ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.88 by root, Thu Aug 21 23:48:35 2008 UTC vs.
Revision 1.160 by root, Fri Jul 24 22:47:04 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.233; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106=item on_connect => $cb->($handle, $host, $port, $retry->())
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92 107
93While not mandatory, it is I<highly> recommended to set an eof callback, 108This callback is called when a connection has been successfully established.
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 109
97If an EOF condition has been detected but no C<on_eof> callback has been 110The actual numeric host and port (the socket peername) are passed as
98set, then a fatal error will be raised with C<$!> set to <0>. 111parameters, together with a retry callback.
99 112
113When, for some reason, the handle is not acceptable, then calling
114C<$retry> will continue with the next conenction target (in case of
115multi-homed hosts or SRV records there can be multiple connection
116endpoints). When it is called then the read and write queues, eof status,
117tls status and similar properties of the handle are being reset.
118
119In most cases, ignoring the C<$retry> parameter is the way to go.
120
121=item on_connect_error => $cb->($handle, $message)
122
123This callback is called when the conenction could not be
124established. C<$!> will contain the relevant error code, and C<$message> a
125message describing it (usually the same as C<"$!">).
126
127If this callback isn't specified, then C<on_error> will be called with a
128fatal error instead.
129
130=back
131
100=item on_error => $cb->($handle, $fatal) 132=item on_error => $cb->($handle, $fatal, $message)
101 133
102This is the error callback, which is called when, well, some error 134This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 135occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 136connect or a read error.
105 137
106Some errors are fatal (which is indicated by C<$fatal> being true). On 138Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 139fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 140destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 141examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 142with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
143cases where the other side can close the connection at their will it is
144often easiest to not report C<EPIPE> errors in this callback.
145
146AnyEvent::Handle tries to find an appropriate error code for you to check
147against, but in some cases (TLS errors), this does not work well. It is
148recommended to always output the C<$message> argument in human-readable
149error messages (it's usually the same as C<"$!">).
111 150
112Non-fatal errors can be retried by simply returning, but it is recommended 151Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 152to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 153when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 154C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 155
117On callback entrance, the value of C<$!> contains the operating system 156On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 157error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
158C<EPROTO>).
119 159
120While not mandatory, it is I<highly> recommended to set this callback, as 160While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 161you will not be notified of errors otherwise. The default simply calls
122C<croak>. 162C<croak>.
123 163
127and no read request is in the queue (unlike read queue callbacks, this 167and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 168callback will only be called when at least one octet of data is in the
129read buffer). 169read buffer).
130 170
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 171To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 172method or access the C<< $handle->{rbuf} >> member directly. Note that you
173must not enlarge or modify the read buffer, you can only remove data at
174the beginning from it.
133 175
134When an EOF condition is detected then AnyEvent::Handle will first try to 176When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 177feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 178calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 179error will be raised (with C<$!> set to C<EPIPE>).
180
181Note that, unlike requests in the read queue, an C<on_read> callback
182doesn't mean you I<require> some data: if there is an EOF and there
183are outstanding read requests then an error will be flagged. With an
184C<on_read> callback, the C<on_eof> callback will be invoked.
185
186=item on_eof => $cb->($handle)
187
188Set the callback to be called when an end-of-file condition is detected,
189i.e. in the case of a socket, when the other side has closed the
190connection cleanly, and there are no outstanding read requests in the
191queue (if there are read requests, then an EOF counts as an unexpected
192connection close and will be flagged as an error).
193
194For sockets, this just means that the other side has stopped sending data,
195you can still try to write data, and, in fact, one can return from the EOF
196callback and continue writing data, as only the read part has been shut
197down.
198
199If an EOF condition has been detected but no C<on_eof> callback has been
200set, then a fatal error will be raised with C<$!> set to <0>.
138 201
139=item on_drain => $cb->($handle) 202=item on_drain => $cb->($handle)
140 203
141This sets the callback that is called when the write buffer becomes empty 204This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 205(or when the callback is set and the buffer is empty already).
232write data and will install a watcher that will write this data to the 295write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating 296socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time). 297system treats outstanding data at socket close time).
235 298
236This will not work for partial TLS data that could not be encoded 299This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. 300yet. This data will be lost. Calling the C<stoptls> method in time might
301help.
302
303=item peername => $string
304
305A string used to identify the remote site - usually the DNS hostname
306(I<not> IDN!) used to create the connection, rarely the IP address.
307
308Apart from being useful in error messages, this string is also used in TLS
309peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
310verification will be skipped when C<peername> is not specified or
311C<undef>.
238 312
239=item tls => "accept" | "connect" | Net::SSLeay::SSL object 313=item tls => "accept" | "connect" | Net::SSLeay::SSL object
240 314
241When this parameter is given, it enables TLS (SSL) mode, that means 315When this parameter is given, it enables TLS (SSL) mode, that means
242AnyEvent will start a TLS handshake as soon as the conenction has been 316AnyEvent will start a TLS handshake as soon as the conenction has been
243established and will transparently encrypt/decrypt data afterwards. 317established and will transparently encrypt/decrypt data afterwards.
318
319All TLS protocol errors will be signalled as C<EPROTO>, with an
320appropriate error message.
244 321
245TLS mode requires Net::SSLeay to be installed (it will be loaded 322TLS mode requires Net::SSLeay to be installed (it will be loaded
246automatically when you try to create a TLS handle): this module doesn't 323automatically when you try to create a TLS handle): this module doesn't
247have a dependency on that module, so if your module requires it, you have 324have a dependency on that module, so if your module requires it, you have
248to add the dependency yourself. 325to add the dependency yourself.
252mode. 329mode.
253 330
254You can also provide your own TLS connection object, but you have 331You can also provide your own TLS connection object, but you have
255to make sure that you call either C<Net::SSLeay::set_connect_state> 332to make sure that you call either C<Net::SSLeay::set_connect_state>
256or C<Net::SSLeay::set_accept_state> on it before you pass it to 333or C<Net::SSLeay::set_accept_state> on it before you pass it to
257AnyEvent::Handle. 334AnyEvent::Handle. Also, this module will take ownership of this connection
335object.
336
337At some future point, AnyEvent::Handle might switch to another TLS
338implementation, then the option to use your own session object will go
339away.
340
341B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
342passing in the wrong integer will lead to certain crash. This most often
343happens when one uses a stylish C<< tls => 1 >> and is surprised about the
344segmentation fault.
258 345
259See the C<< ->starttls >> method for when need to start TLS negotiation later. 346See the C<< ->starttls >> method for when need to start TLS negotiation later.
260 347
261=item tls_ctx => $ssl_ctx 348=item tls_ctx => $anyevent_tls
262 349
263Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 350Use the given C<AnyEvent::TLS> object to create the new TLS connection
264(unless a connection object was specified directly). If this parameter is 351(unless a connection object was specified directly). If this parameter is
265missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 352missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
353
354Instead of an object, you can also specify a hash reference with C<< key
355=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
356new TLS context object.
357
358=item on_starttls => $cb->($handle, $success[, $error_message])
359
360This callback will be invoked when the TLS/SSL handshake has finished. If
361C<$success> is true, then the TLS handshake succeeded, otherwise it failed
362(C<on_stoptls> will not be called in this case).
363
364The session in C<< $handle->{tls} >> can still be examined in this
365callback, even when the handshake was not successful.
366
367TLS handshake failures will not cause C<on_error> to be invoked when this
368callback is in effect, instead, the error message will be passed to C<on_starttls>.
369
370Without this callback, handshake failures lead to C<on_error> being
371called, as normal.
372
373Note that you cannot call C<starttls> right again in this callback. If you
374need to do that, start an zero-second timer instead whose callback can
375then call C<< ->starttls >> again.
376
377=item on_stoptls => $cb->($handle)
378
379When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
380set, then it will be invoked after freeing the TLS session. If it is not,
381then a TLS shutdown condition will be treated like a normal EOF condition
382on the handle.
383
384The session in C<< $handle->{tls} >> can still be examined in this
385callback.
386
387This callback will only be called on TLS shutdowns, not when the
388underlying handle signals EOF.
266 389
267=item json => JSON or JSON::XS object 390=item json => JSON or JSON::XS object
268 391
269This is the json coder object used by the C<json> read and write types. 392This is the json coder object used by the C<json> read and write types.
270 393
273texts. 396texts.
274 397
275Note that you are responsible to depend on the JSON module if you want to 398Note that you are responsible to depend on the JSON module if you want to
276use this functionality, as AnyEvent does not have a dependency itself. 399use this functionality, as AnyEvent does not have a dependency itself.
277 400
278=item filter_r => $cb
279
280=item filter_w => $cb
281
282These exist, but are undocumented at this time. (They are used internally
283by the TLS code).
284
285=back 401=back
286 402
287=cut 403=cut
288 404
289sub new { 405sub new {
290 my $class = shift; 406 my $class = shift;
291
292 my $self = bless { @_ }, $class; 407 my $self = bless { @_ }, $class;
293 408
294 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 409 if ($self->{fh}) {
410 $self->_start;
411 return unless $self->{fh}; # could be gone by now
412
413 } elsif ($self->{connect}) {
414 require AnyEvent::Socket;
415
416 $self->{peername} = $self->{connect}[0]
417 unless exists $self->{peername};
418
419 $self->{_skip_drain_rbuf} = 1;
420
421 {
422 Scalar::Util::weaken (my $self = $self);
423
424 $self->{_connect} =
425 AnyEvent::Socket::tcp_connect (
426 $self->{connect}[0],
427 $self->{connect}[1],
428 sub {
429 my ($fh, $host, $port, $retry) = @_;
430
431 if ($fh) {
432 $self->{fh} = $fh;
433
434 delete $self->{_skip_drain_rbuf};
435 $self->_start;
436
437 $self->{on_connect}
438 and $self->{on_connect}($self, $host, $port, sub {
439 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
440 $self->{_skip_drain_rbuf} = 1;
441 &$retry;
442 });
443
444 } else {
445 if ($self->{on_connect_error}) {
446 $self->{on_connect_error}($self, "$!");
447 $self->destroy;
448 } else {
449 $self->fatal ($!, 1);
450 }
451 }
452 },
453 sub {
454 local $self->{fh} = $_[0];
455
456 $self->{on_prepare}->($self)
457 if $self->{on_prepare};
458 }
459 );
460 }
461
462 } else {
463 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
464 }
465
466 $self
467}
468
469sub _start {
470 my ($self) = @_;
295 471
296 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 472 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
297
298 if ($self->{tls}) {
299 require Net::SSLeay;
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
301 }
302 473
303 $self->{_activity} = AnyEvent->now; 474 $self->{_activity} = AnyEvent->now;
304 $self->_timeout; 475 $self->_timeout;
305 476
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 477 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 478
479 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
480 if $self->{tls};
481
482 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
483
309 $self->start_read 484 $self->start_read
310 if $self->{on_read}; 485 if $self->{on_read} || @{ $self->{_queue} };
311 486
312 $self 487 $self->_drain_wbuf;
313} 488}
314 489
315sub _shutdown { 490#sub _shutdown {
316 my ($self) = @_; 491# my ($self) = @_;
317 492#
318 delete $self->{_tw}; 493# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 494# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 495#
321 delete $self->{fh}; 496# &_freetls;
322 497#}
323 $self->stoptls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 498
329sub _error { 499sub _error {
330 my ($self, $errno, $fatal) = @_; 500 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 501
335 $! = $errno; 502 $! = $errno;
503 $message ||= "$!";
336 504
337 if ($self->{on_error}) { 505 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 506 $self->{on_error}($self, $fatal, $message);
339 } else { 507 $self->destroy if $fatal;
508 } elsif ($self->{fh}) {
509 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 510 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 511 }
342} 512}
343 513
344=item $fh = $handle->fh 514=item $fh = $handle->fh
345 515
382} 552}
383 553
384=item $handle->autocork ($boolean) 554=item $handle->autocork ($boolean)
385 555
386Enables or disables the current autocork behaviour (see C<autocork> 556Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 557constructor argument). Changes will only take effect on the next write.
388 558
389=cut 559=cut
560
561sub autocork {
562 $_[0]{autocork} = $_[1];
563}
390 564
391=item $handle->no_delay ($boolean) 565=item $handle->no_delay ($boolean)
392 566
393Enables or disables the C<no_delay> setting (see constructor argument of 567Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 568the same name for details).
398sub no_delay { 572sub no_delay {
399 $_[0]{no_delay} = $_[1]; 573 $_[0]{no_delay} = $_[1];
400 574
401 eval { 575 eval {
402 local $SIG{__DIE__}; 576 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 577 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
578 if $_[0]{fh};
404 }; 579 };
580}
581
582=item $handle->on_starttls ($cb)
583
584Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
585
586=cut
587
588sub on_starttls {
589 $_[0]{on_starttls} = $_[1];
590}
591
592=item $handle->on_stoptls ($cb)
593
594Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
595
596=cut
597
598sub on_starttls {
599 $_[0]{on_stoptls} = $_[1];
405} 600}
406 601
407############################################################################# 602#############################################################################
408 603
409=item $handle->timeout ($seconds) 604=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 617# reset the timeout watcher, as neccessary
423# also check for time-outs 618# also check for time-outs
424sub _timeout { 619sub _timeout {
425 my ($self) = @_; 620 my ($self) = @_;
426 621
427 if ($self->{timeout}) { 622 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 623 my $NOW = AnyEvent->now;
429 624
430 # when would the timeout trigger? 625 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 626 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 627
435 $self->{_activity} = $NOW; 630 $self->{_activity} = $NOW;
436 631
437 if ($self->{on_timeout}) { 632 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 633 $self->{on_timeout}($self);
439 } else { 634 } else {
440 $self->_error (&Errno::ETIMEDOUT); 635 $self->_error (Errno::ETIMEDOUT);
441 } 636 }
442 637
443 # callback could have changed timeout value, optimise 638 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 639 return unless $self->{timeout};
445 640
487 my ($self, $cb) = @_; 682 my ($self, $cb) = @_;
488 683
489 $self->{on_drain} = $cb; 684 $self->{on_drain} = $cb;
490 685
491 $cb->($self) 686 $cb->($self)
492 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 687 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493} 688}
494 689
495=item $handle->push_write ($data) 690=item $handle->push_write ($data)
496 691
497Queues the given scalar to be written. You can push as much data as you 692Queues the given scalar to be written. You can push as much data as you
508 Scalar::Util::weaken $self; 703 Scalar::Util::weaken $self;
509 704
510 my $cb = sub { 705 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 706 my $len = syswrite $self->{fh}, $self->{wbuf};
512 707
513 if ($len >= 0) { 708 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 709 substr $self->{wbuf}, 0, $len, "";
515 710
516 $self->{_activity} = AnyEvent->now; 711 $self->{_activity} = AnyEvent->now;
517 712
518 $self->{on_drain}($self) 713 $self->{on_drain}($self)
519 if $self->{low_water_mark} >= length $self->{wbuf} 714 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 && $self->{on_drain}; 715 && $self->{on_drain};
521 716
522 delete $self->{_ww} unless length $self->{wbuf}; 717 delete $self->{_ww} unless length $self->{wbuf};
523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 718 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 $self->_error ($!, 1); 719 $self->_error ($!, 1);
548 743
549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 744 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550 ->($self, @_); 745 ->($self, @_);
551 } 746 }
552 747
553 if ($self->{filter_w}) { 748 if ($self->{tls}) {
554 $self->{filter_w}($self, \$_[0]); 749 $self->{_tls_wbuf} .= $_[0];
750 &_dotls ($self) if $self->{fh};
555 } else { 751 } else {
556 $self->{wbuf} .= $_[0]; 752 $self->{wbuf} .= $_[0];
557 $self->_drain_wbuf; 753 $self->_drain_wbuf if $self->{fh};
558 } 754 }
559} 755}
560 756
561=item $handle->push_write (type => @args) 757=item $handle->push_write (type => @args)
562 758
576=cut 772=cut
577 773
578register_write_type netstring => sub { 774register_write_type netstring => sub {
579 my ($self, $string) = @_; 775 my ($self, $string) = @_;
580 776
581 sprintf "%d:%s,", (length $string), $string 777 (length $string) . ":$string,"
582}; 778};
583 779
584=item packstring => $format, $data 780=item packstring => $format, $data
585 781
586An octet string prefixed with an encoded length. The encoding C<$format> 782An octet string prefixed with an encoded length. The encoding C<$format>
651 847
652 pack "w/a*", Storable::nfreeze ($ref) 848 pack "w/a*", Storable::nfreeze ($ref)
653}; 849};
654 850
655=back 851=back
852
853=item $handle->push_shutdown
854
855Sometimes you know you want to close the socket after writing your data
856before it was actually written. One way to do that is to replace your
857C<on_drain> handler by a callback that shuts down the socket (and set
858C<low_water_mark> to C<0>). This method is a shorthand for just that, and
859replaces the C<on_drain> callback with:
860
861 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
862
863This simply shuts down the write side and signals an EOF condition to the
864the peer.
865
866You can rely on the normal read queue and C<on_eof> handling
867afterwards. This is the cleanest way to close a connection.
868
869=cut
870
871sub push_shutdown {
872 my ($self) = @_;
873
874 delete $self->{low_water_mark};
875 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
876}
656 877
657=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 878=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
658 879
659This function (not method) lets you add your own types to C<push_write>. 880This function (not method) lets you add your own types to C<push_write>.
660Whenever the given C<type> is used, C<push_write> will invoke the code 881Whenever the given C<type> is used, C<push_write> will invoke the code
754=cut 975=cut
755 976
756sub _drain_rbuf { 977sub _drain_rbuf {
757 my ($self) = @_; 978 my ($self) = @_;
758 979
980 # avoid recursion
981 return if exists $self->{_skip_drain_rbuf};
759 local $self->{_in_drain} = 1; 982 local $self->{_skip_drain_rbuf} = 1;
760 983
761 if ( 984 if (
762 defined $self->{rbuf_max} 985 defined $self->{rbuf_max}
763 && $self->{rbuf_max} < length $self->{rbuf} 986 && $self->{rbuf_max} < length $self->{rbuf}
764 ) { 987 ) {
765 $self->_error (&Errno::ENOSPC, 1), return; 988 $self->_error (Errno::ENOSPC, 1), return;
766 } 989 }
767 990
768 while () { 991 while () {
992 # we need to use a separate tls read buffer, as we must not receive data while
993 # we are draining the buffer, and this can only happen with TLS.
994 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
995
769 my $len = length $self->{rbuf}; 996 my $len = length $self->{rbuf};
770 997
771 if (my $cb = shift @{ $self->{_queue} }) { 998 if (my $cb = shift @{ $self->{_queue} }) {
772 unless ($cb->($self)) { 999 unless ($cb->($self)) {
773 if ($self->{_eof}) { 1000 if ($self->{_eof}) {
774 # no progress can be made (not enough data and no data forthcoming) 1001 # no progress can be made (not enough data and no data forthcoming)
775 $self->_error (&Errno::EPIPE, 1), return; 1002 $self->_error (Errno::EPIPE, 1), return;
776 } 1003 }
777 1004
778 unshift @{ $self->{_queue} }, $cb; 1005 unshift @{ $self->{_queue} }, $cb;
779 last; 1006 last;
780 } 1007 }
788 && !@{ $self->{_queue} } # and the queue is still empty 1015 && !@{ $self->{_queue} } # and the queue is still empty
789 && $self->{on_read} # but we still have on_read 1016 && $self->{on_read} # but we still have on_read
790 ) { 1017 ) {
791 # no further data will arrive 1018 # no further data will arrive
792 # so no progress can be made 1019 # so no progress can be made
793 $self->_error (&Errno::EPIPE, 1), return 1020 $self->_error (Errno::EPIPE, 1), return
794 if $self->{_eof}; 1021 if $self->{_eof};
795 1022
796 last; # more data might arrive 1023 last; # more data might arrive
797 } 1024 }
798 } else { 1025 } else {
799 # read side becomes idle 1026 # read side becomes idle
800 delete $self->{_rw}; 1027 delete $self->{_rw} unless $self->{tls};
801 last; 1028 last;
802 } 1029 }
803 } 1030 }
804 1031
805 if ($self->{_eof}) { 1032 if ($self->{_eof}) {
806 if ($self->{on_eof}) { 1033 if ($self->{on_eof}) {
807 $self->{on_eof}($self) 1034 $self->{on_eof}($self)
808 } else { 1035 } else {
809 $self->_error (0, 1); 1036 $self->_error (0, 1, "Unexpected end-of-file");
810 } 1037 }
811 } 1038 }
812 1039
813 # may need to restart read watcher 1040 # may need to restart read watcher
814 unless ($self->{_rw}) { 1041 unless ($self->{_rw}) {
827 1054
828sub on_read { 1055sub on_read {
829 my ($self, $cb) = @_; 1056 my ($self, $cb) = @_;
830 1057
831 $self->{on_read} = $cb; 1058 $self->{on_read} = $cb;
832 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1059 $self->_drain_rbuf if $cb;
833} 1060}
834 1061
835=item $handle->rbuf 1062=item $handle->rbuf
836 1063
837Returns the read buffer (as a modifiable lvalue). 1064Returns the read buffer (as a modifiable lvalue).
838 1065
839You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1066You can access the read buffer directly as the C<< ->{rbuf} >>
840you want. 1067member, if you want. However, the only operation allowed on the
1068read buffer (apart from looking at it) is removing data from its
1069beginning. Otherwise modifying or appending to it is not allowed and will
1070lead to hard-to-track-down bugs.
841 1071
842NOTE: The read buffer should only be used or modified if the C<on_read>, 1072NOTE: The read buffer should only be used or modified if the C<on_read>,
843C<push_read> or C<unshift_read> methods are used. The other read methods 1073C<push_read> or C<unshift_read> methods are used. The other read methods
844automatically manage the read buffer. 1074automatically manage the read buffer.
845 1075
886 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1116 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
887 ->($self, $cb, @_); 1117 ->($self, $cb, @_);
888 } 1118 }
889 1119
890 push @{ $self->{_queue} }, $cb; 1120 push @{ $self->{_queue} }, $cb;
891 $self->_drain_rbuf unless $self->{_in_drain}; 1121 $self->_drain_rbuf;
892} 1122}
893 1123
894sub unshift_read { 1124sub unshift_read {
895 my $self = shift; 1125 my $self = shift;
896 my $cb = pop; 1126 my $cb = pop;
902 ->($self, $cb, @_); 1132 ->($self, $cb, @_);
903 } 1133 }
904 1134
905 1135
906 unshift @{ $self->{_queue} }, $cb; 1136 unshift @{ $self->{_queue} }, $cb;
907 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
908} 1138}
909 1139
910=item $handle->push_read (type => @args, $cb) 1140=item $handle->push_read (type => @args, $cb)
911 1141
912=item $handle->unshift_read (type => @args, $cb) 1142=item $handle->unshift_read (type => @args, $cb)
1045 return 1; 1275 return 1;
1046 } 1276 }
1047 1277
1048 # reject 1278 # reject
1049 if ($reject && $$rbuf =~ $reject) { 1279 if ($reject && $$rbuf =~ $reject) {
1050 $self->_error (&Errno::EBADMSG); 1280 $self->_error (Errno::EBADMSG);
1051 } 1281 }
1052 1282
1053 # skip 1283 # skip
1054 if ($skip && $$rbuf =~ $skip) { 1284 if ($skip && $$rbuf =~ $skip) {
1055 $data .= substr $$rbuf, 0, $+[0], ""; 1285 $data .= substr $$rbuf, 0, $+[0], "";
1071 my ($self, $cb) = @_; 1301 my ($self, $cb) = @_;
1072 1302
1073 sub { 1303 sub {
1074 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1304 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1075 if ($_[0]{rbuf} =~ /[^0-9]/) { 1305 if ($_[0]{rbuf} =~ /[^0-9]/) {
1076 $self->_error (&Errno::EBADMSG); 1306 $self->_error (Errno::EBADMSG);
1077 } 1307 }
1078 return; 1308 return;
1079 } 1309 }
1080 1310
1081 my $len = $1; 1311 my $len = $1;
1084 my $string = $_[1]; 1314 my $string = $_[1];
1085 $_[0]->unshift_read (chunk => 1, sub { 1315 $_[0]->unshift_read (chunk => 1, sub {
1086 if ($_[1] eq ",") { 1316 if ($_[1] eq ",") {
1087 $cb->($_[0], $string); 1317 $cb->($_[0], $string);
1088 } else { 1318 } else {
1089 $self->_error (&Errno::EBADMSG); 1319 $self->_error (Errno::EBADMSG);
1090 } 1320 }
1091 }); 1321 });
1092 }); 1322 });
1093 1323
1094 1 1324 1
1100An octet string prefixed with an encoded length. The encoding C<$format> 1330An octet string prefixed with an encoded length. The encoding C<$format>
1101uses the same format as a Perl C<pack> format, but must specify a single 1331uses the same format as a Perl C<pack> format, but must specify a single
1102integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1332integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1103optional C<!>, C<< < >> or C<< > >> modifier). 1333optional C<!>, C<< < >> or C<< > >> modifier).
1104 1334
1105DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1335For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1336EPP uses a prefix of C<N> (4 octtes).
1106 1337
1107Example: read a block of data prefixed by its length in BER-encoded 1338Example: read a block of data prefixed by its length in BER-encoded
1108format (very efficient). 1339format (very efficient).
1109 1340
1110 $handle->push_read (packstring => "w", sub { 1341 $handle->push_read (packstring => "w", sub {
1140 } 1371 }
1141}; 1372};
1142 1373
1143=item json => $cb->($handle, $hash_or_arrayref) 1374=item json => $cb->($handle, $hash_or_arrayref)
1144 1375
1145Reads a JSON object or array, decodes it and passes it to the callback. 1376Reads a JSON object or array, decodes it and passes it to the
1377callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1146 1378
1147If a C<json> object was passed to the constructor, then that will be used 1379If a C<json> object was passed to the constructor, then that will be used
1148for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1380for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1149 1381
1150This read type uses the incremental parser available with JSON version 1382This read type uses the incremental parser available with JSON version
1159=cut 1391=cut
1160 1392
1161register_read_type json => sub { 1393register_read_type json => sub {
1162 my ($self, $cb) = @_; 1394 my ($self, $cb) = @_;
1163 1395
1164 require JSON; 1396 my $json = $self->{json} ||=
1397 eval { require JSON::XS; JSON::XS->new->utf8 }
1398 || do { require JSON; JSON->new->utf8 };
1165 1399
1166 my $data; 1400 my $data;
1167 my $rbuf = \$self->{rbuf}; 1401 my $rbuf = \$self->{rbuf};
1168 1402
1169 my $json = $self->{json} ||= JSON->new->utf8;
1170
1171 sub { 1403 sub {
1172 my $ref = $json->incr_parse ($self->{rbuf}); 1404 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1173 1405
1174 if ($ref) { 1406 if ($ref) {
1175 $self->{rbuf} = $json->incr_text; 1407 $self->{rbuf} = $json->incr_text;
1176 $json->incr_text = ""; 1408 $json->incr_text = "";
1177 $cb->($self, $ref); 1409 $cb->($self, $ref);
1178 1410
1179 1 1411 1
1412 } elsif ($@) {
1413 # error case
1414 $json->incr_skip;
1415
1416 $self->{rbuf} = $json->incr_text;
1417 $json->incr_text = "";
1418
1419 $self->_error (Errno::EBADMSG);
1420
1421 ()
1180 } else { 1422 } else {
1181 $self->{rbuf} = ""; 1423 $self->{rbuf} = "";
1424
1182 () 1425 ()
1183 } 1426 }
1184 } 1427 }
1185}; 1428};
1186 1429
1218 # read remaining chunk 1461 # read remaining chunk
1219 $_[0]->unshift_read (chunk => $len, sub { 1462 $_[0]->unshift_read (chunk => $len, sub {
1220 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1463 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1221 $cb->($_[0], $ref); 1464 $cb->($_[0], $ref);
1222 } else { 1465 } else {
1223 $self->_error (&Errno::EBADMSG); 1466 $self->_error (Errno::EBADMSG);
1224 } 1467 }
1225 }); 1468 });
1226 } 1469 }
1227 1470
1228 1 1471 1
1263Note that AnyEvent::Handle will automatically C<start_read> for you when 1506Note that AnyEvent::Handle will automatically C<start_read> for you when
1264you change the C<on_read> callback or push/unshift a read callback, and it 1507you change the C<on_read> callback or push/unshift a read callback, and it
1265will automatically C<stop_read> for you when neither C<on_read> is set nor 1508will automatically C<stop_read> for you when neither C<on_read> is set nor
1266there are any read requests in the queue. 1509there are any read requests in the queue.
1267 1510
1511These methods will have no effect when in TLS mode (as TLS doesn't support
1512half-duplex connections).
1513
1268=cut 1514=cut
1269 1515
1270sub stop_read { 1516sub stop_read {
1271 my ($self) = @_; 1517 my ($self) = @_;
1272 1518
1273 delete $self->{_rw}; 1519 delete $self->{_rw} unless $self->{tls};
1274} 1520}
1275 1521
1276sub start_read { 1522sub start_read {
1277 my ($self) = @_; 1523 my ($self) = @_;
1278 1524
1279 unless ($self->{_rw} || $self->{_eof}) { 1525 unless ($self->{_rw} || $self->{_eof}) {
1280 Scalar::Util::weaken $self; 1526 Scalar::Util::weaken $self;
1281 1527
1282 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1528 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1283 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1529 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1284 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1530 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1285 1531
1286 if ($len > 0) { 1532 if ($len > 0) {
1287 $self->{_activity} = AnyEvent->now; 1533 $self->{_activity} = AnyEvent->now;
1288 1534
1289 $self->{filter_r} 1535 if ($self->{tls}) {
1290 ? $self->{filter_r}($self, $rbuf) 1536 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1291 : $self->{_in_drain} || $self->_drain_rbuf; 1537
1538 &_dotls ($self);
1539 } else {
1540 $self->_drain_rbuf;
1541 }
1292 1542
1293 } elsif (defined $len) { 1543 } elsif (defined $len) {
1294 delete $self->{_rw}; 1544 delete $self->{_rw};
1295 $self->{_eof} = 1; 1545 $self->{_eof} = 1;
1296 $self->_drain_rbuf unless $self->{_in_drain}; 1546 $self->_drain_rbuf;
1297 1547
1298 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1299 return $self->_error ($!, 1); 1549 return $self->_error ($!, 1);
1300 } 1550 }
1301 }); 1551 });
1302 } 1552 }
1303} 1553}
1304 1554
1555our $ERROR_SYSCALL;
1556our $ERROR_WANT_READ;
1557
1558sub _tls_error {
1559 my ($self, $err) = @_;
1560
1561 return $self->_error ($!, 1)
1562 if $err == Net::SSLeay::ERROR_SYSCALL ();
1563
1564 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1565
1566 # reduce error string to look less scary
1567 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1568
1569 if ($self->{_on_starttls}) {
1570 (delete $self->{_on_starttls})->($self, undef, $err);
1571 &_freetls;
1572 } else {
1573 &_freetls;
1574 $self->_error (Errno::EPROTO, 1, $err);
1575 }
1576}
1577
1578# poll the write BIO and send the data if applicable
1579# also decode read data if possible
1580# this is basiclaly our TLS state machine
1581# more efficient implementations are possible with openssl,
1582# but not with the buggy and incomplete Net::SSLeay.
1305sub _dotls { 1583sub _dotls {
1306 my ($self) = @_; 1584 my ($self) = @_;
1307 1585
1308 my $buf; 1586 my $tmp;
1309 1587
1310 if (length $self->{_tls_wbuf}) { 1588 if (length $self->{_tls_wbuf}) {
1311 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1589 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1312 substr $self->{_tls_wbuf}, 0, $len, ""; 1590 substr $self->{_tls_wbuf}, 0, $tmp, "";
1313 } 1591 }
1314 }
1315 1592
1593 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1594 return $self->_tls_error ($tmp)
1595 if $tmp != $ERROR_WANT_READ
1596 && ($tmp != $ERROR_SYSCALL || $!);
1597 }
1598
1599 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1600 unless (length $tmp) {
1601 $self->{_on_starttls}
1602 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1603 &_freetls;
1604
1605 if ($self->{on_stoptls}) {
1606 $self->{on_stoptls}($self);
1607 return;
1608 } else {
1609 # let's treat SSL-eof as we treat normal EOF
1610 delete $self->{_rw};
1611 $self->{_eof} = 1;
1612 }
1613 }
1614
1615 $self->{_tls_rbuf} .= $tmp;
1616 $self->_drain_rbuf;
1617 $self->{tls} or return; # tls session might have gone away in callback
1618 }
1619
1620 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1621 return $self->_tls_error ($tmp)
1622 if $tmp != $ERROR_WANT_READ
1623 && ($tmp != $ERROR_SYSCALL || $!);
1624
1316 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1625 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1317 $self->{wbuf} .= $buf; 1626 $self->{wbuf} .= $tmp;
1318 $self->_drain_wbuf; 1627 $self->_drain_wbuf;
1319 } 1628 }
1320 1629
1321 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1630 $self->{_on_starttls}
1322 if (length $buf) { 1631 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1323 $self->{rbuf} .= $buf; 1632 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1324 $self->_drain_rbuf unless $self->{_in_drain};
1325 } else {
1326 # let's treat SSL-eof as we treat normal EOF
1327 $self->{_eof} = 1;
1328 $self->_shutdown;
1329 return;
1330 }
1331 }
1332
1333 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1334
1335 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1336 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1337 return $self->_error ($!, 1);
1338 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1339 return $self->_error (&Errno::EIO, 1);
1340 }
1341
1342 # all others are fine for our purposes
1343 }
1344} 1633}
1345 1634
1346=item $handle->starttls ($tls[, $tls_ctx]) 1635=item $handle->starttls ($tls[, $tls_ctx])
1347 1636
1348Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1637Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1349object is created, you can also do that at a later time by calling 1638object is created, you can also do that at a later time by calling
1350C<starttls>. 1639C<starttls>.
1351 1640
1641Starting TLS is currently an asynchronous operation - when you push some
1642write data and then call C<< ->starttls >> then TLS negotiation will start
1643immediately, after which the queued write data is then sent.
1644
1352The first argument is the same as the C<tls> constructor argument (either 1645The first argument is the same as the C<tls> constructor argument (either
1353C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1646C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1354 1647
1355The second argument is the optional C<Net::SSLeay::CTX> object that is 1648The second argument is the optional C<AnyEvent::TLS> object that is used
1356used when AnyEvent::Handle has to create its own TLS connection object. 1649when AnyEvent::Handle has to create its own TLS connection object, or
1650a hash reference with C<< key => value >> pairs that will be used to
1651construct a new context.
1357 1652
1358The TLS connection object will end up in C<< $handle->{tls} >> after this 1653The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1359call and can be used or changed to your liking. Note that the handshake 1654context in C<< $handle->{tls_ctx} >> after this call and can be used or
1360might have already started when this function returns. 1655changed to your liking. Note that the handshake might have already started
1656when this function returns.
1361 1657
1658Due to bugs in OpenSSL, it might or might not be possible to do multiple
1659handshakes on the same stream. Best do not attempt to use the stream after
1660stopping TLS.
1661
1362=cut 1662=cut
1663
1664our %TLS_CACHE; #TODO not yet documented, should we?
1363 1665
1364sub starttls { 1666sub starttls {
1365 my ($self, $ssl, $ctx) = @_; 1667 my ($self, $tls, $ctx) = @_;
1366 1668
1367 $self->stoptls; 1669 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1670 if $self->{tls};
1368 1671
1369 if ($ssl eq "accept") { 1672 $self->{tls} = $tls;
1370 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1673 $self->{tls_ctx} = $ctx if @_ > 2;
1371 Net::SSLeay::set_accept_state ($ssl); 1674
1372 } elsif ($ssl eq "connect") { 1675 return unless $self->{fh};
1373 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1676
1374 Net::SSLeay::set_connect_state ($ssl); 1677 require Net::SSLeay;
1678
1679 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1680 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1681
1682 $tls = $self->{tls};
1683 $ctx = $self->{tls_ctx};
1684
1685 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1686
1687 if ("HASH" eq ref $ctx) {
1688 require AnyEvent::TLS;
1689
1690 if ($ctx->{cache}) {
1691 my $key = $ctx+0;
1692 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1693 } else {
1694 $ctx = new AnyEvent::TLS %$ctx;
1695 }
1696 }
1375 } 1697
1376 1698 $self->{tls_ctx} = $ctx || TLS_CTX ();
1377 $self->{tls} = $ssl; 1699 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1378 1700
1379 # basically, this is deep magic (because SSL_read should have the same issues) 1701 # basically, this is deep magic (because SSL_read should have the same issues)
1380 # but the openssl maintainers basically said: "trust us, it just works". 1702 # but the openssl maintainers basically said: "trust us, it just works".
1381 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1703 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1382 # and mismaintained ssleay-module doesn't even offer them). 1704 # and mismaintained ssleay-module doesn't even offer them).
1383 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1705 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1384 # 1706 #
1385 # in short: this is a mess. 1707 # in short: this is a mess.
1386 # 1708 #
1387 # note that we do not try to kepe the length constant between writes as we are required to do. 1709 # note that we do not try to keep the length constant between writes as we are required to do.
1388 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1710 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1389 # and we drive openssl fully in blocking mode here. 1711 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1712 # have identity issues in that area.
1390 Net::SSLeay::CTX_set_mode ($self->{tls}, 1713# Net::SSLeay::CTX_set_mode ($ssl,
1391 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1714# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1392 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1715# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1716 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1393 1717
1394 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1718 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1395 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1719 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1396 1720
1397 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1721 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1398 1722
1399 $self->{filter_w} = sub { 1723 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1400 $_[0]{_tls_wbuf} .= ${$_[1]}; 1724 if $self->{on_starttls};
1401 &_dotls; 1725
1402 }; 1726 &_dotls; # need to trigger the initial handshake
1403 $self->{filter_r} = sub { 1727 $self->start_read; # make sure we actually do read
1404 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1405 &_dotls;
1406 };
1407} 1728}
1408 1729
1409=item $handle->stoptls 1730=item $handle->stoptls
1410 1731
1411Destroys the SSL connection, if any. Partial read or write data will be 1732Shuts down the SSL connection - this makes a proper EOF handshake by
1412lost. 1733sending a close notify to the other side, but since OpenSSL doesn't
1734support non-blocking shut downs, it is not guarenteed that you can re-use
1735the stream afterwards.
1413 1736
1414=cut 1737=cut
1415 1738
1416sub stoptls { 1739sub stoptls {
1417 my ($self) = @_; 1740 my ($self) = @_;
1418 1741
1419 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1742 if ($self->{tls}) {
1743 Net::SSLeay::shutdown ($self->{tls});
1420 1744
1421 delete $self->{_rbio}; 1745 &_dotls;
1422 delete $self->{_wbio}; 1746
1423 delete $self->{_tls_wbuf}; 1747# # we don't give a shit. no, we do, but we can't. no...#d#
1424 delete $self->{filter_r}; 1748# # we, we... have to use openssl :/#d#
1425 delete $self->{filter_w}; 1749# &_freetls;#d#
1750 }
1751}
1752
1753sub _freetls {
1754 my ($self) = @_;
1755
1756 return unless $self->{tls};
1757
1758 $self->{tls_ctx}->_put_session (delete $self->{tls})
1759 if ref $self->{tls};
1760
1761 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1426} 1762}
1427 1763
1428sub DESTROY { 1764sub DESTROY {
1429 my $self = shift; 1765 my ($self) = @_;
1430 1766
1431 $self->stoptls; 1767 &_freetls;
1432 1768
1433 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1769 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1434 1770
1435 if ($linger && length $self->{wbuf}) { 1771 if ($linger && length $self->{wbuf} && $self->{fh}) {
1436 my $fh = delete $self->{fh}; 1772 my $fh = delete $self->{fh};
1437 my $wbuf = delete $self->{wbuf}; 1773 my $wbuf = delete $self->{wbuf};
1438 1774
1439 my @linger; 1775 my @linger;
1440 1776
1451 @linger = (); 1787 @linger = ();
1452 }); 1788 });
1453 } 1789 }
1454} 1790}
1455 1791
1792=item $handle->destroy
1793
1794Shuts down the handle object as much as possible - this call ensures that
1795no further callbacks will be invoked and as many resources as possible
1796will be freed. You must not call any methods on the object afterwards.
1797
1798Normally, you can just "forget" any references to an AnyEvent::Handle
1799object and it will simply shut down. This works in fatal error and EOF
1800callbacks, as well as code outside. It does I<NOT> work in a read or write
1801callback, so when you want to destroy the AnyEvent::Handle object from
1802within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1803that case.
1804
1805Destroying the handle object in this way has the advantage that callbacks
1806will be removed as well, so if those are the only reference holders (as
1807is common), then one doesn't need to do anything special to break any
1808reference cycles.
1809
1810The handle might still linger in the background and write out remaining
1811data, as specified by the C<linger> option, however.
1812
1813=cut
1814
1815sub destroy {
1816 my ($self) = @_;
1817
1818 $self->DESTROY;
1819 %$self = ();
1820}
1821
1456=item AnyEvent::Handle::TLS_CTX 1822=item AnyEvent::Handle::TLS_CTX
1457 1823
1458This function creates and returns the Net::SSLeay::CTX object used by 1824This function creates and returns the AnyEvent::TLS object used by default
1459default for TLS mode. 1825for TLS mode.
1460 1826
1461The context is created like this: 1827The context is created by calling L<AnyEvent::TLS> without any arguments.
1462
1463 Net::SSLeay::load_error_strings;
1464 Net::SSLeay::SSLeay_add_ssl_algorithms;
1465 Net::SSLeay::randomize;
1466
1467 my $CTX = Net::SSLeay::CTX_new;
1468
1469 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1470 1828
1471=cut 1829=cut
1472 1830
1473our $TLS_CTX; 1831our $TLS_CTX;
1474 1832
1475sub TLS_CTX() { 1833sub TLS_CTX() {
1476 $TLS_CTX || do { 1834 $TLS_CTX ||= do {
1477 require Net::SSLeay; 1835 require AnyEvent::TLS;
1478 1836
1479 Net::SSLeay::load_error_strings (); 1837 new AnyEvent::TLS
1480 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1481 Net::SSLeay::randomize ();
1482
1483 $TLS_CTX = Net::SSLeay::CTX_new ();
1484
1485 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1486
1487 $TLS_CTX
1488 } 1838 }
1489} 1839}
1490 1840
1491=back 1841=back
1842
1843
1844=head1 NONFREQUENTLY ASKED QUESTIONS
1845
1846=over 4
1847
1848=item I C<undef> the AnyEvent::Handle reference inside my callback and
1849still get further invocations!
1850
1851That's because AnyEvent::Handle keeps a reference to itself when handling
1852read or write callbacks.
1853
1854It is only safe to "forget" the reference inside EOF or error callbacks,
1855from within all other callbacks, you need to explicitly call the C<<
1856->destroy >> method.
1857
1858=item I get different callback invocations in TLS mode/Why can't I pause
1859reading?
1860
1861Unlike, say, TCP, TLS connections do not consist of two independent
1862communication channels, one for each direction. Or put differently. The
1863read and write directions are not independent of each other: you cannot
1864write data unless you are also prepared to read, and vice versa.
1865
1866This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1867callback invocations when you are not expecting any read data - the reason
1868is that AnyEvent::Handle always reads in TLS mode.
1869
1870During the connection, you have to make sure that you always have a
1871non-empty read-queue, or an C<on_read> watcher. At the end of the
1872connection (or when you no longer want to use it) you can call the
1873C<destroy> method.
1874
1875=item How do I read data until the other side closes the connection?
1876
1877If you just want to read your data into a perl scalar, the easiest way
1878to achieve this is by setting an C<on_read> callback that does nothing,
1879clearing the C<on_eof> callback and in the C<on_error> callback, the data
1880will be in C<$_[0]{rbuf}>:
1881
1882 $handle->on_read (sub { });
1883 $handle->on_eof (undef);
1884 $handle->on_error (sub {
1885 my $data = delete $_[0]{rbuf};
1886 });
1887
1888The reason to use C<on_error> is that TCP connections, due to latencies
1889and packets loss, might get closed quite violently with an error, when in
1890fact, all data has been received.
1891
1892It is usually better to use acknowledgements when transferring data,
1893to make sure the other side hasn't just died and you got the data
1894intact. This is also one reason why so many internet protocols have an
1895explicit QUIT command.
1896
1897=item I don't want to destroy the handle too early - how do I wait until
1898all data has been written?
1899
1900After writing your last bits of data, set the C<on_drain> callback
1901and destroy the handle in there - with the default setting of
1902C<low_water_mark> this will be called precisely when all data has been
1903written to the socket:
1904
1905 $handle->push_write (...);
1906 $handle->on_drain (sub {
1907 warn "all data submitted to the kernel\n";
1908 undef $handle;
1909 });
1910
1911If you just want to queue some data and then signal EOF to the other side,
1912consider using C<< ->push_shutdown >> instead.
1913
1914=item I want to contact a TLS/SSL server, I don't care about security.
1915
1916If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1917simply connect to it and then create the AnyEvent::Handle with the C<tls>
1918parameter:
1919
1920 tcp_connect $host, $port, sub {
1921 my ($fh) = @_;
1922
1923 my $handle = new AnyEvent::Handle
1924 fh => $fh,
1925 tls => "connect",
1926 on_error => sub { ... };
1927
1928 $handle->push_write (...);
1929 };
1930
1931=item I want to contact a TLS/SSL server, I do care about security.
1932
1933Then you should additionally enable certificate verification, including
1934peername verification, if the protocol you use supports it (see
1935L<AnyEvent::TLS>, C<verify_peername>).
1936
1937E.g. for HTTPS:
1938
1939 tcp_connect $host, $port, sub {
1940 my ($fh) = @_;
1941
1942 my $handle = new AnyEvent::Handle
1943 fh => $fh,
1944 peername => $host,
1945 tls => "connect",
1946 tls_ctx => { verify => 1, verify_peername => "https" },
1947 ...
1948
1949Note that you must specify the hostname you connected to (or whatever
1950"peername" the protocol needs) as the C<peername> argument, otherwise no
1951peername verification will be done.
1952
1953The above will use the system-dependent default set of trusted CA
1954certificates. If you want to check against a specific CA, add the
1955C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1956
1957 tls_ctx => {
1958 verify => 1,
1959 verify_peername => "https",
1960 ca_file => "my-ca-cert.pem",
1961 },
1962
1963=item I want to create a TLS/SSL server, how do I do that?
1964
1965Well, you first need to get a server certificate and key. You have
1966three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1967self-signed certificate (cheap. check the search engine of your choice,
1968there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1969nice program for that purpose).
1970
1971Then create a file with your private key (in PEM format, see
1972L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1973file should then look like this:
1974
1975 -----BEGIN RSA PRIVATE KEY-----
1976 ...header data
1977 ... lots of base64'y-stuff
1978 -----END RSA PRIVATE KEY-----
1979
1980 -----BEGIN CERTIFICATE-----
1981 ... lots of base64'y-stuff
1982 -----END CERTIFICATE-----
1983
1984The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1985specify this file as C<cert_file>:
1986
1987 tcp_server undef, $port, sub {
1988 my ($fh) = @_;
1989
1990 my $handle = new AnyEvent::Handle
1991 fh => $fh,
1992 tls => "accept",
1993 tls_ctx => { cert_file => "my-server-keycert.pem" },
1994 ...
1995
1996When you have intermediate CA certificates that your clients might not
1997know about, just append them to the C<cert_file>.
1998
1999=back
2000
1492 2001
1493=head1 SUBCLASSING AnyEvent::Handle 2002=head1 SUBCLASSING AnyEvent::Handle
1494 2003
1495In many cases, you might want to subclass AnyEvent::Handle. 2004In many cases, you might want to subclass AnyEvent::Handle.
1496 2005

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines