ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.85 by root, Thu Aug 21 19:53:19 2008 UTC vs.
Revision 1.183 by root, Thu Sep 3 12:45:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
163 243
164Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
165 245
166=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
167 247
171 251
172=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
173 253
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
177 257
178For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
182isn't finished). 262isn't finished).
183 263
184=item autocork => <boolean> 264=item autocork => <boolean>
185 265
186When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
191 272
192When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
195 277
196=item no_delay => <boolean> 278=item no_delay => <boolean>
197 279
198When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
201 283
202In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
204 286
205The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified.
207 318
208=item read_size => <bytes> 319=item read_size => <bytes>
209 320
210The default read block size (the amount of bytes this module will try to read 321The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 322try to read during each loop iteration, which affects memory
323requirements). Default: C<8192>.
212 324
213=item low_water_mark => <bytes> 325=item low_water_mark => <bytes>
214 326
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 327Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 328buffer: If the write reaches this size or gets even samller it is
217considered empty. 329considered empty.
218 330
331Sometimes it can be beneficial (for performance reasons) to add data to
332the write buffer before it is fully drained, but this is a rare case, as
333the operating system kernel usually buffers data as well, so the default
334is good in almost all cases.
335
219=item linger => <seconds> 336=item linger => <seconds>
220 337
221If non-zero (default: C<3600>), then the destructor of the 338If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 339AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 340write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 341socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 342system treats outstanding data at socket close time).
226 343
227This will not work for partial TLS data that could not yet been 344This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 345yet. This data will be lost. Calling the C<stoptls> method in time might
346help.
347
348=item peername => $string
349
350A string used to identify the remote site - usually the DNS hostname
351(I<not> IDN!) used to create the connection, rarely the IP address.
352
353Apart from being useful in error messages, this string is also used in TLS
354peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
355verification will be skipped when C<peername> is not specified or
356C<undef>.
229 357
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 358=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 359
232When this parameter is given, it enables TLS (SSL) mode, that means 360When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt 361AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 362established and will transparently encrypt/decrypt data afterwards.
363
364All TLS protocol errors will be signalled as C<EPROTO>, with an
365appropriate error message.
235 366
236TLS mode requires Net::SSLeay to be installed (it will be loaded 367TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 368automatically when you try to create a TLS handle): this module doesn't
369have a dependency on that module, so if your module requires it, you have
370to add the dependency yourself.
238 371
239Unlike TCP, TLS has a server and client side: for the TLS server side, use 372Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect> 373C<accept>, and for the TLS client side of a connection, use C<connect>
241mode. 374mode.
242 375
243You can also provide your own TLS connection object, but you have 376You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state> 377to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to 378or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle. 379AnyEvent::Handle. Also, this module will take ownership of this connection
380object.
247 381
382At some future point, AnyEvent::Handle might switch to another TLS
383implementation, then the option to use your own session object will go
384away.
385
386B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
387passing in the wrong integer will lead to certain crash. This most often
388happens when one uses a stylish C<< tls => 1 >> and is surprised about the
389segmentation fault.
390
248See the C<starttls> method for when need to start TLS negotiation later. 391See the C<< ->starttls >> method for when need to start TLS negotiation later.
249 392
250=item tls_ctx => $ssl_ctx 393=item tls_ctx => $anyevent_tls
251 394
252Use the given Net::SSLeay::CTX object to create the new TLS connection 395Use the given C<AnyEvent::TLS> object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is 396(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 397missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255 398
399Instead of an object, you can also specify a hash reference with C<< key
400=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
401new TLS context object.
402
403=item on_starttls => $cb->($handle, $success[, $error_message])
404
405This callback will be invoked when the TLS/SSL handshake has finished. If
406C<$success> is true, then the TLS handshake succeeded, otherwise it failed
407(C<on_stoptls> will not be called in this case).
408
409The session in C<< $handle->{tls} >> can still be examined in this
410callback, even when the handshake was not successful.
411
412TLS handshake failures will not cause C<on_error> to be invoked when this
413callback is in effect, instead, the error message will be passed to C<on_starttls>.
414
415Without this callback, handshake failures lead to C<on_error> being
416called, as normal.
417
418Note that you cannot call C<starttls> right again in this callback. If you
419need to do that, start an zero-second timer instead whose callback can
420then call C<< ->starttls >> again.
421
422=item on_stoptls => $cb->($handle)
423
424When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
425set, then it will be invoked after freeing the TLS session. If it is not,
426then a TLS shutdown condition will be treated like a normal EOF condition
427on the handle.
428
429The session in C<< $handle->{tls} >> can still be examined in this
430callback.
431
432This callback will only be called on TLS shutdowns, not when the
433underlying handle signals EOF.
434
256=item json => JSON or JSON::XS object 435=item json => JSON or JSON::XS object
257 436
258This is the json coder object used by the C<json> read and write types. 437This is the json coder object used by the C<json> read and write types.
259 438
260If you don't supply it, then AnyEvent::Handle will create and use a 439If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one, which will write and expect UTF-8 encoded JSON texts. 440suitable one (on demand), which will write and expect UTF-8 encoded JSON
441texts.
262 442
263Note that you are responsible to depend on the JSON module if you want to 443Note that you are responsible to depend on the JSON module if you want to
264use this functionality, as AnyEvent does not have a dependency itself. 444use this functionality, as AnyEvent does not have a dependency itself.
265 445
266=item filter_r => $cb
267
268=item filter_w => $cb
269
270These exist, but are undocumented at this time.
271
272=back 446=back
273 447
274=cut 448=cut
275 449
276sub new { 450sub new {
277 my $class = shift; 451 my $class = shift;
278
279 my $self = bless { @_ }, $class; 452 my $self = bless { @_ }, $class;
280 453
281 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 454 if ($self->{fh}) {
455 $self->_start;
456 return unless $self->{fh}; # could be gone by now
457
458 } elsif ($self->{connect}) {
459 require AnyEvent::Socket;
460
461 $self->{peername} = $self->{connect}[0]
462 unless exists $self->{peername};
463
464 $self->{_skip_drain_rbuf} = 1;
465
466 {
467 Scalar::Util::weaken (my $self = $self);
468
469 $self->{_connect} =
470 AnyEvent::Socket::tcp_connect (
471 $self->{connect}[0],
472 $self->{connect}[1],
473 sub {
474 my ($fh, $host, $port, $retry) = @_;
475
476 if ($fh) {
477 $self->{fh} = $fh;
478
479 delete $self->{_skip_drain_rbuf};
480 $self->_start;
481
482 $self->{on_connect}
483 and $self->{on_connect}($self, $host, $port, sub {
484 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
485 $self->{_skip_drain_rbuf} = 1;
486 &$retry;
487 });
488
489 } else {
490 if ($self->{on_connect_error}) {
491 $self->{on_connect_error}($self, "$!");
492 $self->destroy;
493 } else {
494 $self->_error ($!, 1);
495 }
496 }
497 },
498 sub {
499 local $self->{fh} = $_[0];
500
501 $self->{on_prepare}
502 ? $self->{on_prepare}->($self)
503 : ()
504 }
505 );
506 }
507
508 } else {
509 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
510 }
511
512 $self
513}
514
515sub _start {
516 my ($self) = @_;
282 517
283 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 518 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
284 519
285 if ($self->{tls}) { 520 $self->{_activity} =
286 require Net::SSLeay; 521 $self->{_ractivity} =
522 $self->{_wactivity} = AE::now;
523
524 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
525 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
526 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
527
528 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
529 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
530
531 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
532
287 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 533 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
288 } 534 if $self->{tls};
289 535
290 $self->{_activity} = AnyEvent->now;
291 $self->_timeout;
292
293 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 536 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
294 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
295 537
296 $self->start_read 538 $self->start_read
297 if $self->{on_read}; 539 if $self->{on_read} || @{ $self->{_queue} };
298 540
299 $self 541 $self->_drain_wbuf;
300}
301
302sub _shutdown {
303 my ($self) = @_;
304
305 delete $self->{_tw};
306 delete $self->{_rw};
307 delete $self->{_ww};
308 delete $self->{fh};
309
310 $self->stoptls;
311
312 delete $self->{on_read};
313 delete $self->{_queue};
314} 542}
315 543
316sub _error { 544sub _error {
317 my ($self, $errno, $fatal) = @_; 545 my ($self, $errno, $fatal, $message) = @_;
318
319 $self->_shutdown
320 if $fatal;
321 546
322 $! = $errno; 547 $! = $errno;
548 $message ||= "$!";
323 549
324 if ($self->{on_error}) { 550 if ($self->{on_error}) {
325 $self->{on_error}($self, $fatal); 551 $self->{on_error}($self, $fatal, $message);
326 } else { 552 $self->destroy if $fatal;
553 } elsif ($self->{fh}) {
554 $self->destroy;
327 Carp::croak "AnyEvent::Handle uncaught error: $!"; 555 Carp::croak "AnyEvent::Handle uncaught error: $message";
328 } 556 }
329} 557}
330 558
331=item $fh = $handle->fh 559=item $fh = $handle->fh
332 560
333This method returns the file handle of the L<AnyEvent::Handle> object. 561This method returns the file handle used to create the L<AnyEvent::Handle> object.
334 562
335=cut 563=cut
336 564
337sub fh { $_[0]{fh} } 565sub fh { $_[0]{fh} }
338 566
356 $_[0]{on_eof} = $_[1]; 584 $_[0]{on_eof} = $_[1];
357} 585}
358 586
359=item $handle->on_timeout ($cb) 587=item $handle->on_timeout ($cb)
360 588
361Replace the current C<on_timeout> callback, or disables the callback 589=item $handle->on_rtimeout ($cb)
362(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
363argument.
364 590
365=cut 591=item $handle->on_wtimeout ($cb)
366 592
367sub on_timeout { 593Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
368 $_[0]{on_timeout} = $_[1]; 594callback, or disables the callback (but not the timeout) if C<$cb> =
369} 595C<undef>. See the C<timeout> constructor argument and method.
596
597=cut
598
599# see below
370 600
371=item $handle->autocork ($boolean) 601=item $handle->autocork ($boolean)
372 602
373Enables or disables the current autocork behaviour (see C<autocork> 603Enables or disables the current autocork behaviour (see C<autocork>
374constructor argument). 604constructor argument). Changes will only take effect on the next write.
375 605
376=cut 606=cut
607
608sub autocork {
609 $_[0]{autocork} = $_[1];
610}
377 611
378=item $handle->no_delay ($boolean) 612=item $handle->no_delay ($boolean)
379 613
380Enables or disables the C<no_delay> setting (see constructor argument of 614Enables or disables the C<no_delay> setting (see constructor argument of
381the same name for details). 615the same name for details).
385sub no_delay { 619sub no_delay {
386 $_[0]{no_delay} = $_[1]; 620 $_[0]{no_delay} = $_[1];
387 621
388 eval { 622 eval {
389 local $SIG{__DIE__}; 623 local $SIG{__DIE__};
390 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 624 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
625 if $_[0]{fh};
391 }; 626 };
392} 627}
393 628
629=item $handle->keepalive ($boolean)
630
631Enables or disables the C<keepalive> setting (see constructor argument of
632the same name for details).
633
634=cut
635
636sub keepalive {
637 $_[0]{keepalive} = $_[1];
638
639 eval {
640 local $SIG{__DIE__};
641 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
642 if $_[0]{fh};
643 };
644}
645
646=item $handle->oobinline ($boolean)
647
648Enables or disables the C<oobinline> setting (see constructor argument of
649the same name for details).
650
651=cut
652
653sub oobinline {
654 $_[0]{oobinline} = $_[1];
655
656 eval {
657 local $SIG{__DIE__};
658 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
659 if $_[0]{fh};
660 };
661}
662
663=item $handle->keepalive ($boolean)
664
665Enables or disables the C<keepalive> setting (see constructor argument of
666the same name for details).
667
668=cut
669
670sub keepalive {
671 $_[0]{keepalive} = $_[1];
672
673 eval {
674 local $SIG{__DIE__};
675 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
676 if $_[0]{fh};
677 };
678}
679
680=item $handle->on_starttls ($cb)
681
682Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
683
684=cut
685
686sub on_starttls {
687 $_[0]{on_starttls} = $_[1];
688}
689
690=item $handle->on_stoptls ($cb)
691
692Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
693
694=cut
695
696sub on_starttls {
697 $_[0]{on_stoptls} = $_[1];
698}
699
700=item $handle->rbuf_max ($max_octets)
701
702Configures the C<rbuf_max> setting (C<undef> disables it).
703
704=cut
705
706sub rbuf_max {
707 $_[0]{rbuf_max} = $_[1];
708}
709
394############################################################################# 710#############################################################################
395 711
396=item $handle->timeout ($seconds) 712=item $handle->timeout ($seconds)
397 713
714=item $handle->rtimeout ($seconds)
715
716=item $handle->wtimeout ($seconds)
717
398Configures (or disables) the inactivity timeout. 718Configures (or disables) the inactivity timeout.
399 719
400=cut 720=item $handle->timeout_reset
401 721
402sub timeout { 722=item $handle->rtimeout_reset
723
724=item $handle->wtimeout_reset
725
726Reset the activity timeout, as if data was received or sent.
727
728These methods are cheap to call.
729
730=cut
731
732for my $dir ("", "r", "w") {
733 my $timeout = "${dir}timeout";
734 my $tw = "_${dir}tw";
735 my $on_timeout = "on_${dir}timeout";
736 my $activity = "_${dir}activity";
737 my $cb;
738
739 *$on_timeout = sub {
740 $_[0]{$on_timeout} = $_[1];
741 };
742
743 *$timeout = sub {
403 my ($self, $timeout) = @_; 744 my ($self, $new_value) = @_;
404 745
405 $self->{timeout} = $timeout; 746 $self->{$timeout} = $new_value;
406 $self->_timeout; 747 delete $self->{$tw}; &$cb;
407} 748 };
408 749
750 *{"${dir}timeout_reset"} = sub {
751 $_[0]{$activity} = AE::now;
752 };
753
754 # main workhorse:
409# reset the timeout watcher, as neccessary 755 # reset the timeout watcher, as neccessary
410# also check for time-outs 756 # also check for time-outs
411sub _timeout { 757 $cb = sub {
412 my ($self) = @_; 758 my ($self) = @_;
413 759
414 if ($self->{timeout}) { 760 if ($self->{$timeout} && $self->{fh}) {
415 my $NOW = AnyEvent->now; 761 my $NOW = AE::now;
416 762
417 # when would the timeout trigger? 763 # when would the timeout trigger?
418 my $after = $self->{_activity} + $self->{timeout} - $NOW; 764 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
419 765
420 # now or in the past already? 766 # now or in the past already?
421 if ($after <= 0) { 767 if ($after <= 0) {
422 $self->{_activity} = $NOW; 768 $self->{$activity} = $NOW;
423 769
424 if ($self->{on_timeout}) { 770 if ($self->{$on_timeout}) {
425 $self->{on_timeout}($self); 771 $self->{$on_timeout}($self);
426 } else { 772 } else {
427 $self->_error (&Errno::ETIMEDOUT); 773 $self->_error (Errno::ETIMEDOUT);
774 }
775
776 # callback could have changed timeout value, optimise
777 return unless $self->{$timeout};
778
779 # calculate new after
780 $after = $self->{$timeout};
428 } 781 }
429 782
430 # callback could have changed timeout value, optimise 783 Scalar::Util::weaken $self;
431 return unless $self->{timeout}; 784 return unless $self; # ->error could have destroyed $self
432 785
433 # calculate new after 786 $self->{$tw} ||= AE::timer $after, 0, sub {
434 $after = $self->{timeout}; 787 delete $self->{$tw};
788 $cb->($self);
789 };
790 } else {
791 delete $self->{$tw};
435 } 792 }
436
437 Scalar::Util::weaken $self;
438 return unless $self; # ->error could have destroyed $self
439
440 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
441 delete $self->{_tw};
442 $self->_timeout;
443 });
444 } else {
445 delete $self->{_tw};
446 } 793 }
447} 794}
448 795
449############################################################################# 796#############################################################################
450 797
474 my ($self, $cb) = @_; 821 my ($self, $cb) = @_;
475 822
476 $self->{on_drain} = $cb; 823 $self->{on_drain} = $cb;
477 824
478 $cb->($self) 825 $cb->($self)
479 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 826 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
480} 827}
481 828
482=item $handle->push_write ($data) 829=item $handle->push_write ($data)
483 830
484Queues the given scalar to be written. You can push as much data as you 831Queues the given scalar to be written. You can push as much data as you
495 Scalar::Util::weaken $self; 842 Scalar::Util::weaken $self;
496 843
497 my $cb = sub { 844 my $cb = sub {
498 my $len = syswrite $self->{fh}, $self->{wbuf}; 845 my $len = syswrite $self->{fh}, $self->{wbuf};
499 846
500 if ($len >= 0) { 847 if (defined $len) {
501 substr $self->{wbuf}, 0, $len, ""; 848 substr $self->{wbuf}, 0, $len, "";
502 849
503 $self->{_activity} = AnyEvent->now; 850 $self->{_activity} = $self->{_wactivity} = AE::now;
504 851
505 $self->{on_drain}($self) 852 $self->{on_drain}($self)
506 if $self->{low_water_mark} >= length $self->{wbuf} 853 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
507 && $self->{on_drain}; 854 && $self->{on_drain};
508 855
509 delete $self->{_ww} unless length $self->{wbuf}; 856 delete $self->{_ww} unless length $self->{wbuf};
510 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 857 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
511 $self->_error ($!, 1); 858 $self->_error ($!, 1);
514 861
515 # try to write data immediately 862 # try to write data immediately
516 $cb->() unless $self->{autocork}; 863 $cb->() unless $self->{autocork};
517 864
518 # if still data left in wbuf, we need to poll 865 # if still data left in wbuf, we need to poll
519 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 866 $self->{_ww} = AE::io $self->{fh}, 1, $cb
520 if length $self->{wbuf}; 867 if length $self->{wbuf};
521 }; 868 };
522} 869}
523 870
524our %WH; 871our %WH;
535 882
536 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 883 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
537 ->($self, @_); 884 ->($self, @_);
538 } 885 }
539 886
540 if ($self->{filter_w}) { 887 if ($self->{tls}) {
541 $self->{filter_w}($self, \$_[0]); 888 $self->{_tls_wbuf} .= $_[0];
889 &_dotls ($self) if $self->{fh};
542 } else { 890 } else {
543 $self->{wbuf} .= $_[0]; 891 $self->{wbuf} .= $_[0];
544 $self->_drain_wbuf; 892 $self->_drain_wbuf if $self->{fh};
545 } 893 }
546} 894}
547 895
548=item $handle->push_write (type => @args) 896=item $handle->push_write (type => @args)
549 897
563=cut 911=cut
564 912
565register_write_type netstring => sub { 913register_write_type netstring => sub {
566 my ($self, $string) = @_; 914 my ($self, $string) = @_;
567 915
568 sprintf "%d:%s,", (length $string), $string 916 (length $string) . ":$string,"
569}; 917};
570 918
571=item packstring => $format, $data 919=item packstring => $format, $data
572 920
573An octet string prefixed with an encoded length. The encoding C<$format> 921An octet string prefixed with an encoded length. The encoding C<$format>
613Other languages could read single lines terminated by a newline and pass 961Other languages could read single lines terminated by a newline and pass
614this line into their JSON decoder of choice. 962this line into their JSON decoder of choice.
615 963
616=cut 964=cut
617 965
966sub json_coder() {
967 eval { require JSON::XS; JSON::XS->new->utf8 }
968 || do { require JSON; JSON->new->utf8 }
969}
970
618register_write_type json => sub { 971register_write_type json => sub {
619 my ($self, $ref) = @_; 972 my ($self, $ref) = @_;
620 973
621 require JSON; 974 my $json = $self->{json} ||= json_coder;
622 975
623 $self->{json} ? $self->{json}->encode ($ref) 976 $json->encode ($ref)
624 : JSON::encode_json ($ref)
625}; 977};
626 978
627=item storable => $reference 979=item storable => $reference
628 980
629Freezes the given reference using L<Storable> and writes it to the 981Freezes the given reference using L<Storable> and writes it to the
638 990
639 pack "w/a*", Storable::nfreeze ($ref) 991 pack "w/a*", Storable::nfreeze ($ref)
640}; 992};
641 993
642=back 994=back
995
996=item $handle->push_shutdown
997
998Sometimes you know you want to close the socket after writing your data
999before it was actually written. One way to do that is to replace your
1000C<on_drain> handler by a callback that shuts down the socket (and set
1001C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1002replaces the C<on_drain> callback with:
1003
1004 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1005
1006This simply shuts down the write side and signals an EOF condition to the
1007the peer.
1008
1009You can rely on the normal read queue and C<on_eof> handling
1010afterwards. This is the cleanest way to close a connection.
1011
1012=cut
1013
1014sub push_shutdown {
1015 my ($self) = @_;
1016
1017 delete $self->{low_water_mark};
1018 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1019}
643 1020
644=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1021=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
645 1022
646This function (not method) lets you add your own types to C<push_write>. 1023This function (not method) lets you add your own types to C<push_write>.
647Whenever the given C<type> is used, C<push_write> will invoke the code 1024Whenever the given C<type> is used, C<push_write> will invoke the code
741=cut 1118=cut
742 1119
743sub _drain_rbuf { 1120sub _drain_rbuf {
744 my ($self) = @_; 1121 my ($self) = @_;
745 1122
1123 # avoid recursion
1124 return if $self->{_skip_drain_rbuf};
746 local $self->{_in_drain} = 1; 1125 local $self->{_skip_drain_rbuf} = 1;
747
748 if (
749 defined $self->{rbuf_max}
750 && $self->{rbuf_max} < length $self->{rbuf}
751 ) {
752 $self->_error (&Errno::ENOSPC, 1), return;
753 }
754 1126
755 while () { 1127 while () {
1128 # we need to use a separate tls read buffer, as we must not receive data while
1129 # we are draining the buffer, and this can only happen with TLS.
1130 $self->{rbuf} .= delete $self->{_tls_rbuf}
1131 if exists $self->{_tls_rbuf};
1132
756 my $len = length $self->{rbuf}; 1133 my $len = length $self->{rbuf};
757 1134
758 if (my $cb = shift @{ $self->{_queue} }) { 1135 if (my $cb = shift @{ $self->{_queue} }) {
759 unless ($cb->($self)) { 1136 unless ($cb->($self)) {
760 if ($self->{_eof}) { 1137 # no progress can be made
761 # no progress can be made (not enough data and no data forthcoming) 1138 # (not enough data and no data forthcoming)
762 $self->_error (&Errno::EPIPE, 1), return; 1139 $self->_error (Errno::EPIPE, 1), return
763 } 1140 if $self->{_eof};
764 1141
765 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
766 last; 1143 last;
767 } 1144 }
768 } elsif ($self->{on_read}) { 1145 } elsif ($self->{on_read}) {
775 && !@{ $self->{_queue} } # and the queue is still empty 1152 && !@{ $self->{_queue} } # and the queue is still empty
776 && $self->{on_read} # but we still have on_read 1153 && $self->{on_read} # but we still have on_read
777 ) { 1154 ) {
778 # no further data will arrive 1155 # no further data will arrive
779 # so no progress can be made 1156 # so no progress can be made
780 $self->_error (&Errno::EPIPE, 1), return 1157 $self->_error (Errno::EPIPE, 1), return
781 if $self->{_eof}; 1158 if $self->{_eof};
782 1159
783 last; # more data might arrive 1160 last; # more data might arrive
784 } 1161 }
785 } else { 1162 } else {
786 # read side becomes idle 1163 # read side becomes idle
787 delete $self->{_rw}; 1164 delete $self->{_rw} unless $self->{tls};
788 last; 1165 last;
789 } 1166 }
790 } 1167 }
791 1168
792 if ($self->{_eof}) { 1169 if ($self->{_eof}) {
793 if ($self->{on_eof}) { 1170 $self->{on_eof}
794 $self->{on_eof}($self) 1171 ? $self->{on_eof}($self)
795 } else { 1172 : $self->_error (0, 1, "Unexpected end-of-file");
796 $self->_error (0, 1); 1173
797 } 1174 return;
1175 }
1176
1177 if (
1178 defined $self->{rbuf_max}
1179 && $self->{rbuf_max} < length $self->{rbuf}
1180 ) {
1181 $self->_error (Errno::ENOSPC, 1), return;
798 } 1182 }
799 1183
800 # may need to restart read watcher 1184 # may need to restart read watcher
801 unless ($self->{_rw}) { 1185 unless ($self->{_rw}) {
802 $self->start_read 1186 $self->start_read
814 1198
815sub on_read { 1199sub on_read {
816 my ($self, $cb) = @_; 1200 my ($self, $cb) = @_;
817 1201
818 $self->{on_read} = $cb; 1202 $self->{on_read} = $cb;
819 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1203 $self->_drain_rbuf if $cb;
820} 1204}
821 1205
822=item $handle->rbuf 1206=item $handle->rbuf
823 1207
824Returns the read buffer (as a modifiable lvalue). 1208Returns the read buffer (as a modifiable lvalue).
825 1209
826You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1210You can access the read buffer directly as the C<< ->{rbuf} >>
827you want. 1211member, if you want. However, the only operation allowed on the
1212read buffer (apart from looking at it) is removing data from its
1213beginning. Otherwise modifying or appending to it is not allowed and will
1214lead to hard-to-track-down bugs.
828 1215
829NOTE: The read buffer should only be used or modified if the C<on_read>, 1216NOTE: The read buffer should only be used or modified if the C<on_read>,
830C<push_read> or C<unshift_read> methods are used. The other read methods 1217C<push_read> or C<unshift_read> methods are used. The other read methods
831automatically manage the read buffer. 1218automatically manage the read buffer.
832 1219
873 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1260 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
874 ->($self, $cb, @_); 1261 ->($self, $cb, @_);
875 } 1262 }
876 1263
877 push @{ $self->{_queue} }, $cb; 1264 push @{ $self->{_queue} }, $cb;
878 $self->_drain_rbuf unless $self->{_in_drain}; 1265 $self->_drain_rbuf;
879} 1266}
880 1267
881sub unshift_read { 1268sub unshift_read {
882 my $self = shift; 1269 my $self = shift;
883 my $cb = pop; 1270 my $cb = pop;
887 1274
888 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1275 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
889 ->($self, $cb, @_); 1276 ->($self, $cb, @_);
890 } 1277 }
891 1278
892
893 unshift @{ $self->{_queue} }, $cb; 1279 unshift @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1280 $self->_drain_rbuf;
895} 1281}
896 1282
897=item $handle->push_read (type => @args, $cb) 1283=item $handle->push_read (type => @args, $cb)
898 1284
899=item $handle->unshift_read (type => @args, $cb) 1285=item $handle->unshift_read (type => @args, $cb)
1032 return 1; 1418 return 1;
1033 } 1419 }
1034 1420
1035 # reject 1421 # reject
1036 if ($reject && $$rbuf =~ $reject) { 1422 if ($reject && $$rbuf =~ $reject) {
1037 $self->_error (&Errno::EBADMSG); 1423 $self->_error (Errno::EBADMSG);
1038 } 1424 }
1039 1425
1040 # skip 1426 # skip
1041 if ($skip && $$rbuf =~ $skip) { 1427 if ($skip && $$rbuf =~ $skip) {
1042 $data .= substr $$rbuf, 0, $+[0], ""; 1428 $data .= substr $$rbuf, 0, $+[0], "";
1058 my ($self, $cb) = @_; 1444 my ($self, $cb) = @_;
1059 1445
1060 sub { 1446 sub {
1061 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1447 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1062 if ($_[0]{rbuf} =~ /[^0-9]/) { 1448 if ($_[0]{rbuf} =~ /[^0-9]/) {
1063 $self->_error (&Errno::EBADMSG); 1449 $self->_error (Errno::EBADMSG);
1064 } 1450 }
1065 return; 1451 return;
1066 } 1452 }
1067 1453
1068 my $len = $1; 1454 my $len = $1;
1071 my $string = $_[1]; 1457 my $string = $_[1];
1072 $_[0]->unshift_read (chunk => 1, sub { 1458 $_[0]->unshift_read (chunk => 1, sub {
1073 if ($_[1] eq ",") { 1459 if ($_[1] eq ",") {
1074 $cb->($_[0], $string); 1460 $cb->($_[0], $string);
1075 } else { 1461 } else {
1076 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1077 } 1463 }
1078 }); 1464 });
1079 }); 1465 });
1080 1466
1081 1 1467 1
1087An octet string prefixed with an encoded length. The encoding C<$format> 1473An octet string prefixed with an encoded length. The encoding C<$format>
1088uses the same format as a Perl C<pack> format, but must specify a single 1474uses the same format as a Perl C<pack> format, but must specify a single
1089integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1475integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1090optional C<!>, C<< < >> or C<< > >> modifier). 1476optional C<!>, C<< < >> or C<< > >> modifier).
1091 1477
1092DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1478For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1479EPP uses a prefix of C<N> (4 octtes).
1093 1480
1094Example: read a block of data prefixed by its length in BER-encoded 1481Example: read a block of data prefixed by its length in BER-encoded
1095format (very efficient). 1482format (very efficient).
1096 1483
1097 $handle->push_read (packstring => "w", sub { 1484 $handle->push_read (packstring => "w", sub {
1127 } 1514 }
1128}; 1515};
1129 1516
1130=item json => $cb->($handle, $hash_or_arrayref) 1517=item json => $cb->($handle, $hash_or_arrayref)
1131 1518
1132Reads a JSON object or array, decodes it and passes it to the callback. 1519Reads a JSON object or array, decodes it and passes it to the
1520callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1133 1521
1134If a C<json> object was passed to the constructor, then that will be used 1522If a C<json> object was passed to the constructor, then that will be used
1135for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1523for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1136 1524
1137This read type uses the incremental parser available with JSON version 1525This read type uses the incremental parser available with JSON version
1146=cut 1534=cut
1147 1535
1148register_read_type json => sub { 1536register_read_type json => sub {
1149 my ($self, $cb) = @_; 1537 my ($self, $cb) = @_;
1150 1538
1151 require JSON; 1539 my $json = $self->{json} ||= json_coder;
1152 1540
1153 my $data; 1541 my $data;
1154 my $rbuf = \$self->{rbuf}; 1542 my $rbuf = \$self->{rbuf};
1155 1543
1156 my $json = $self->{json} ||= JSON->new->utf8;
1157
1158 sub { 1544 sub {
1159 my $ref = $json->incr_parse ($self->{rbuf}); 1545 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1160 1546
1161 if ($ref) { 1547 if ($ref) {
1162 $self->{rbuf} = $json->incr_text; 1548 $self->{rbuf} = $json->incr_text;
1163 $json->incr_text = ""; 1549 $json->incr_text = "";
1164 $cb->($self, $ref); 1550 $cb->($self, $ref);
1165 1551
1166 1 1552 1
1553 } elsif ($@) {
1554 # error case
1555 $json->incr_skip;
1556
1557 $self->{rbuf} = $json->incr_text;
1558 $json->incr_text = "";
1559
1560 $self->_error (Errno::EBADMSG);
1561
1562 ()
1167 } else { 1563 } else {
1168 $self->{rbuf} = ""; 1564 $self->{rbuf} = "";
1565
1169 () 1566 ()
1170 } 1567 }
1171 } 1568 }
1172}; 1569};
1173 1570
1205 # read remaining chunk 1602 # read remaining chunk
1206 $_[0]->unshift_read (chunk => $len, sub { 1603 $_[0]->unshift_read (chunk => $len, sub {
1207 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1604 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1208 $cb->($_[0], $ref); 1605 $cb->($_[0], $ref);
1209 } else { 1606 } else {
1210 $self->_error (&Errno::EBADMSG); 1607 $self->_error (Errno::EBADMSG);
1211 } 1608 }
1212 }); 1609 });
1213 } 1610 }
1214 1611
1215 1 1612 1
1250Note that AnyEvent::Handle will automatically C<start_read> for you when 1647Note that AnyEvent::Handle will automatically C<start_read> for you when
1251you change the C<on_read> callback or push/unshift a read callback, and it 1648you change the C<on_read> callback or push/unshift a read callback, and it
1252will automatically C<stop_read> for you when neither C<on_read> is set nor 1649will automatically C<stop_read> for you when neither C<on_read> is set nor
1253there are any read requests in the queue. 1650there are any read requests in the queue.
1254 1651
1652These methods will have no effect when in TLS mode (as TLS doesn't support
1653half-duplex connections).
1654
1255=cut 1655=cut
1256 1656
1257sub stop_read { 1657sub stop_read {
1258 my ($self) = @_; 1658 my ($self) = @_;
1259 1659
1260 delete $self->{_rw}; 1660 delete $self->{_rw} unless $self->{tls};
1261} 1661}
1262 1662
1263sub start_read { 1663sub start_read {
1264 my ($self) = @_; 1664 my ($self) = @_;
1265 1665
1266 unless ($self->{_rw} || $self->{_eof}) { 1666 unless ($self->{_rw} || $self->{_eof}) {
1267 Scalar::Util::weaken $self; 1667 Scalar::Util::weaken $self;
1268 1668
1269 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1669 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1270 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1670 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1271 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1671 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1272 1672
1273 if ($len > 0) { 1673 if ($len > 0) {
1274 $self->{_activity} = AnyEvent->now; 1674 $self->{_activity} = $self->{_ractivity} = AE::now;
1275 1675
1276 $self->{filter_r} 1676 if ($self->{tls}) {
1277 ? $self->{filter_r}($self, $rbuf) 1677 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1278 : $self->{_in_drain} || $self->_drain_rbuf; 1678
1679 &_dotls ($self);
1680 } else {
1681 $self->_drain_rbuf;
1682 }
1279 1683
1280 } elsif (defined $len) { 1684 } elsif (defined $len) {
1281 delete $self->{_rw}; 1685 delete $self->{_rw};
1282 $self->{_eof} = 1; 1686 $self->{_eof} = 1;
1283 $self->_drain_rbuf unless $self->{_in_drain}; 1687 $self->_drain_rbuf;
1284 1688
1285 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1689 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1286 return $self->_error ($!, 1); 1690 return $self->_error ($!, 1);
1287 } 1691 }
1288 }); 1692 };
1289 } 1693 }
1290} 1694}
1291 1695
1696our $ERROR_SYSCALL;
1697our $ERROR_WANT_READ;
1698
1699sub _tls_error {
1700 my ($self, $err) = @_;
1701
1702 return $self->_error ($!, 1)
1703 if $err == Net::SSLeay::ERROR_SYSCALL ();
1704
1705 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1706
1707 # reduce error string to look less scary
1708 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1709
1710 if ($self->{_on_starttls}) {
1711 (delete $self->{_on_starttls})->($self, undef, $err);
1712 &_freetls;
1713 } else {
1714 &_freetls;
1715 $self->_error (Errno::EPROTO, 1, $err);
1716 }
1717}
1718
1719# poll the write BIO and send the data if applicable
1720# also decode read data if possible
1721# this is basiclaly our TLS state machine
1722# more efficient implementations are possible with openssl,
1723# but not with the buggy and incomplete Net::SSLeay.
1292sub _dotls { 1724sub _dotls {
1293 my ($self) = @_; 1725 my ($self) = @_;
1294 1726
1295 my $buf; 1727 my $tmp;
1296 1728
1297 if (length $self->{_tls_wbuf}) { 1729 if (length $self->{_tls_wbuf}) {
1298 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1730 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1299 substr $self->{_tls_wbuf}, 0, $len, ""; 1731 substr $self->{_tls_wbuf}, 0, $tmp, "";
1300 } 1732 }
1301 }
1302 1733
1734 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1735 return $self->_tls_error ($tmp)
1736 if $tmp != $ERROR_WANT_READ
1737 && ($tmp != $ERROR_SYSCALL || $!);
1738 }
1739
1740 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1741 unless (length $tmp) {
1742 $self->{_on_starttls}
1743 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1744 &_freetls;
1745
1746 if ($self->{on_stoptls}) {
1747 $self->{on_stoptls}($self);
1748 return;
1749 } else {
1750 # let's treat SSL-eof as we treat normal EOF
1751 delete $self->{_rw};
1752 $self->{_eof} = 1;
1753 }
1754 }
1755
1756 $self->{_tls_rbuf} .= $tmp;
1757 $self->_drain_rbuf;
1758 $self->{tls} or return; # tls session might have gone away in callback
1759 }
1760
1761 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1762 return $self->_tls_error ($tmp)
1763 if $tmp != $ERROR_WANT_READ
1764 && ($tmp != $ERROR_SYSCALL || $!);
1765
1303 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1766 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1304 $self->{wbuf} .= $buf; 1767 $self->{wbuf} .= $tmp;
1305 $self->_drain_wbuf; 1768 $self->_drain_wbuf;
1306 } 1769 }
1307 1770
1308 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1771 $self->{_on_starttls}
1309 if (length $buf) { 1772 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1310 $self->{rbuf} .= $buf; 1773 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1311 $self->_drain_rbuf unless $self->{_in_drain};
1312 } else {
1313 # let's treat SSL-eof as we treat normal EOF
1314 $self->{_eof} = 1;
1315 $self->_shutdown;
1316 return;
1317 }
1318 }
1319
1320 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1321
1322 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1323 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1324 return $self->_error ($!, 1);
1325 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1326 return $self->_error (&Errno::EIO, 1);
1327 }
1328
1329 # all others are fine for our purposes
1330 }
1331} 1774}
1332 1775
1333=item $handle->starttls ($tls[, $tls_ctx]) 1776=item $handle->starttls ($tls[, $tls_ctx])
1334 1777
1335Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1778Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1336object is created, you can also do that at a later time by calling 1779object is created, you can also do that at a later time by calling
1337C<starttls>. 1780C<starttls>.
1338 1781
1782Starting TLS is currently an asynchronous operation - when you push some
1783write data and then call C<< ->starttls >> then TLS negotiation will start
1784immediately, after which the queued write data is then sent.
1785
1339The first argument is the same as the C<tls> constructor argument (either 1786The first argument is the same as the C<tls> constructor argument (either
1340C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1787C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1341 1788
1342The second argument is the optional C<Net::SSLeay::CTX> object that is 1789The second argument is the optional C<AnyEvent::TLS> object that is used
1343used when AnyEvent::Handle has to create its own TLS connection object. 1790when AnyEvent::Handle has to create its own TLS connection object, or
1791a hash reference with C<< key => value >> pairs that will be used to
1792construct a new context.
1344 1793
1345The TLS connection object will end up in C<< $handle->{tls} >> after this 1794The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1346call and can be used or changed to your liking. Note that the handshake 1795context in C<< $handle->{tls_ctx} >> after this call and can be used or
1347might have already started when this function returns. 1796changed to your liking. Note that the handshake might have already started
1797when this function returns.
1348 1798
1799Due to bugs in OpenSSL, it might or might not be possible to do multiple
1800handshakes on the same stream. Best do not attempt to use the stream after
1801stopping TLS.
1802
1349=cut 1803=cut
1804
1805our %TLS_CACHE; #TODO not yet documented, should we?
1350 1806
1351sub starttls { 1807sub starttls {
1352 my ($self, $ssl, $ctx) = @_; 1808 my ($self, $tls, $ctx) = @_;
1353 1809
1354 $self->stoptls; 1810 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1811 if $self->{tls};
1355 1812
1356 if ($ssl eq "accept") { 1813 $self->{tls} = $tls;
1357 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1814 $self->{tls_ctx} = $ctx if @_ > 2;
1358 Net::SSLeay::set_accept_state ($ssl); 1815
1359 } elsif ($ssl eq "connect") { 1816 return unless $self->{fh};
1360 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817
1361 Net::SSLeay::set_connect_state ($ssl); 1818 require Net::SSLeay;
1819
1820 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1821 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1822
1823 $tls = delete $self->{tls};
1824 $ctx = $self->{tls_ctx};
1825
1826 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1827
1828 if ("HASH" eq ref $ctx) {
1829 require AnyEvent::TLS;
1830
1831 if ($ctx->{cache}) {
1832 my $key = $ctx+0;
1833 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1834 } else {
1835 $ctx = new AnyEvent::TLS %$ctx;
1836 }
1837 }
1362 } 1838
1363 1839 $self->{tls_ctx} = $ctx || TLS_CTX ();
1364 $self->{tls} = $ssl; 1840 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1365 1841
1366 # basically, this is deep magic (because SSL_read should have the same issues) 1842 # basically, this is deep magic (because SSL_read should have the same issues)
1367 # but the openssl maintainers basically said: "trust us, it just works". 1843 # but the openssl maintainers basically said: "trust us, it just works".
1368 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1844 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1369 # and mismaintained ssleay-module doesn't even offer them). 1845 # and mismaintained ssleay-module doesn't even offer them).
1370 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1846 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1847 #
1848 # in short: this is a mess.
1849 #
1850 # note that we do not try to keep the length constant between writes as we are required to do.
1851 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1852 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1853 # have identity issues in that area.
1371 Net::SSLeay::CTX_set_mode ($self->{tls}, 1854# Net::SSLeay::CTX_set_mode ($ssl,
1372 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1855# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1373 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1856# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1857 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1374 1858
1375 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1859 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1860 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377 1861
1862 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1863
1378 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1864 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1379 1865
1380 $self->{filter_w} = sub { 1866 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1381 $_[0]{_tls_wbuf} .= ${$_[1]}; 1867 if $self->{on_starttls};
1382 &_dotls; 1868
1383 }; 1869 &_dotls; # need to trigger the initial handshake
1384 $self->{filter_r} = sub { 1870 $self->start_read; # make sure we actually do read
1385 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1386 &_dotls;
1387 };
1388} 1871}
1389 1872
1390=item $handle->stoptls 1873=item $handle->stoptls
1391 1874
1392Destroys the SSL connection, if any. Partial read or write data will be 1875Shuts down the SSL connection - this makes a proper EOF handshake by
1393lost. 1876sending a close notify to the other side, but since OpenSSL doesn't
1877support non-blocking shut downs, it is not guarenteed that you can re-use
1878the stream afterwards.
1394 1879
1395=cut 1880=cut
1396 1881
1397sub stoptls { 1882sub stoptls {
1398 my ($self) = @_; 1883 my ($self) = @_;
1399 1884
1400 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1885 if ($self->{tls}) {
1886 Net::SSLeay::shutdown ($self->{tls});
1401 1887
1402 delete $self->{_rbio}; 1888 &_dotls;
1403 delete $self->{_wbio}; 1889
1404 delete $self->{_tls_wbuf}; 1890# # we don't give a shit. no, we do, but we can't. no...#d#
1405 delete $self->{filter_r}; 1891# # we, we... have to use openssl :/#d#
1406 delete $self->{filter_w}; 1892# &_freetls;#d#
1893 }
1894}
1895
1896sub _freetls {
1897 my ($self) = @_;
1898
1899 return unless $self->{tls};
1900
1901 $self->{tls_ctx}->_put_session (delete $self->{tls})
1902 if $self->{tls} > 0;
1903
1904 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1407} 1905}
1408 1906
1409sub DESTROY { 1907sub DESTROY {
1410 my $self = shift; 1908 my ($self) = @_;
1411 1909
1412 $self->stoptls; 1910 &_freetls;
1413 1911
1414 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1912 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1415 1913
1416 if ($linger && length $self->{wbuf}) { 1914 if ($linger && length $self->{wbuf} && $self->{fh}) {
1417 my $fh = delete $self->{fh}; 1915 my $fh = delete $self->{fh};
1418 my $wbuf = delete $self->{wbuf}; 1916 my $wbuf = delete $self->{wbuf};
1419 1917
1420 my @linger; 1918 my @linger;
1421 1919
1422 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1920 push @linger, AE::io $fh, 1, sub {
1423 my $len = syswrite $fh, $wbuf, length $wbuf; 1921 my $len = syswrite $fh, $wbuf, length $wbuf;
1424 1922
1425 if ($len > 0) { 1923 if ($len > 0) {
1426 substr $wbuf, 0, $len, ""; 1924 substr $wbuf, 0, $len, "";
1427 } else { 1925 } else {
1428 @linger = (); # end 1926 @linger = (); # end
1429 } 1927 }
1430 }); 1928 };
1431 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1929 push @linger, AE::timer $linger, 0, sub {
1432 @linger = (); 1930 @linger = ();
1433 }); 1931 };
1434 } 1932 }
1933}
1934
1935=item $handle->destroy
1936
1937Shuts down the handle object as much as possible - this call ensures that
1938no further callbacks will be invoked and as many resources as possible
1939will be freed. Any method you will call on the handle object after
1940destroying it in this way will be silently ignored (and it will return the
1941empty list).
1942
1943Normally, you can just "forget" any references to an AnyEvent::Handle
1944object and it will simply shut down. This works in fatal error and EOF
1945callbacks, as well as code outside. It does I<NOT> work in a read or write
1946callback, so when you want to destroy the AnyEvent::Handle object from
1947within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1948that case.
1949
1950Destroying the handle object in this way has the advantage that callbacks
1951will be removed as well, so if those are the only reference holders (as
1952is common), then one doesn't need to do anything special to break any
1953reference cycles.
1954
1955The handle might still linger in the background and write out remaining
1956data, as specified by the C<linger> option, however.
1957
1958=cut
1959
1960sub destroy {
1961 my ($self) = @_;
1962
1963 $self->DESTROY;
1964 %$self = ();
1965 bless $self, "AnyEvent::Handle::destroyed";
1966}
1967
1968sub AnyEvent::Handle::destroyed::AUTOLOAD {
1969 #nop
1435} 1970}
1436 1971
1437=item AnyEvent::Handle::TLS_CTX 1972=item AnyEvent::Handle::TLS_CTX
1438 1973
1439This function creates and returns the Net::SSLeay::CTX object used by 1974This function creates and returns the AnyEvent::TLS object used by default
1440default for TLS mode. 1975for TLS mode.
1441 1976
1442The context is created like this: 1977The context is created by calling L<AnyEvent::TLS> without any arguments.
1443
1444 Net::SSLeay::load_error_strings;
1445 Net::SSLeay::SSLeay_add_ssl_algorithms;
1446 Net::SSLeay::randomize;
1447
1448 my $CTX = Net::SSLeay::CTX_new;
1449
1450 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1451 1978
1452=cut 1979=cut
1453 1980
1454our $TLS_CTX; 1981our $TLS_CTX;
1455 1982
1456sub TLS_CTX() { 1983sub TLS_CTX() {
1457 $TLS_CTX || do { 1984 $TLS_CTX ||= do {
1458 require Net::SSLeay; 1985 require AnyEvent::TLS;
1459 1986
1460 Net::SSLeay::load_error_strings (); 1987 new AnyEvent::TLS
1461 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1462 Net::SSLeay::randomize ();
1463
1464 $TLS_CTX = Net::SSLeay::CTX_new ();
1465
1466 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1467
1468 $TLS_CTX
1469 } 1988 }
1470} 1989}
1471 1990
1472=back 1991=back
1992
1993
1994=head1 NONFREQUENTLY ASKED QUESTIONS
1995
1996=over 4
1997
1998=item I C<undef> the AnyEvent::Handle reference inside my callback and
1999still get further invocations!
2000
2001That's because AnyEvent::Handle keeps a reference to itself when handling
2002read or write callbacks.
2003
2004It is only safe to "forget" the reference inside EOF or error callbacks,
2005from within all other callbacks, you need to explicitly call the C<<
2006->destroy >> method.
2007
2008=item I get different callback invocations in TLS mode/Why can't I pause
2009reading?
2010
2011Unlike, say, TCP, TLS connections do not consist of two independent
2012communication channels, one for each direction. Or put differently. The
2013read and write directions are not independent of each other: you cannot
2014write data unless you are also prepared to read, and vice versa.
2015
2016This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2017callback invocations when you are not expecting any read data - the reason
2018is that AnyEvent::Handle always reads in TLS mode.
2019
2020During the connection, you have to make sure that you always have a
2021non-empty read-queue, or an C<on_read> watcher. At the end of the
2022connection (or when you no longer want to use it) you can call the
2023C<destroy> method.
2024
2025=item How do I read data until the other side closes the connection?
2026
2027If you just want to read your data into a perl scalar, the easiest way
2028to achieve this is by setting an C<on_read> callback that does nothing,
2029clearing the C<on_eof> callback and in the C<on_error> callback, the data
2030will be in C<$_[0]{rbuf}>:
2031
2032 $handle->on_read (sub { });
2033 $handle->on_eof (undef);
2034 $handle->on_error (sub {
2035 my $data = delete $_[0]{rbuf};
2036 });
2037
2038The reason to use C<on_error> is that TCP connections, due to latencies
2039and packets loss, might get closed quite violently with an error, when in
2040fact, all data has been received.
2041
2042It is usually better to use acknowledgements when transferring data,
2043to make sure the other side hasn't just died and you got the data
2044intact. This is also one reason why so many internet protocols have an
2045explicit QUIT command.
2046
2047=item I don't want to destroy the handle too early - how do I wait until
2048all data has been written?
2049
2050After writing your last bits of data, set the C<on_drain> callback
2051and destroy the handle in there - with the default setting of
2052C<low_water_mark> this will be called precisely when all data has been
2053written to the socket:
2054
2055 $handle->push_write (...);
2056 $handle->on_drain (sub {
2057 warn "all data submitted to the kernel\n";
2058 undef $handle;
2059 });
2060
2061If you just want to queue some data and then signal EOF to the other side,
2062consider using C<< ->push_shutdown >> instead.
2063
2064=item I want to contact a TLS/SSL server, I don't care about security.
2065
2066If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2067simply connect to it and then create the AnyEvent::Handle with the C<tls>
2068parameter:
2069
2070 tcp_connect $host, $port, sub {
2071 my ($fh) = @_;
2072
2073 my $handle = new AnyEvent::Handle
2074 fh => $fh,
2075 tls => "connect",
2076 on_error => sub { ... };
2077
2078 $handle->push_write (...);
2079 };
2080
2081=item I want to contact a TLS/SSL server, I do care about security.
2082
2083Then you should additionally enable certificate verification, including
2084peername verification, if the protocol you use supports it (see
2085L<AnyEvent::TLS>, C<verify_peername>).
2086
2087E.g. for HTTPS:
2088
2089 tcp_connect $host, $port, sub {
2090 my ($fh) = @_;
2091
2092 my $handle = new AnyEvent::Handle
2093 fh => $fh,
2094 peername => $host,
2095 tls => "connect",
2096 tls_ctx => { verify => 1, verify_peername => "https" },
2097 ...
2098
2099Note that you must specify the hostname you connected to (or whatever
2100"peername" the protocol needs) as the C<peername> argument, otherwise no
2101peername verification will be done.
2102
2103The above will use the system-dependent default set of trusted CA
2104certificates. If you want to check against a specific CA, add the
2105C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2106
2107 tls_ctx => {
2108 verify => 1,
2109 verify_peername => "https",
2110 ca_file => "my-ca-cert.pem",
2111 },
2112
2113=item I want to create a TLS/SSL server, how do I do that?
2114
2115Well, you first need to get a server certificate and key. You have
2116three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2117self-signed certificate (cheap. check the search engine of your choice,
2118there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2119nice program for that purpose).
2120
2121Then create a file with your private key (in PEM format, see
2122L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2123file should then look like this:
2124
2125 -----BEGIN RSA PRIVATE KEY-----
2126 ...header data
2127 ... lots of base64'y-stuff
2128 -----END RSA PRIVATE KEY-----
2129
2130 -----BEGIN CERTIFICATE-----
2131 ... lots of base64'y-stuff
2132 -----END CERTIFICATE-----
2133
2134The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2135specify this file as C<cert_file>:
2136
2137 tcp_server undef, $port, sub {
2138 my ($fh) = @_;
2139
2140 my $handle = new AnyEvent::Handle
2141 fh => $fh,
2142 tls => "accept",
2143 tls_ctx => { cert_file => "my-server-keycert.pem" },
2144 ...
2145
2146When you have intermediate CA certificates that your clients might not
2147know about, just append them to the C<cert_file>.
2148
2149=back
2150
1473 2151
1474=head1 SUBCLASSING AnyEvent::Handle 2152=head1 SUBCLASSING AnyEvent::Handle
1475 2153
1476In many cases, you might want to subclass AnyEvent::Handle. 2154In many cases, you might want to subclass AnyEvent::Handle.
1477 2155

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines