ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.30 by root, Sat May 24 23:56:26 2008 UTC vs.
Revision 1.88 by root, Thu Aug 21 23:48:35 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.233;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
69 73
70=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
71 75
72The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
73 77
74NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
76 81
77=item on_eof => $cb->($self) 82=item on_eof => $cb->($handle)
78 83
79Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
80 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
81While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
83waiting for data. 95waiting for data.
84 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
85=item on_error => $cb->($self) 100=item on_error => $cb->($handle, $fatal)
86 101
87This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
88occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
89or a read error. 104connect or a read error.
90 105
91The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 116
94On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 119
97While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
99die. 122C<croak>.
100 123
101=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
102 125
103This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
105 130
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or access the C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
108 133
109When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
113 138
114=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
115 140
116This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
118 143
119To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
120 145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, a non-fatal C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163restart the timeout.
164
165Zero (the default) disables this timeout.
166
167=item on_timeout => $cb->($handle)
168
169Called whenever the inactivity timeout passes. If you return from this
170callback, then the timeout will be reset as if some activity had happened,
171so this condition is not fatal in any way.
172
121=item rbuf_max => <bytes> 173=item rbuf_max => <bytes>
122 174
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 175If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 176when the read buffer ever (strictly) exceeds this size. This is useful to
125avoid denial-of-service attacks. 177avoid some forms of denial-of-service attacks.
126 178
127For example, a server accepting connections from untrusted sources should 179For example, a server accepting connections from untrusted sources should
128be configured to accept only so-and-so much data that it cannot act on 180be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 181(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 182amount of data without a callback ever being called as long as the line
131isn't finished). 183isn't finished).
132 184
185=item autocork => <boolean>
186
187When disabled (the default), then C<push_write> will try to immediately
188write the data to the handle, if possible. This avoids having to register
189a write watcher and wait for the next event loop iteration, but can
190be inefficient if you write multiple small chunks (on the wire, this
191disadvantage is usually avoided by your kernel's nagle algorithm, see
192C<no_delay>, but this option can save costly syscalls).
193
194When enabled, then writes will always be queued till the next event loop
195iteration. This is efficient when you do many small writes per iteration,
196but less efficient when you do a single write only per iteration (or when
197the write buffer often is full). It also increases write latency.
198
199=item no_delay => <boolean>
200
201When doing small writes on sockets, your operating system kernel might
202wait a bit for more data before actually sending it out. This is called
203the Nagle algorithm, and usually it is beneficial.
204
205In some situations you want as low a delay as possible, which can be
206accomplishd by setting this option to a true value.
207
208The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible.
210
133=item read_size => <bytes> 211=item read_size => <bytes>
134 212
135The default read block size (the amount of bytes this module will try to read 213The default read block size (the amount of bytes this module will
136on each [loop iteration). Default: C<4096>. 214try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>.
137 216
138=item low_water_mark => <bytes> 217=item low_water_mark => <bytes>
139 218
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 219Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 220buffer: If the write reaches this size or gets even samller it is
142considered empty. 221considered empty.
143 222
223Sometimes it can be beneficial (for performance reasons) to add data to
224the write buffer before it is fully drained, but this is a rare case, as
225the operating system kernel usually buffers data as well, so the default
226is good in almost all cases.
227
228=item linger => <seconds>
229
230If non-zero (default: C<3600>), then the destructor of the
231AnyEvent::Handle object will check whether there is still outstanding
232write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time).
235
236This will not work for partial TLS data that could not be encoded
237yet. This data will be lost.
238
144=item tls => "accept" | "connect" | Net::SSLeay::SSL object 239=item tls => "accept" | "connect" | Net::SSLeay::SSL object
145 240
146When this parameter is given, it enables TLS (SSL) mode, that means it 241When this parameter is given, it enables TLS (SSL) mode, that means
147will start making tls handshake and will transparently encrypt/decrypt 242AnyEvent will start a TLS handshake as soon as the conenction has been
148data. 243established and will transparently encrypt/decrypt data afterwards.
149 244
150TLS mode requires Net::SSLeay to be installed (it will be loaded 245TLS mode requires Net::SSLeay to be installed (it will be loaded
151automatically when you try to create a TLS handle). 246automatically when you try to create a TLS handle): this module doesn't
247have a dependency on that module, so if your module requires it, you have
248to add the dependency yourself.
152 249
153For the TLS server side, use C<accept>, and for the TLS client side of a 250Unlike TCP, TLS has a server and client side: for the TLS server side, use
154connection, use C<connect> mode. 251C<accept>, and for the TLS client side of a connection, use C<connect>
252mode.
155 253
156You can also provide your own TLS connection object, but you have 254You can also provide your own TLS connection object, but you have
157to make sure that you call either C<Net::SSLeay::set_connect_state> 255to make sure that you call either C<Net::SSLeay::set_connect_state>
158or C<Net::SSLeay::set_accept_state> on it before you pass it to 256or C<Net::SSLeay::set_accept_state> on it before you pass it to
159AnyEvent::Handle. 257AnyEvent::Handle.
160 258
161See the C<starttls> method if you need to start TLs negotiation later. 259See the C<< ->starttls >> method for when need to start TLS negotiation later.
162 260
163=item tls_ctx => $ssl_ctx 261=item tls_ctx => $ssl_ctx
164 262
165Use the given Net::SSLeay::CTX object to create the new TLS connection 263Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
166(unless a connection object was specified directly). If this parameter is 264(unless a connection object was specified directly). If this parameter is
167missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 265missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
266
267=item json => JSON or JSON::XS object
268
269This is the json coder object used by the C<json> read and write types.
270
271If you don't supply it, then AnyEvent::Handle will create and use a
272suitable one (on demand), which will write and expect UTF-8 encoded JSON
273texts.
274
275Note that you are responsible to depend on the JSON module if you want to
276use this functionality, as AnyEvent does not have a dependency itself.
277
278=item filter_r => $cb
279
280=item filter_w => $cb
281
282These exist, but are undocumented at this time. (They are used internally
283by the TLS code).
168 284
169=back 285=back
170 286
171=cut 287=cut
172 288
182 if ($self->{tls}) { 298 if ($self->{tls}) {
183 require Net::SSLeay; 299 require Net::SSLeay;
184 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
185 } 301 }
186 302
187 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 303 $self->{_activity} = AnyEvent->now;
188 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 304 $self->_timeout;
305
189 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
190 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
191 308
192 $self->start_read; 309 $self->start_read
310 if $self->{on_read};
193 311
194 $self 312 $self
195} 313}
196 314
197sub _shutdown { 315sub _shutdown {
198 my ($self) = @_; 316 my ($self) = @_;
199 317
318 delete $self->{_tw};
200 delete $self->{rw}; 319 delete $self->{_rw};
201 delete $self->{ww}; 320 delete $self->{_ww};
202 delete $self->{fh}; 321 delete $self->{fh};
203}
204 322
323 $self->stoptls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328
205sub error { 329sub _error {
206 my ($self) = @_; 330 my ($self, $errno, $fatal) = @_;
207 331
208 {
209 local $!;
210 $self->_shutdown; 332 $self->_shutdown
211 } 333 if $fatal;
334
335 $! = $errno;
212 336
213 if ($self->{on_error}) { 337 if ($self->{on_error}) {
214 $self->{on_error}($self); 338 $self->{on_error}($self, $fatal);
215 } else { 339 } else {
216 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 340 Carp::croak "AnyEvent::Handle uncaught error: $!";
217 } 341 }
218} 342}
219 343
220=item $fh = $handle->fh 344=item $fh = $handle->fh
221 345
222This method returns the file handle of the L<AnyEvent::Handle> object. 346This method returns the file handle used to create the L<AnyEvent::Handle> object.
223 347
224=cut 348=cut
225 349
226sub fh { $_[0]->{fh} } 350sub fh { $_[0]{fh} }
227 351
228=item $handle->on_error ($cb) 352=item $handle->on_error ($cb)
229 353
230Replace the current C<on_error> callback (see the C<on_error> constructor argument). 354Replace the current C<on_error> callback (see the C<on_error> constructor argument).
231 355
241 365
242=cut 366=cut
243 367
244sub on_eof { 368sub on_eof {
245 $_[0]{on_eof} = $_[1]; 369 $_[0]{on_eof} = $_[1];
370}
371
372=item $handle->on_timeout ($cb)
373
374Replace the current C<on_timeout> callback, or disables the callback (but
375not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
376argument and method.
377
378=cut
379
380sub on_timeout {
381 $_[0]{on_timeout} = $_[1];
382}
383
384=item $handle->autocork ($boolean)
385
386Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument).
388
389=cut
390
391=item $handle->no_delay ($boolean)
392
393Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details).
395
396=cut
397
398sub no_delay {
399 $_[0]{no_delay} = $_[1];
400
401 eval {
402 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404 };
405}
406
407#############################################################################
408
409=item $handle->timeout ($seconds)
410
411Configures (or disables) the inactivity timeout.
412
413=cut
414
415sub timeout {
416 my ($self, $timeout) = @_;
417
418 $self->{timeout} = $timeout;
419 $self->_timeout;
420}
421
422# reset the timeout watcher, as neccessary
423# also check for time-outs
424sub _timeout {
425 my ($self) = @_;
426
427 if ($self->{timeout}) {
428 my $NOW = AnyEvent->now;
429
430 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432
433 # now or in the past already?
434 if ($after <= 0) {
435 $self->{_activity} = $NOW;
436
437 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self);
439 } else {
440 $self->_error (&Errno::ETIMEDOUT);
441 }
442
443 # callback could have changed timeout value, optimise
444 return unless $self->{timeout};
445
446 # calculate new after
447 $after = $self->{timeout};
448 }
449
450 Scalar::Util::weaken $self;
451 return unless $self; # ->error could have destroyed $self
452
453 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
454 delete $self->{_tw};
455 $self->_timeout;
456 });
457 } else {
458 delete $self->{_tw};
459 }
246} 460}
247 461
248############################################################################# 462#############################################################################
249 463
250=back 464=back
287=cut 501=cut
288 502
289sub _drain_wbuf { 503sub _drain_wbuf {
290 my ($self) = @_; 504 my ($self) = @_;
291 505
292 if (!$self->{ww} && length $self->{wbuf}) { 506 if (!$self->{_ww} && length $self->{wbuf}) {
507
293 Scalar::Util::weaken $self; 508 Scalar::Util::weaken $self;
509
294 my $cb = sub { 510 my $cb = sub {
295 my $len = syswrite $self->{fh}, $self->{wbuf}; 511 my $len = syswrite $self->{fh}, $self->{wbuf};
296 512
297 if ($len >= 0) { 513 if ($len >= 0) {
298 substr $self->{wbuf}, 0, $len, ""; 514 substr $self->{wbuf}, 0, $len, "";
515
516 $self->{_activity} = AnyEvent->now;
299 517
300 $self->{on_drain}($self) 518 $self->{on_drain}($self)
301 if $self->{low_water_mark} >= length $self->{wbuf} 519 if $self->{low_water_mark} >= length $self->{wbuf}
302 && $self->{on_drain}; 520 && $self->{on_drain};
303 521
304 delete $self->{ww} unless length $self->{wbuf}; 522 delete $self->{_ww} unless length $self->{wbuf};
305 } elsif ($! != EAGAIN && $! != EINTR) { 523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
306 $self->error; 524 $self->_error ($!, 1);
307 } 525 }
308 }; 526 };
309 527
528 # try to write data immediately
529 $cb->() unless $self->{autocork};
530
531 # if still data left in wbuf, we need to poll
310 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 532 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
311 533 if length $self->{wbuf};
312 $cb->($self);
313 }; 534 };
314} 535}
315 536
316our %WH; 537our %WH;
317 538
328 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
329 ->($self, @_); 550 ->($self, @_);
330 } 551 }
331 552
332 if ($self->{filter_w}) { 553 if ($self->{filter_w}) {
333 $self->{filter_w}->($self, \$_[0]); 554 $self->{filter_w}($self, \$_[0]);
334 } else { 555 } else {
335 $self->{wbuf} .= $_[0]; 556 $self->{wbuf} .= $_[0];
336 $self->_drain_wbuf; 557 $self->_drain_wbuf;
337 } 558 }
338} 559}
339 560
340=item $handle->push_write (type => @args) 561=item $handle->push_write (type => @args)
341 562
342=item $handle->unshift_write (type => @args)
343
344Instead of formatting your data yourself, you can also let this module do 563Instead of formatting your data yourself, you can also let this module do
345the job by specifying a type and type-specific arguments. 564the job by specifying a type and type-specific arguments.
346 565
347Predefined types are (if you have ideas for additional types, feel free to 566Predefined types are (if you have ideas for additional types, feel free to
348drop by and tell us): 567drop by and tell us):
352=item netstring => $string 571=item netstring => $string
353 572
354Formats the given value as netstring 573Formats the given value as netstring
355(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 574(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
356 575
357=back
358
359=cut 576=cut
360 577
361register_write_type netstring => sub { 578register_write_type netstring => sub {
362 my ($self, $string) = @_; 579 my ($self, $string) = @_;
363 580
364 sprintf "%d:%s,", (length $string), $string 581 sprintf "%d:%s,", (length $string), $string
365}; 582};
366 583
584=item packstring => $format, $data
585
586An octet string prefixed with an encoded length. The encoding C<$format>
587uses the same format as a Perl C<pack> format, but must specify a single
588integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
589optional C<!>, C<< < >> or C<< > >> modifier).
590
591=cut
592
593register_write_type packstring => sub {
594 my ($self, $format, $string) = @_;
595
596 pack "$format/a*", $string
597};
598
599=item json => $array_or_hashref
600
601Encodes the given hash or array reference into a JSON object. Unless you
602provide your own JSON object, this means it will be encoded to JSON text
603in UTF-8.
604
605JSON objects (and arrays) are self-delimiting, so you can write JSON at
606one end of a handle and read them at the other end without using any
607additional framing.
608
609The generated JSON text is guaranteed not to contain any newlines: While
610this module doesn't need delimiters after or between JSON texts to be
611able to read them, many other languages depend on that.
612
613A simple RPC protocol that interoperates easily with others is to send
614JSON arrays (or objects, although arrays are usually the better choice as
615they mimic how function argument passing works) and a newline after each
616JSON text:
617
618 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
619 $handle->push_write ("\012");
620
621An AnyEvent::Handle receiver would simply use the C<json> read type and
622rely on the fact that the newline will be skipped as leading whitespace:
623
624 $handle->push_read (json => sub { my $array = $_[1]; ... });
625
626Other languages could read single lines terminated by a newline and pass
627this line into their JSON decoder of choice.
628
629=cut
630
631register_write_type json => sub {
632 my ($self, $ref) = @_;
633
634 require JSON;
635
636 $self->{json} ? $self->{json}->encode ($ref)
637 : JSON::encode_json ($ref)
638};
639
640=item storable => $reference
641
642Freezes the given reference using L<Storable> and writes it to the
643handle. Uses the C<nfreeze> format.
644
645=cut
646
647register_write_type storable => sub {
648 my ($self, $ref) = @_;
649
650 require Storable;
651
652 pack "w/a*", Storable::nfreeze ($ref)
653};
654
655=back
656
367=item AnyEvent::Handle::register_write_type type => $coderef->($self, @args) 657=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
368 658
369This function (not method) lets you add your own types to C<push_write>. 659This function (not method) lets you add your own types to C<push_write>.
370Whenever the given C<type> is used, C<push_write> will invoke the code 660Whenever the given C<type> is used, C<push_write> will invoke the code
371reference with the handle object and the remaining arguments. 661reference with the handle object and the remaining arguments.
372 662
391ways, the "simple" way, using only C<on_read> and the "complex" way, using 681ways, the "simple" way, using only C<on_read> and the "complex" way, using
392a queue. 682a queue.
393 683
394In the simple case, you just install an C<on_read> callback and whenever 684In the simple case, you just install an C<on_read> callback and whenever
395new data arrives, it will be called. You can then remove some data (if 685new data arrives, it will be called. You can then remove some data (if
396enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 686enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
397or not. 687leave the data there if you want to accumulate more (e.g. when only a
688partial message has been received so far).
398 689
399In the more complex case, you want to queue multiple callbacks. In this 690In the more complex case, you want to queue multiple callbacks. In this
400case, AnyEvent::Handle will call the first queued callback each time new 691case, AnyEvent::Handle will call the first queued callback each time new
401data arrives and removes it when it has done its job (see C<push_read>, 692data arrives (also the first time it is queued) and removes it when it has
402below). 693done its job (see C<push_read>, below).
403 694
404This way you can, for example, push three line-reads, followed by reading 695This way you can, for example, push three line-reads, followed by reading
405a chunk of data, and AnyEvent::Handle will execute them in order. 696a chunk of data, and AnyEvent::Handle will execute them in order.
406 697
407Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 698Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
408the specified number of bytes which give an XML datagram. 699the specified number of bytes which give an XML datagram.
409 700
410 # in the default state, expect some header bytes 701 # in the default state, expect some header bytes
411 $handle->on_read (sub { 702 $handle->on_read (sub {
412 # some data is here, now queue the length-header-read (4 octets) 703 # some data is here, now queue the length-header-read (4 octets)
413 shift->unshift_read_chunk (4, sub { 704 shift->unshift_read (chunk => 4, sub {
414 # header arrived, decode 705 # header arrived, decode
415 my $len = unpack "N", $_[1]; 706 my $len = unpack "N", $_[1];
416 707
417 # now read the payload 708 # now read the payload
418 shift->unshift_read_chunk ($len, sub { 709 shift->unshift_read (chunk => $len, sub {
419 my $xml = $_[1]; 710 my $xml = $_[1];
420 # handle xml 711 # handle xml
421 }); 712 });
422 }); 713 });
423 }); 714 });
424 715
425Example 2: Implement a client for a protocol that replies either with 716Example 2: Implement a client for a protocol that replies either with "OK"
426"OK" and another line or "ERROR" for one request, and 64 bytes for the 717and another line or "ERROR" for the first request that is sent, and 64
427second request. Due tot he availability of a full queue, we can just 718bytes for the second request. Due to the availability of a queue, we can
428pipeline sending both requests and manipulate the queue as necessary in 719just pipeline sending both requests and manipulate the queue as necessary
429the callbacks: 720in the callbacks.
430 721
431 # request one 722When the first callback is called and sees an "OK" response, it will
723C<unshift> another line-read. This line-read will be queued I<before> the
72464-byte chunk callback.
725
726 # request one, returns either "OK + extra line" or "ERROR"
432 $handle->push_write ("request 1\015\012"); 727 $handle->push_write ("request 1\015\012");
433 728
434 # we expect "ERROR" or "OK" as response, so push a line read 729 # we expect "ERROR" or "OK" as response, so push a line read
435 $handle->push_read_line (sub { 730 $handle->push_read (line => sub {
436 # if we got an "OK", we have to _prepend_ another line, 731 # if we got an "OK", we have to _prepend_ another line,
437 # so it will be read before the second request reads its 64 bytes 732 # so it will be read before the second request reads its 64 bytes
438 # which are already in the queue when this callback is called 733 # which are already in the queue when this callback is called
439 # we don't do this in case we got an error 734 # we don't do this in case we got an error
440 if ($_[1] eq "OK") { 735 if ($_[1] eq "OK") {
441 $_[0]->unshift_read_line (sub { 736 $_[0]->unshift_read (line => sub {
442 my $response = $_[1]; 737 my $response = $_[1];
443 ... 738 ...
444 }); 739 });
445 } 740 }
446 }); 741 });
447 742
448 # request two 743 # request two, simply returns 64 octets
449 $handle->push_write ("request 2\015\012"); 744 $handle->push_write ("request 2\015\012");
450 745
451 # simply read 64 bytes, always 746 # simply read 64 bytes, always
452 $handle->push_read_chunk (64, sub { 747 $handle->push_read (chunk => 64, sub {
453 my $response = $_[1]; 748 my $response = $_[1];
454 ... 749 ...
455 }); 750 });
456 751
457=over 4 752=over 4
458 753
459=cut 754=cut
460 755
461sub _drain_rbuf { 756sub _drain_rbuf {
462 my ($self) = @_; 757 my ($self) = @_;
758
759 local $self->{_in_drain} = 1;
463 760
464 if ( 761 if (
465 defined $self->{rbuf_max} 762 defined $self->{rbuf_max}
466 && $self->{rbuf_max} < length $self->{rbuf} 763 && $self->{rbuf_max} < length $self->{rbuf}
467 ) { 764 ) {
468 $! = &Errno::ENOSPC; return $self->error; 765 $self->_error (&Errno::ENOSPC, 1), return;
469 } 766 }
470 767
471 return if $self->{in_drain}; 768 while () {
472 local $self->{in_drain} = 1;
473
474 while (my $len = length $self->{rbuf}) { 769 my $len = length $self->{rbuf};
475 no strict 'refs'; 770
476 if (my $cb = shift @{ $self->{queue} }) { 771 if (my $cb = shift @{ $self->{_queue} }) {
477 unless ($cb->($self)) { 772 unless ($cb->($self)) {
478 if ($self->{eof}) { 773 if ($self->{_eof}) {
479 # no progress can be made (not enough data and no data forthcoming) 774 # no progress can be made (not enough data and no data forthcoming)
480 $! = &Errno::EPIPE; return $self->error; 775 $self->_error (&Errno::EPIPE, 1), return;
481 } 776 }
482 777
483 unshift @{ $self->{queue} }, $cb; 778 unshift @{ $self->{_queue} }, $cb;
484 return; 779 last;
485 } 780 }
486 } elsif ($self->{on_read}) { 781 } elsif ($self->{on_read}) {
782 last unless $len;
783
487 $self->{on_read}($self); 784 $self->{on_read}($self);
488 785
489 if ( 786 if (
490 $self->{eof} # if no further data will arrive
491 && $len == length $self->{rbuf} # and no data has been consumed 787 $len == length $self->{rbuf} # if no data has been consumed
492 && !@{ $self->{queue} } # and the queue is still empty 788 && !@{ $self->{_queue} } # and the queue is still empty
493 && $self->{on_read} # and we still want to read data 789 && $self->{on_read} # but we still have on_read
494 ) { 790 ) {
791 # no further data will arrive
495 # then no progress can be made 792 # so no progress can be made
496 $! = &Errno::EPIPE; return $self->error; 793 $self->_error (&Errno::EPIPE, 1), return
794 if $self->{_eof};
795
796 last; # more data might arrive
497 } 797 }
498 } else { 798 } else {
499 # read side becomes idle 799 # read side becomes idle
500 delete $self->{rw}; 800 delete $self->{_rw};
501 return; 801 last;
502 } 802 }
503 } 803 }
504 804
505 if ($self->{eof}) { 805 if ($self->{_eof}) {
506 $self->_shutdown; 806 if ($self->{on_eof}) {
507 $self->{on_eof}($self) 807 $self->{on_eof}($self)
508 if $self->{on_eof}; 808 } else {
809 $self->_error (0, 1);
810 }
811 }
812
813 # may need to restart read watcher
814 unless ($self->{_rw}) {
815 $self->start_read
816 if $self->{on_read} || @{ $self->{_queue} };
509 } 817 }
510} 818}
511 819
512=item $handle->on_read ($cb) 820=item $handle->on_read ($cb)
513 821
519 827
520sub on_read { 828sub on_read {
521 my ($self, $cb) = @_; 829 my ($self, $cb) = @_;
522 830
523 $self->{on_read} = $cb; 831 $self->{on_read} = $cb;
832 $self->_drain_rbuf if $cb && !$self->{_in_drain};
524} 833}
525 834
526=item $handle->rbuf 835=item $handle->rbuf
527 836
528Returns the read buffer (as a modifiable lvalue). 837Returns the read buffer (as a modifiable lvalue).
576 885
577 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 886 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
578 ->($self, $cb, @_); 887 ->($self, $cb, @_);
579 } 888 }
580 889
581 push @{ $self->{queue} }, $cb; 890 push @{ $self->{_queue} }, $cb;
582 $self->_drain_rbuf; 891 $self->_drain_rbuf unless $self->{_in_drain};
583} 892}
584 893
585sub unshift_read { 894sub unshift_read {
586 my $self = shift; 895 my $self = shift;
587 my $cb = pop; 896 my $cb = pop;
592 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 901 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
593 ->($self, $cb, @_); 902 ->($self, $cb, @_);
594 } 903 }
595 904
596 905
597 unshift @{ $self->{queue} }, $cb; 906 unshift @{ $self->{_queue} }, $cb;
598 $self->_drain_rbuf; 907 $self->_drain_rbuf unless $self->{_in_drain};
599} 908}
600 909
601=item $handle->push_read (type => @args, $cb) 910=item $handle->push_read (type => @args, $cb)
602 911
603=item $handle->unshift_read (type => @args, $cb) 912=item $handle->unshift_read (type => @args, $cb)
609Predefined types are (if you have ideas for additional types, feel free to 918Predefined types are (if you have ideas for additional types, feel free to
610drop by and tell us): 919drop by and tell us):
611 920
612=over 4 921=over 4
613 922
614=item chunk => $octets, $cb->($self, $data) 923=item chunk => $octets, $cb->($handle, $data)
615 924
616Invoke the callback only once C<$octets> bytes have been read. Pass the 925Invoke the callback only once C<$octets> bytes have been read. Pass the
617data read to the callback. The callback will never be called with less 926data read to the callback. The callback will never be called with less
618data. 927data.
619 928
633 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 942 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
634 1 943 1
635 } 944 }
636}; 945};
637 946
638# compatibility with older API
639sub push_read_chunk {
640 $_[0]->push_read (chunk => $_[1], $_[2]);
641}
642
643sub unshift_read_chunk {
644 $_[0]->unshift_read (chunk => $_[1], $_[2]);
645}
646
647=item line => [$eol, ]$cb->($self, $line, $eol) 947=item line => [$eol, ]$cb->($handle, $line, $eol)
648 948
649The callback will be called only once a full line (including the end of 949The callback will be called only once a full line (including the end of
650line marker, C<$eol>) has been read. This line (excluding the end of line 950line marker, C<$eol>) has been read. This line (excluding the end of line
651marker) will be passed to the callback as second argument (C<$line>), and 951marker) will be passed to the callback as second argument (C<$line>), and
652the end of line marker as the third argument (C<$eol>). 952the end of line marker as the third argument (C<$eol>).
666=cut 966=cut
667 967
668register_read_type line => sub { 968register_read_type line => sub {
669 my ($self, $cb, $eol) = @_; 969 my ($self, $cb, $eol) = @_;
670 970
671 $eol = qr|(\015?\012)| if @_ < 3; 971 if (@_ < 3) {
972 # this is more than twice as fast as the generic code below
973 sub {
974 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
975
976 $cb->($_[0], $1, $2);
977 1
978 }
979 } else {
672 $eol = quotemeta $eol unless ref $eol; 980 $eol = quotemeta $eol unless ref $eol;
673 $eol = qr|^(.*?)($eol)|s; 981 $eol = qr|^(.*?)($eol)|s;
982
983 sub {
984 $_[0]{rbuf} =~ s/$eol// or return;
985
986 $cb->($_[0], $1, $2);
987 1
988 }
989 }
990};
991
992=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
993
994Makes a regex match against the regex object C<$accept> and returns
995everything up to and including the match.
996
997Example: read a single line terminated by '\n'.
998
999 $handle->push_read (regex => qr<\n>, sub { ... });
1000
1001If C<$reject> is given and not undef, then it determines when the data is
1002to be rejected: it is matched against the data when the C<$accept> regex
1003does not match and generates an C<EBADMSG> error when it matches. This is
1004useful to quickly reject wrong data (to avoid waiting for a timeout or a
1005receive buffer overflow).
1006
1007Example: expect a single decimal number followed by whitespace, reject
1008anything else (not the use of an anchor).
1009
1010 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1011
1012If C<$skip> is given and not C<undef>, then it will be matched against
1013the receive buffer when neither C<$accept> nor C<$reject> match,
1014and everything preceding and including the match will be accepted
1015unconditionally. This is useful to skip large amounts of data that you
1016know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1017have to start matching from the beginning. This is purely an optimisation
1018and is usually worth only when you expect more than a few kilobytes.
1019
1020Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1021expect the header to be very large (it isn't in practise, but...), we use
1022a skip regex to skip initial portions. The skip regex is tricky in that
1023it only accepts something not ending in either \015 or \012, as these are
1024required for the accept regex.
1025
1026 $handle->push_read (regex =>
1027 qr<\015\012\015\012>,
1028 undef, # no reject
1029 qr<^.*[^\015\012]>,
1030 sub { ... });
1031
1032=cut
1033
1034register_read_type regex => sub {
1035 my ($self, $cb, $accept, $reject, $skip) = @_;
1036
1037 my $data;
1038 my $rbuf = \$self->{rbuf};
674 1039
675 sub { 1040 sub {
676 $_[0]{rbuf} =~ s/$eol// or return; 1041 # accept
677 1042 if ($$rbuf =~ $accept) {
678 $cb->($_[0], $1, $2); 1043 $data .= substr $$rbuf, 0, $+[0], "";
1044 $cb->($self, $data);
1045 return 1;
1046 }
679 1 1047
1048 # reject
1049 if ($reject && $$rbuf =~ $reject) {
1050 $self->_error (&Errno::EBADMSG);
1051 }
1052
1053 # skip
1054 if ($skip && $$rbuf =~ $skip) {
1055 $data .= substr $$rbuf, 0, $+[0], "";
1056 }
1057
1058 ()
680 } 1059 }
681}; 1060};
682 1061
683# compatibility with older API
684sub push_read_line {
685 my $self = shift;
686 $self->push_read (line => @_);
687}
688
689sub unshift_read_line {
690 my $self = shift;
691 $self->unshift_read (line => @_);
692}
693
694=item netstring => $cb->($string) 1062=item netstring => $cb->($handle, $string)
695 1063
696A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement). 1064A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
697 1065
698Throws an error with C<$!> set to EBADMSG on format violations. 1066Throws an error with C<$!> set to EBADMSG on format violations.
699 1067
703 my ($self, $cb) = @_; 1071 my ($self, $cb) = @_;
704 1072
705 sub { 1073 sub {
706 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1074 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
707 if ($_[0]{rbuf} =~ /[^0-9]/) { 1075 if ($_[0]{rbuf} =~ /[^0-9]/) {
708 $! = &Errno::EBADMSG; 1076 $self->_error (&Errno::EBADMSG);
709 $self->error;
710 } 1077 }
711 return; 1078 return;
712 } 1079 }
713 1080
714 my $len = $1; 1081 my $len = $1;
717 my $string = $_[1]; 1084 my $string = $_[1];
718 $_[0]->unshift_read (chunk => 1, sub { 1085 $_[0]->unshift_read (chunk => 1, sub {
719 if ($_[1] eq ",") { 1086 if ($_[1] eq ",") {
720 $cb->($_[0], $string); 1087 $cb->($_[0], $string);
721 } else { 1088 } else {
722 $! = &Errno::EBADMSG; 1089 $self->_error (&Errno::EBADMSG);
723 $self->error;
724 } 1090 }
725 }); 1091 });
726 }); 1092 });
727 1093
728 1 1094 1
729 } 1095 }
730}; 1096};
731 1097
1098=item packstring => $format, $cb->($handle, $string)
1099
1100An octet string prefixed with an encoded length. The encoding C<$format>
1101uses the same format as a Perl C<pack> format, but must specify a single
1102integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1103optional C<!>, C<< < >> or C<< > >> modifier).
1104
1105DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1106
1107Example: read a block of data prefixed by its length in BER-encoded
1108format (very efficient).
1109
1110 $handle->push_read (packstring => "w", sub {
1111 my ($handle, $data) = @_;
1112 });
1113
1114=cut
1115
1116register_read_type packstring => sub {
1117 my ($self, $cb, $format) = @_;
1118
1119 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1122 or return;
1123
1124 $format = length pack $format, $len;
1125
1126 # bypass unshift if we already have the remaining chunk
1127 if ($format + $len <= length $_[0]{rbuf}) {
1128 my $data = substr $_[0]{rbuf}, $format, $len;
1129 substr $_[0]{rbuf}, 0, $format + $len, "";
1130 $cb->($_[0], $data);
1131 } else {
1132 # remove prefix
1133 substr $_[0]{rbuf}, 0, $format, "";
1134
1135 # read remaining chunk
1136 $_[0]->unshift_read (chunk => $len, $cb);
1137 }
1138
1139 1
1140 }
1141};
1142
1143=item json => $cb->($handle, $hash_or_arrayref)
1144
1145Reads a JSON object or array, decodes it and passes it to the callback.
1146
1147If a C<json> object was passed to the constructor, then that will be used
1148for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1149
1150This read type uses the incremental parser available with JSON version
11512.09 (and JSON::XS version 2.2) and above. You have to provide a
1152dependency on your own: this module will load the JSON module, but
1153AnyEvent does not depend on it itself.
1154
1155Since JSON texts are fully self-delimiting, the C<json> read and write
1156types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1157the C<json> write type description, above, for an actual example.
1158
1159=cut
1160
1161register_read_type json => sub {
1162 my ($self, $cb) = @_;
1163
1164 require JSON;
1165
1166 my $data;
1167 my $rbuf = \$self->{rbuf};
1168
1169 my $json = $self->{json} ||= JSON->new->utf8;
1170
1171 sub {
1172 my $ref = $json->incr_parse ($self->{rbuf});
1173
1174 if ($ref) {
1175 $self->{rbuf} = $json->incr_text;
1176 $json->incr_text = "";
1177 $cb->($self, $ref);
1178
1179 1
1180 } else {
1181 $self->{rbuf} = "";
1182 ()
1183 }
1184 }
1185};
1186
1187=item storable => $cb->($handle, $ref)
1188
1189Deserialises a L<Storable> frozen representation as written by the
1190C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1191data).
1192
1193Raises C<EBADMSG> error if the data could not be decoded.
1194
1195=cut
1196
1197register_read_type storable => sub {
1198 my ($self, $cb) = @_;
1199
1200 require Storable;
1201
1202 sub {
1203 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1204 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1205 or return;
1206
1207 my $format = length pack "w", $len;
1208
1209 # bypass unshift if we already have the remaining chunk
1210 if ($format + $len <= length $_[0]{rbuf}) {
1211 my $data = substr $_[0]{rbuf}, $format, $len;
1212 substr $_[0]{rbuf}, 0, $format + $len, "";
1213 $cb->($_[0], Storable::thaw ($data));
1214 } else {
1215 # remove prefix
1216 substr $_[0]{rbuf}, 0, $format, "";
1217
1218 # read remaining chunk
1219 $_[0]->unshift_read (chunk => $len, sub {
1220 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1221 $cb->($_[0], $ref);
1222 } else {
1223 $self->_error (&Errno::EBADMSG);
1224 }
1225 });
1226 }
1227
1228 1
1229 }
1230};
1231
732=back 1232=back
733 1233
734=item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args) 1234=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
735 1235
736This function (not method) lets you add your own types to C<push_read>. 1236This function (not method) lets you add your own types to C<push_read>.
737 1237
738Whenever the given C<type> is used, C<push_read> will invoke the code 1238Whenever the given C<type> is used, C<push_read> will invoke the code
739reference with the handle object, the callback and the remaining 1239reference with the handle object, the callback and the remaining
741 1241
742The code reference is supposed to return a callback (usually a closure) 1242The code reference is supposed to return a callback (usually a closure)
743that works as a plain read callback (see C<< ->push_read ($cb) >>). 1243that works as a plain read callback (see C<< ->push_read ($cb) >>).
744 1244
745It should invoke the passed callback when it is done reading (remember to 1245It should invoke the passed callback when it is done reading (remember to
746pass C<$self> as first argument as all other callbacks do that). 1246pass C<$handle> as first argument as all other callbacks do that).
747 1247
748Note that this is a function, and all types registered this way will be 1248Note that this is a function, and all types registered this way will be
749global, so try to use unique names. 1249global, so try to use unique names.
750 1250
751For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1251For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
754=item $handle->stop_read 1254=item $handle->stop_read
755 1255
756=item $handle->start_read 1256=item $handle->start_read
757 1257
758In rare cases you actually do not want to read anything from the 1258In rare cases you actually do not want to read anything from the
759socket. In this case you can call C<stop_read>. Neither C<on_read> no 1259socket. In this case you can call C<stop_read>. Neither C<on_read> nor
760any queued callbacks will be executed then. To start reading again, call 1260any queued callbacks will be executed then. To start reading again, call
761C<start_read>. 1261C<start_read>.
762 1262
1263Note that AnyEvent::Handle will automatically C<start_read> for you when
1264you change the C<on_read> callback or push/unshift a read callback, and it
1265will automatically C<stop_read> for you when neither C<on_read> is set nor
1266there are any read requests in the queue.
1267
763=cut 1268=cut
764 1269
765sub stop_read { 1270sub stop_read {
766 my ($self) = @_; 1271 my ($self) = @_;
767 1272
768 delete $self->{rw}; 1273 delete $self->{_rw};
769} 1274}
770 1275
771sub start_read { 1276sub start_read {
772 my ($self) = @_; 1277 my ($self) = @_;
773 1278
774 unless ($self->{rw} || $self->{eof}) { 1279 unless ($self->{_rw} || $self->{_eof}) {
775 Scalar::Util::weaken $self; 1280 Scalar::Util::weaken $self;
776 1281
777 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1282 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
778 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1283 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
779 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1284 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
780 1285
781 if ($len > 0) { 1286 if ($len > 0) {
1287 $self->{_activity} = AnyEvent->now;
1288
782 $self->{filter_r} 1289 $self->{filter_r}
783 ? $self->{filter_r}->($self, $rbuf) 1290 ? $self->{filter_r}($self, $rbuf)
784 : $self->_drain_rbuf; 1291 : $self->{_in_drain} || $self->_drain_rbuf;
785 1292
786 } elsif (defined $len) { 1293 } elsif (defined $len) {
787 delete $self->{rw}; 1294 delete $self->{_rw};
788 $self->{eof} = 1; 1295 $self->{_eof} = 1;
789 $self->_drain_rbuf; 1296 $self->_drain_rbuf unless $self->{_in_drain};
790 1297
791 } elsif ($! != EAGAIN && $! != EINTR) { 1298 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
792 return $self->error; 1299 return $self->_error ($!, 1);
793 } 1300 }
794 }); 1301 });
795 } 1302 }
796} 1303}
797 1304
798sub _dotls { 1305sub _dotls {
799 my ($self) = @_; 1306 my ($self) = @_;
800 1307
1308 my $buf;
1309
801 if (length $self->{tls_wbuf}) { 1310 if (length $self->{_tls_wbuf}) {
802 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) { 1311 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
803 substr $self->{tls_wbuf}, 0, $len, ""; 1312 substr $self->{_tls_wbuf}, 0, $len, "";
804 } 1313 }
805 } 1314 }
806 1315
807 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1316 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
808 $self->{wbuf} .= $buf; 1317 $self->{wbuf} .= $buf;
809 $self->_drain_wbuf; 1318 $self->_drain_wbuf;
810 } 1319 }
811 1320
812 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1321 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1322 if (length $buf) {
813 $self->{rbuf} .= $buf; 1323 $self->{rbuf} .= $buf;
814 $self->_drain_rbuf; 1324 $self->_drain_rbuf unless $self->{_in_drain};
1325 } else {
1326 # let's treat SSL-eof as we treat normal EOF
1327 $self->{_eof} = 1;
1328 $self->_shutdown;
1329 return;
1330 }
815 } 1331 }
816 1332
817 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1333 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
818 1334
819 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1335 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
820 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1336 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
821 $self->error; 1337 return $self->_error ($!, 1);
822 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1338 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
823 $! = &Errno::EIO; 1339 return $self->_error (&Errno::EIO, 1);
824 $self->error;
825 } 1340 }
826 1341
827 # all others are fine for our purposes 1342 # all others are fine for our purposes
828 } 1343 }
829} 1344}
838C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1353C<"connect">, C<"accept"> or an existing Net::SSLeay object).
839 1354
840The second argument is the optional C<Net::SSLeay::CTX> object that is 1355The second argument is the optional C<Net::SSLeay::CTX> object that is
841used when AnyEvent::Handle has to create its own TLS connection object. 1356used when AnyEvent::Handle has to create its own TLS connection object.
842 1357
843=cut 1358The TLS connection object will end up in C<< $handle->{tls} >> after this
1359call and can be used or changed to your liking. Note that the handshake
1360might have already started when this function returns.
844 1361
845# TODO: maybe document... 1362=cut
1363
846sub starttls { 1364sub starttls {
847 my ($self, $ssl, $ctx) = @_; 1365 my ($self, $ssl, $ctx) = @_;
848 1366
849 $self->stoptls; 1367 $self->stoptls;
850 1368
861 # basically, this is deep magic (because SSL_read should have the same issues) 1379 # basically, this is deep magic (because SSL_read should have the same issues)
862 # but the openssl maintainers basically said: "trust us, it just works". 1380 # but the openssl maintainers basically said: "trust us, it just works".
863 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1381 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
864 # and mismaintained ssleay-module doesn't even offer them). 1382 # and mismaintained ssleay-module doesn't even offer them).
865 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1383 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1384 #
1385 # in short: this is a mess.
1386 #
1387 # note that we do not try to kepe the length constant between writes as we are required to do.
1388 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1389 # and we drive openssl fully in blocking mode here.
866 Net::SSLeay::CTX_set_mode ($self->{tls}, 1390 Net::SSLeay::CTX_set_mode ($self->{tls},
867 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1391 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
868 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1392 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
869 1393
870 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1394 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
871 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1395 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
872 1396
873 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1397 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
874 1398
875 $self->{filter_w} = sub { 1399 $self->{filter_w} = sub {
876 $_[0]{tls_wbuf} .= ${$_[1]}; 1400 $_[0]{_tls_wbuf} .= ${$_[1]};
877 &_dotls; 1401 &_dotls;
878 }; 1402 };
879 $self->{filter_r} = sub { 1403 $self->{filter_r} = sub {
880 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]}); 1404 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
881 &_dotls; 1405 &_dotls;
882 }; 1406 };
883} 1407}
884 1408
885=item $handle->stoptls 1409=item $handle->stoptls
891 1415
892sub stoptls { 1416sub stoptls {
893 my ($self) = @_; 1417 my ($self) = @_;
894 1418
895 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1419 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1420
896 delete $self->{tls_rbio}; 1421 delete $self->{_rbio};
897 delete $self->{tls_wbio}; 1422 delete $self->{_wbio};
898 delete $self->{tls_wbuf}; 1423 delete $self->{_tls_wbuf};
899 delete $self->{filter_r}; 1424 delete $self->{filter_r};
900 delete $self->{filter_w}; 1425 delete $self->{filter_w};
901} 1426}
902 1427
903sub DESTROY { 1428sub DESTROY {
904 my $self = shift; 1429 my $self = shift;
905 1430
906 $self->stoptls; 1431 $self->stoptls;
1432
1433 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1434
1435 if ($linger && length $self->{wbuf}) {
1436 my $fh = delete $self->{fh};
1437 my $wbuf = delete $self->{wbuf};
1438
1439 my @linger;
1440
1441 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1442 my $len = syswrite $fh, $wbuf, length $wbuf;
1443
1444 if ($len > 0) {
1445 substr $wbuf, 0, $len, "";
1446 } else {
1447 @linger = (); # end
1448 }
1449 });
1450 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1451 @linger = ();
1452 });
1453 }
907} 1454}
908 1455
909=item AnyEvent::Handle::TLS_CTX 1456=item AnyEvent::Handle::TLS_CTX
910 1457
911This function creates and returns the Net::SSLeay::CTX object used by 1458This function creates and returns the Net::SSLeay::CTX object used by
941 } 1488 }
942} 1489}
943 1490
944=back 1491=back
945 1492
1493=head1 SUBCLASSING AnyEvent::Handle
1494
1495In many cases, you might want to subclass AnyEvent::Handle.
1496
1497To make this easier, a given version of AnyEvent::Handle uses these
1498conventions:
1499
1500=over 4
1501
1502=item * all constructor arguments become object members.
1503
1504At least initially, when you pass a C<tls>-argument to the constructor it
1505will end up in C<< $handle->{tls} >>. Those members might be changed or
1506mutated later on (for example C<tls> will hold the TLS connection object).
1507
1508=item * other object member names are prefixed with an C<_>.
1509
1510All object members not explicitly documented (internal use) are prefixed
1511with an underscore character, so the remaining non-C<_>-namespace is free
1512for use for subclasses.
1513
1514=item * all members not documented here and not prefixed with an underscore
1515are free to use in subclasses.
1516
1517Of course, new versions of AnyEvent::Handle may introduce more "public"
1518member variables, but thats just life, at least it is documented.
1519
1520=back
1521
946=head1 AUTHOR 1522=head1 AUTHOR
947 1523
948Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1524Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
949 1525
950=cut 1526=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines