSON module, but
1140AnyEvent does not depend on it itself.
1141
1142Since JSON texts are fully self-delimiting, the C<json> read and write
1143types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1144the C<json> write type description, above, for an actual example.
1145
1146=cut
1147
1148register_read_type json => sub {
1149 my ($self, $cb) = @_;
1150
1151 require JSON;
1152
1153 my $data;
1154 my $rbuf = \$self->{rbuf};
1155
1156 my $json = $self->{json} ||= JSON->new->utf8;
1157
1158 sub {
1159 my $ref = $json->incr_parse ($self->{rbuf});
1160
1161 if ($ref) {
1162 $self->{rbuf} = $json->incr_text;
1163 $json->incr_text = "";
1164 $cb->($self, $ref);
1165
1166 1
1167 } else {
1168 $self->{rbuf} = "";
1169 ()
1170 }
1171 }
1172};
1173
1174=item storable => $cb->($handle, $ref)
1175
1176Deserialises a L<Storable> frozen representation as written by the
1177C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1178data).
1179
1180Raises C<EBADMSG> error if the data could not be decoded.
1181
1182=cut
1183
1184register_read_type storable => sub {
1185 my ($self, $cb) = @_;
1186
1187 require Storable;
1188
1189 sub {
1190 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1191 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1192 or return;
1193
1194 my $format = length pack "w", $len;
1195
1196 # bypass unshift if we already have the remaining chunk
1197 if ($format + $len <= length $_[0]{rbuf}) {
1198 my $data = substr $_[0]{rbuf}, $format, $len;
1199 substr $_[0]{rbuf}, 0, $format + $len, "";
1200 $cb->($_[0], Storable::thaw ($data));
1201 } else {
1202 # remove prefix
1203 substr $_[0]{rbuf}, 0, $format, "";
1204
1205 # read remaining chunk
1206 $_[0]->unshift_read (chunk => $len, sub {
1207 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1208 $cb->($_[0], $ref);
1209 } else {
1210 $self->_error (&Errno::EBADMSG);
1211 }
1212 });
1213 }
1214
1215 1
1216 }
1217};
1218
1219=back
1220
1221=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1222
1223This function (not method) lets you add your own types to C<push_read>.
1224
1225Whenever the given C<type> is used, C<push_read> will invoke the code
1226reference with the handle object, the callback and the remaining
1227arguments.
1228
1229The code reference is supposed to return a callback (usually a closure)
1230that works as a plain read callback (see C<< ->push_read ($cb) >>).
1231
1232It should invoke the passed callback when it is done reading (remember to
1233pass C<$handle> as first argument as all other callbacks do that).
1234
1235Note that this is a function, and all types registered this way will be
1236global, so try to use unique names.
1237
1238For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1239search for C<register_read_type>)).
554 1240
555=item $handle->stop_read 1241=item $handle->stop_read
556 1242
557=item $handle->start_read 1243=item $handle->start_read
558 1244
559In rare cases you actually do not want to read anything form the 1245In rare cases you actually do not want to read anything from the
560socket. In this case you can call C<stop_read>. Neither C<on_read> no 1246socket. In this case you can call C<stop_read>. Neither C<on_read> nor
561any queued callbacks will be executed then. To start readign again, call 1247any queued callbacks will be executed then. To start reading again, call
562C<start_read>. 1248C<start_read>.
1249
1250Note that AnyEvent::Handle will automatically C<start_read> for you when
1251you change the C<on_read> callback or push/unshift a read callback, and it
1252will automatically C<stop_read> for you when neither C<on_read> is set nor
1253there are any read requests in the queue.
563 1254
564=cut 1255=cut
565 1256
566sub stop_read { 1257sub stop_read {
567 my ($self) = @_; 1258 my ($self) = @_;
568 1259
569 delete $self->{rw}; 1260 delete $self->{_rw};
570} 1261}
571 1262
572sub start_read { 1263sub start_read {
573 my ($self) = @_; 1264 my ($self) = @_;
574 1265
575 unless ($self->{rw} || $self->{eof}) { 1266 unless ($self->{_rw} || $self->{_eof}) {
576 Scalar::Util::weaken $self; 1267 Scalar::Util::weaken $self;
577 1268
578 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1269 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1270 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
579 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1271 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
580 1272
581 if ($len > 0) { 1273 if ($len > 0) {
582 if (defined $self->{rbuf_max}) { 1274 $self->{_activity} = AnyEvent->now;
583 if ($self->{rbuf_max} < length $self->{rbuf}) { 1275
584 $! = &Errno::ENOSPC; return $self->error; 1276 $self->{filter_r}
585 } 1277 ? $self->{filter_r}($self, $rbuf)
586 } 1278 : $self->{_in_drain} || $self->_drain_rbuf;
587 1279
588 } elsif (defined $len) { 1280 } elsif (defined $len) {
589 $self->{eof} = 1;
590 delete $self->{rw}; 1281 delete $self->{_rw};
1282 $self->{_eof} = 1;
1283 $self->_drain_rbuf unless $self->{_in_drain};
591 1284
592 } elsif ($! != EAGAIN && $! != EINTR) { 1285 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
593 return $self->error; 1286 return $self->_error ($!, 1);
594 } 1287 }
595
596 $self->_drain_rbuf;
597 }); 1288 });
598 } 1289 }
599} 1290}
600 1291
1292sub _dotls {
1293 my ($self) = @_;
1294
1295 my $buf;
1296
1297 if (length $self->{_tls_wbuf}) {
1298 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1299 substr $self->{_tls_wbuf}, 0, $len, "";
1300 }
1301 }
1302
1303 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1304 $self->{wbuf} .= $buf;
1305 $self->_drain_wbuf;
1306 }
1307
1308 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1309 if (length $buf) {
1310 $self->{rbuf} .= $buf;
1311 $self->_drain_rbuf unless $self->{_in_drain};
1312 } else {
1313 # let's treat SSL-eof as we treat normal EOF
1314 $self->{_eof} = 1;
1315 $self->_shutdown;
1316 return;
1317 }
1318 }
1319
1320 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1321
1322 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1323 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1324 return $self->_error ($!, 1);
1325 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1326 return $self->_error (&Errno::EIO, 1);
1327 }
1328
1329 # all others are fine for our purposes
1330 }
1331}
1332
1333=item $handle->starttls ($tls[, $tls_ctx])
1334
1335Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1336object is created, you can also do that at a later time by calling
1337C<starttls>.
1338
1339The first argument is the same as the C<tls> constructor argument (either
1340C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1341
1342The second argument is the optional C<Net::SSLeay::CTX> object that is
1343used when AnyEvent::Handle has to create its own TLS connection object.
1344
1345The TLS connection object will end up in C<< $handle->{tls} >> after this
1346call and can be used or changed to your liking. Note that the handshake
1347might have already started when this function returns.
1348
1349=cut
1350
1351sub starttls {
1352 my ($self, $ssl, $ctx) = @_;
1353
1354 $self->stoptls;
1355
1356 if ($ssl eq "accept") {
1357 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1358 Net::SSLeay::set_accept_state ($ssl);
1359 } elsif ($ssl eq "connect") {
1360 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1361 Net::SSLeay::set_connect_state ($ssl);
1362 }
1363
1364 $self->{tls} = $ssl;
1365
1366 # basically, this is deep magic (because SSL_read should have the same issues)
1367 # but the openssl maintainers basically said: "trust us, it just works".
1368 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1369 # and mismaintained ssleay-module doesn't even offer them).
1370 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1371 Net::SSLeay::CTX_set_mode ($self->{tls},
1372 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1373 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1374
1375 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377
1378 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1379
1380 $self->{filter_w} = sub {
1381 $_[0]{_tls_wbuf} .= ${$_[1]};
1382 &_dotls;
1383 };
1384 $self->{filter_r} = sub {
1385 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1386 &_dotls;
1387 };
1388}
1389
1390=item $handle->stoptls
1391
1392Destroys the SSL connection, if any. Partial read or write data will be
1393lost.
1394
1395=cut
1396
1397sub stoptls {
1398 my ($self) = @_;
1399
1400 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1401
1402 delete $self->{_rbio};
1403 delete $self->{_wbio};
1404 delete $self->{_tls_wbuf};
1405 delete $self->{filter_r};
1406 delete $self->{filter_w};
1407}
1408
1409sub DESTROY {
1410 my $self = shift;
1411
1412 $self->stoptls;
1413
1414 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1415
1416 if ($linger && length $self->{wbuf}) {
1417 my $fh = delete $self->{fh};
1418 my $wbuf = delete $self->{wbuf};
1419
1420 my @linger;
1421
1422 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1423 my $len = syswrite $fh, $wbuf, length $wbuf;
1424
1425 if ($len > 0) {
1426 substr $wbuf, 0, $len, "";
1427 } else {
1428 @linger = (); # end
1429 }
1430 });
1431 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1432 @linger = ();
1433 });
1434 }
1435}
1436
1437=item AnyEvent::Handle::TLS_CTX
1438
1439This function creates and returns the Net::SSLeay::CTX object used by
1440default for TLS mode.
1441
1442The context is created like this:
1443
1444 Net::SSLeay::load_error_strings;
1445 Net::SSLeay::SSLeay_add_ssl_algorithms;
1446 Net::SSLeay::randomize;
1447
1448 my $CTX = Net::SSLeay::CTX_new;
1449
1450 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1451
1452=cut
1453
1454our $TLS_CTX;
1455
1456sub TLS_CTX() {
1457 $TLS_CTX || do {
1458 require Net::SSLeay;
1459
1460 Net::SSLeay::load_error_strings ();
1461 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1462 Net::SSLeay::randomize ();
1463
1464 $TLS_CTX = Net::SSLeay::CTX_new ();
1465
1466 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1467
1468 $TLS_CTX
1469 }
1470}
1471
601=back 1472=back
602 1473
1474=head1 SUBCLASSING AnyEvent::Handle
1475
1476In many cases, you might want to subclass AnyEvent::Handle.
1477
1478To make this easier, a given version of AnyEvent::Handle uses these
1479conventions:
1480
1481=over 4
1482
1483=item * all constructor arguments become object members.
1484
1485At least initially, when you pass a C<tls>-argument to the constructor it
1486will end up in C<< $handle->{tls} >>. Those members might be changed or
1487mutated later on (for example C<tls> will hold the TLS connection object).
1488
1489=item * other object member names are prefixed with an C<_>.
1490
1491All object members not explicitly documented (internal use) are prefixed
1492with an underscore character, so the remaining non-C<_>-namespace is free
1493for use for subclasses.
1494
1495=item * all members not documented here and not prefixed with an underscore
1496are free to use in subclasses.
1497
1498Of course, new versions of AnyEvent::Handle may introduce more "public"
1499member variables, but thats just life, at least it is documented.
1500
1501=back
1502
603=head1 AUTHOR 1503=head1 AUTHOR
604 1504
605Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1505Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
606 1506
607=cut 1507=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines