ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.95 by root, Thu Oct 2 06:42:39 2008 UTC vs.
Revision 1.159 by root, Fri Jul 24 12:35:58 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89When this parameter is specified, then the C<on_prepare>,
90C<on_connect_error> and C<on_connect> callbacks will be called under the
91appropriate circumstances:
92
93=over 4
94
90=item on_eof => $cb->($handle) 95=item on_prepare => $cb->($handle)
91 96
92Set the callback to be called when an end-of-file condition is detected, 97This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 98attempted, but after the file handle has been created. It could be used to
94connection cleanly. 99prepare the file handle with parameters required for the actual connect
100(as opposed to settings that can be changed when the connection is already
101established).
95 102
96For sockets, this just means that the other side has stopped sending data, 103=item on_connect => $cb->($handle, $host, $port, $retry->())
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100 104
101While not mandatory, it is I<highly> recommended to set an eof callback, 105This callback is called when a connection has been successfully established.
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 106
105If an EOF condition has been detected but no C<on_eof> callback has been 107The actual numeric host and port (the socket peername) are passed as
106set, then a fatal error will be raised with C<$!> set to <0>. 108parameters, together with a retry callback.
107 109
110When, for some reason, the handle is not acceptable, then calling
111C<$retry> will continue with the next conenction target (in case of
112multi-homed hosts or SRV records there can be multiple connection
113endpoints). When it is called then the read and write queues, eof status,
114tls status and similar properties of the handle are being reset.
115
116In most cases, ignoring the C<$retry> parameter is the way to go.
117
118=item on_connect_error => $cb->($handle, $message)
119
120This callback is called when the conenction could not be
121established. C<$!> will contain the relevant error code, and C<$message> a
122message describing it (usually the same as C<"$!">).
123
124If this callback isn't specified, then C<on_error> will be called with a
125fatal error instead.
126
127=back
128
108=item on_error => $cb->($handle, $fatal) 129=item on_error => $cb->($handle, $fatal, $message)
109 130
110This is the error callback, which is called when, well, some error 131This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 132occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 133connect or a read error.
113 134
114Some errors are fatal (which is indicated by C<$fatal> being true). On 135Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 136fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 137destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 138examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 139with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
140cases where the other side can close the connection at their will it is
141often easiest to not report C<EPIPE> errors in this callback.
142
143AnyEvent::Handle tries to find an appropriate error code for you to check
144against, but in some cases (TLS errors), this does not work well. It is
145recommended to always output the C<$message> argument in human-readable
146error messages (it's usually the same as C<"$!">).
119 147
120Non-fatal errors can be retried by simply returning, but it is recommended 148Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 149to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 150when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 151C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 152
125On callback entrance, the value of C<$!> contains the operating system 153On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 154error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
155C<EPROTO>).
127 156
128While not mandatory, it is I<highly> recommended to set this callback, as 157While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 158you will not be notified of errors otherwise. The default simply calls
130C<croak>. 159C<croak>.
131 160
135and no read request is in the queue (unlike read queue callbacks, this 164and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 165callback will only be called when at least one octet of data is in the
137read buffer). 166read buffer).
138 167
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 168To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 169method or access the C<< $handle->{rbuf} >> member directly. Note that you
170must not enlarge or modify the read buffer, you can only remove data at
171the beginning from it.
141 172
142When an EOF condition is detected then AnyEvent::Handle will first try to 173When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 174feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 175calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 176error will be raised (with C<$!> set to C<EPIPE>).
177
178Note that, unlike requests in the read queue, an C<on_read> callback
179doesn't mean you I<require> some data: if there is an EOF and there
180are outstanding read requests then an error will be flagged. With an
181C<on_read> callback, the C<on_eof> callback will be invoked.
182
183=item on_eof => $cb->($handle)
184
185Set the callback to be called when an end-of-file condition is detected,
186i.e. in the case of a socket, when the other side has closed the
187connection cleanly, and there are no outstanding read requests in the
188queue (if there are read requests, then an EOF counts as an unexpected
189connection close and will be flagged as an error).
190
191For sockets, this just means that the other side has stopped sending data,
192you can still try to write data, and, in fact, one can return from the EOF
193callback and continue writing data, as only the read part has been shut
194down.
195
196If an EOF condition has been detected but no C<on_eof> callback has been
197set, then a fatal error will be raised with C<$!> set to <0>.
146 198
147=item on_drain => $cb->($handle) 199=item on_drain => $cb->($handle)
148 200
149This sets the callback that is called when the write buffer becomes empty 201This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 202(or when the callback is set and the buffer is empty already).
243 295
244This will not work for partial TLS data that could not be encoded 296This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 297yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 298help.
247 299
300=item peername => $string
301
302A string used to identify the remote site - usually the DNS hostname
303(I<not> IDN!) used to create the connection, rarely the IP address.
304
305Apart from being useful in error messages, this string is also used in TLS
306peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
307verification will be skipped when C<peername> is not specified or
308C<undef>.
309
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 310=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 311
250When this parameter is given, it enables TLS (SSL) mode, that means 312When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 313AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 314established and will transparently encrypt/decrypt data afterwards.
315
316All TLS protocol errors will be signalled as C<EPROTO>, with an
317appropriate error message.
253 318
254TLS mode requires Net::SSLeay to be installed (it will be loaded 319TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 320automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 321have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 322to add the dependency yourself.
261mode. 326mode.
262 327
263You can also provide your own TLS connection object, but you have 328You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 329to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 330or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 331AnyEvent::Handle. Also, this module will take ownership of this connection
332object.
333
334At some future point, AnyEvent::Handle might switch to another TLS
335implementation, then the option to use your own session object will go
336away.
337
338B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
339passing in the wrong integer will lead to certain crash. This most often
340happens when one uses a stylish C<< tls => 1 >> and is surprised about the
341segmentation fault.
267 342
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 343See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 344
270=item tls_ctx => $ssl_ctx 345=item tls_ctx => $anyevent_tls
271 346
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 347Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 348(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 349missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
350
351Instead of an object, you can also specify a hash reference with C<< key
352=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
353new TLS context object.
354
355=item on_starttls => $cb->($handle, $success[, $error_message])
356
357This callback will be invoked when the TLS/SSL handshake has finished. If
358C<$success> is true, then the TLS handshake succeeded, otherwise it failed
359(C<on_stoptls> will not be called in this case).
360
361The session in C<< $handle->{tls} >> can still be examined in this
362callback, even when the handshake was not successful.
363
364TLS handshake failures will not cause C<on_error> to be invoked when this
365callback is in effect, instead, the error message will be passed to C<on_starttls>.
366
367Without this callback, handshake failures lead to C<on_error> being
368called, as normal.
369
370Note that you cannot call C<starttls> right again in this callback. If you
371need to do that, start an zero-second timer instead whose callback can
372then call C<< ->starttls >> again.
373
374=item on_stoptls => $cb->($handle)
375
376When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
377set, then it will be invoked after freeing the TLS session. If it is not,
378then a TLS shutdown condition will be treated like a normal EOF condition
379on the handle.
380
381The session in C<< $handle->{tls} >> can still be examined in this
382callback.
383
384This callback will only be called on TLS shutdowns, not when the
385underlying handle signals EOF.
275 386
276=item json => JSON or JSON::XS object 387=item json => JSON or JSON::XS object
277 388
278This is the json coder object used by the C<json> read and write types. 389This is the json coder object used by the C<json> read and write types.
279 390
288 399
289=cut 400=cut
290 401
291sub new { 402sub new {
292 my $class = shift; 403 my $class = shift;
293
294 my $self = bless { @_ }, $class; 404 my $self = bless { @_ }, $class;
295 405
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 406 if ($self->{fh}) {
407 $self->_start;
408 return unless $self->{fh}; # could be gone by now
409
410 } elsif ($self->{connect}) {
411 require AnyEvent::Socket;
412
413 $self->{peername} = $self->{connect}[0]
414 unless exists $self->{peername};
415
416 $self->{_skip_drain_rbuf} = 1;
417
418 {
419 Scalar::Util::weaken (my $self = $self);
420
421 $self->{_connect} =
422 AnyEvent::Socket::tcp_connect (
423 $self->{connect}[0],
424 $self->{connect}[1],
425 sub {
426 my ($fh, $host, $port, $retry) = @_;
427
428 if ($fh) {
429 $self->{fh} = $fh;
430
431 delete $self->{_skip_drain_rbuf};
432 $self->_start;
433
434 $self->{on_connect}
435 and $self->{on_connect}($self, $host, $port, sub {
436 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
437 $self->{_skip_drain_rbuf} = 1;
438 &$retry;
439 });
440
441 } else {
442 if ($self->{on_connect_error}) {
443 $self->{on_connect_error}($self, "$!");
444 $self->destroy;
445 } else {
446 $self->fatal ($!, 1);
447 }
448 }
449 },
450 sub {
451 local $self->{fh} = $_[0];
452
453 $self->{on_prepare}->($self)
454 if $self->{on_prepare};
455 }
456 );
457 }
458
459 } else {
460 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
461 }
462
463 $self
464}
465
466sub _start {
467 my ($self) = @_;
297 468
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 469 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
470
471 $self->{_activity} = AnyEvent->now;
472 $self->_timeout;
473
474 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
299 475
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 476 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301 if $self->{tls}; 477 if $self->{tls};
302 478
303 $self->{_activity} = AnyEvent->now;
304 $self->_timeout;
305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 479 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 480
309 $self->start_read 481 $self->start_read
310 if $self->{on_read}; 482 if $self->{on_read} || @{ $self->{_queue} };
311
312 $self
313} 483}
314 484
315sub _shutdown { 485#sub _shutdown {
316 my ($self) = @_; 486# my ($self) = @_;
317 487#
318 delete $self->{_tw}; 488# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 489# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 490#
321 delete $self->{fh};
322
323 &_freetls; 491# &_freetls;
324 492#}
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 493
329sub _error { 494sub _error {
330 my ($self, $errno, $fatal) = @_; 495 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 496
335 $! = $errno; 497 $! = $errno;
498 $message ||= "$!";
336 499
337 if ($self->{on_error}) { 500 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 501 $self->{on_error}($self, $fatal, $message);
339 } else { 502 $self->destroy if $fatal;
503 } elsif ($self->{fh}) {
504 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 505 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 506 }
342} 507}
343 508
344=item $fh = $handle->fh 509=item $fh = $handle->fh
345 510
382} 547}
383 548
384=item $handle->autocork ($boolean) 549=item $handle->autocork ($boolean)
385 550
386Enables or disables the current autocork behaviour (see C<autocork> 551Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 552constructor argument). Changes will only take effect on the next write.
388 553
389=cut 554=cut
555
556sub autocork {
557 $_[0]{autocork} = $_[1];
558}
390 559
391=item $handle->no_delay ($boolean) 560=item $handle->no_delay ($boolean)
392 561
393Enables or disables the C<no_delay> setting (see constructor argument of 562Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 563the same name for details).
398sub no_delay { 567sub no_delay {
399 $_[0]{no_delay} = $_[1]; 568 $_[0]{no_delay} = $_[1];
400 569
401 eval { 570 eval {
402 local $SIG{__DIE__}; 571 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 572 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
573 if $_[0]{fh};
404 }; 574 };
575}
576
577=item $handle->on_starttls ($cb)
578
579Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
580
581=cut
582
583sub on_starttls {
584 $_[0]{on_starttls} = $_[1];
585}
586
587=item $handle->on_stoptls ($cb)
588
589Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_stoptls} = $_[1];
405} 595}
406 596
407############################################################################# 597#############################################################################
408 598
409=item $handle->timeout ($seconds) 599=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 612# reset the timeout watcher, as neccessary
423# also check for time-outs 613# also check for time-outs
424sub _timeout { 614sub _timeout {
425 my ($self) = @_; 615 my ($self) = @_;
426 616
427 if ($self->{timeout}) { 617 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 618 my $NOW = AnyEvent->now;
429 619
430 # when would the timeout trigger? 620 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 621 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 622
435 $self->{_activity} = $NOW; 625 $self->{_activity} = $NOW;
436 626
437 if ($self->{on_timeout}) { 627 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 628 $self->{on_timeout}($self);
439 } else { 629 } else {
440 $self->_error (&Errno::ETIMEDOUT); 630 $self->_error (Errno::ETIMEDOUT);
441 } 631 }
442 632
443 # callback could have changed timeout value, optimise 633 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 634 return unless $self->{timeout};
445 635
508 Scalar::Util::weaken $self; 698 Scalar::Util::weaken $self;
509 699
510 my $cb = sub { 700 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 701 my $len = syswrite $self->{fh}, $self->{wbuf};
512 702
513 if ($len >= 0) { 703 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 704 substr $self->{wbuf}, 0, $len, "";
515 705
516 $self->{_activity} = AnyEvent->now; 706 $self->{_activity} = AnyEvent->now;
517 707
518 $self->{on_drain}($self) 708 $self->{on_drain}($self)
550 ->($self, @_); 740 ->($self, @_);
551 } 741 }
552 742
553 if ($self->{tls}) { 743 if ($self->{tls}) {
554 $self->{_tls_wbuf} .= $_[0]; 744 $self->{_tls_wbuf} .= $_[0];
745
555 &_dotls ($self); 746 &_dotls ($self);
556 } else { 747 } else {
557 $self->{wbuf} .= $_[0]; 748 $self->{wbuf} .= $_[0];
558 $self->_drain_wbuf; 749 $self->_drain_wbuf if $self->{fh};
559 } 750 }
560} 751}
561 752
562=item $handle->push_write (type => @args) 753=item $handle->push_write (type => @args)
563 754
577=cut 768=cut
578 769
579register_write_type netstring => sub { 770register_write_type netstring => sub {
580 my ($self, $string) = @_; 771 my ($self, $string) = @_;
581 772
582 sprintf "%d:%s,", (length $string), $string 773 (length $string) . ":$string,"
583}; 774};
584 775
585=item packstring => $format, $data 776=item packstring => $format, $data
586 777
587An octet string prefixed with an encoded length. The encoding C<$format> 778An octet string prefixed with an encoded length. The encoding C<$format>
652 843
653 pack "w/a*", Storable::nfreeze ($ref) 844 pack "w/a*", Storable::nfreeze ($ref)
654}; 845};
655 846
656=back 847=back
848
849=item $handle->push_shutdown
850
851Sometimes you know you want to close the socket after writing your data
852before it was actually written. One way to do that is to replace your
853C<on_drain> handler by a callback that shuts down the socket (and set
854C<low_water_mark> to C<0>). This method is a shorthand for just that, and
855replaces the C<on_drain> callback with:
856
857 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
858
859This simply shuts down the write side and signals an EOF condition to the
860the peer.
861
862You can rely on the normal read queue and C<on_eof> handling
863afterwards. This is the cleanest way to close a connection.
864
865=cut
866
867sub push_shutdown {
868 my ($self) = @_;
869
870 delete $self->{low_water_mark};
871 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
872}
657 873
658=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 874=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
659 875
660This function (not method) lets you add your own types to C<push_write>. 876This function (not method) lets you add your own types to C<push_write>.
661Whenever the given C<type> is used, C<push_write> will invoke the code 877Whenever the given C<type> is used, C<push_write> will invoke the code
755=cut 971=cut
756 972
757sub _drain_rbuf { 973sub _drain_rbuf {
758 my ($self) = @_; 974 my ($self) = @_;
759 975
976 # avoid recursion
977 return if exists $self->{_skip_drain_rbuf};
760 local $self->{_in_drain} = 1; 978 local $self->{_skip_drain_rbuf} = 1;
761 979
762 if ( 980 if (
763 defined $self->{rbuf_max} 981 defined $self->{rbuf_max}
764 && $self->{rbuf_max} < length $self->{rbuf} 982 && $self->{rbuf_max} < length $self->{rbuf}
765 ) { 983 ) {
766 $self->_error (&Errno::ENOSPC, 1), return; 984 $self->_error (Errno::ENOSPC, 1), return;
767 } 985 }
768 986
769 while () { 987 while () {
988 # we need to use a separate tls read buffer, as we must not receive data while
989 # we are draining the buffer, and this can only happen with TLS.
990 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
991
770 my $len = length $self->{rbuf}; 992 my $len = length $self->{rbuf};
771 993
772 if (my $cb = shift @{ $self->{_queue} }) { 994 if (my $cb = shift @{ $self->{_queue} }) {
773 unless ($cb->($self)) { 995 unless ($cb->($self)) {
774 if ($self->{_eof}) { 996 if ($self->{_eof}) {
775 # no progress can be made (not enough data and no data forthcoming) 997 # no progress can be made (not enough data and no data forthcoming)
776 $self->_error (&Errno::EPIPE, 1), return; 998 $self->_error (Errno::EPIPE, 1), return;
777 } 999 }
778 1000
779 unshift @{ $self->{_queue} }, $cb; 1001 unshift @{ $self->{_queue} }, $cb;
780 last; 1002 last;
781 } 1003 }
789 && !@{ $self->{_queue} } # and the queue is still empty 1011 && !@{ $self->{_queue} } # and the queue is still empty
790 && $self->{on_read} # but we still have on_read 1012 && $self->{on_read} # but we still have on_read
791 ) { 1013 ) {
792 # no further data will arrive 1014 # no further data will arrive
793 # so no progress can be made 1015 # so no progress can be made
794 $self->_error (&Errno::EPIPE, 1), return 1016 $self->_error (Errno::EPIPE, 1), return
795 if $self->{_eof}; 1017 if $self->{_eof};
796 1018
797 last; # more data might arrive 1019 last; # more data might arrive
798 } 1020 }
799 } else { 1021 } else {
805 1027
806 if ($self->{_eof}) { 1028 if ($self->{_eof}) {
807 if ($self->{on_eof}) { 1029 if ($self->{on_eof}) {
808 $self->{on_eof}($self) 1030 $self->{on_eof}($self)
809 } else { 1031 } else {
810 $self->_error (0, 1); 1032 $self->_error (0, 1, "Unexpected end-of-file");
811 } 1033 }
812 } 1034 }
813 1035
814 # may need to restart read watcher 1036 # may need to restart read watcher
815 unless ($self->{_rw}) { 1037 unless ($self->{_rw}) {
828 1050
829sub on_read { 1051sub on_read {
830 my ($self, $cb) = @_; 1052 my ($self, $cb) = @_;
831 1053
832 $self->{on_read} = $cb; 1054 $self->{on_read} = $cb;
833 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1055 $self->_drain_rbuf if $cb;
834} 1056}
835 1057
836=item $handle->rbuf 1058=item $handle->rbuf
837 1059
838Returns the read buffer (as a modifiable lvalue). 1060Returns the read buffer (as a modifiable lvalue).
839 1061
840You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1062You can access the read buffer directly as the C<< ->{rbuf} >>
841you want. 1063member, if you want. However, the only operation allowed on the
1064read buffer (apart from looking at it) is removing data from its
1065beginning. Otherwise modifying or appending to it is not allowed and will
1066lead to hard-to-track-down bugs.
842 1067
843NOTE: The read buffer should only be used or modified if the C<on_read>, 1068NOTE: The read buffer should only be used or modified if the C<on_read>,
844C<push_read> or C<unshift_read> methods are used. The other read methods 1069C<push_read> or C<unshift_read> methods are used. The other read methods
845automatically manage the read buffer. 1070automatically manage the read buffer.
846 1071
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1112 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
888 ->($self, $cb, @_); 1113 ->($self, $cb, @_);
889 } 1114 }
890 1115
891 push @{ $self->{_queue} }, $cb; 1116 push @{ $self->{_queue} }, $cb;
892 $self->_drain_rbuf unless $self->{_in_drain}; 1117 $self->_drain_rbuf;
893} 1118}
894 1119
895sub unshift_read { 1120sub unshift_read {
896 my $self = shift; 1121 my $self = shift;
897 my $cb = pop; 1122 my $cb = pop;
903 ->($self, $cb, @_); 1128 ->($self, $cb, @_);
904 } 1129 }
905 1130
906 1131
907 unshift @{ $self->{_queue} }, $cb; 1132 unshift @{ $self->{_queue} }, $cb;
908 $self->_drain_rbuf unless $self->{_in_drain}; 1133 $self->_drain_rbuf;
909} 1134}
910 1135
911=item $handle->push_read (type => @args, $cb) 1136=item $handle->push_read (type => @args, $cb)
912 1137
913=item $handle->unshift_read (type => @args, $cb) 1138=item $handle->unshift_read (type => @args, $cb)
1046 return 1; 1271 return 1;
1047 } 1272 }
1048 1273
1049 # reject 1274 # reject
1050 if ($reject && $$rbuf =~ $reject) { 1275 if ($reject && $$rbuf =~ $reject) {
1051 $self->_error (&Errno::EBADMSG); 1276 $self->_error (Errno::EBADMSG);
1052 } 1277 }
1053 1278
1054 # skip 1279 # skip
1055 if ($skip && $$rbuf =~ $skip) { 1280 if ($skip && $$rbuf =~ $skip) {
1056 $data .= substr $$rbuf, 0, $+[0], ""; 1281 $data .= substr $$rbuf, 0, $+[0], "";
1072 my ($self, $cb) = @_; 1297 my ($self, $cb) = @_;
1073 1298
1074 sub { 1299 sub {
1075 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1300 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076 if ($_[0]{rbuf} =~ /[^0-9]/) { 1301 if ($_[0]{rbuf} =~ /[^0-9]/) {
1077 $self->_error (&Errno::EBADMSG); 1302 $self->_error (Errno::EBADMSG);
1078 } 1303 }
1079 return; 1304 return;
1080 } 1305 }
1081 1306
1082 my $len = $1; 1307 my $len = $1;
1085 my $string = $_[1]; 1310 my $string = $_[1];
1086 $_[0]->unshift_read (chunk => 1, sub { 1311 $_[0]->unshift_read (chunk => 1, sub {
1087 if ($_[1] eq ",") { 1312 if ($_[1] eq ",") {
1088 $cb->($_[0], $string); 1313 $cb->($_[0], $string);
1089 } else { 1314 } else {
1090 $self->_error (&Errno::EBADMSG); 1315 $self->_error (Errno::EBADMSG);
1091 } 1316 }
1092 }); 1317 });
1093 }); 1318 });
1094 1319
1095 1 1320 1
1101An octet string prefixed with an encoded length. The encoding C<$format> 1326An octet string prefixed with an encoded length. The encoding C<$format>
1102uses the same format as a Perl C<pack> format, but must specify a single 1327uses the same format as a Perl C<pack> format, but must specify a single
1103integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1328integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1104optional C<!>, C<< < >> or C<< > >> modifier). 1329optional C<!>, C<< < >> or C<< > >> modifier).
1105 1330
1106DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1331For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1332EPP uses a prefix of C<N> (4 octtes).
1107 1333
1108Example: read a block of data prefixed by its length in BER-encoded 1334Example: read a block of data prefixed by its length in BER-encoded
1109format (very efficient). 1335format (very efficient).
1110 1336
1111 $handle->push_read (packstring => "w", sub { 1337 $handle->push_read (packstring => "w", sub {
1141 } 1367 }
1142}; 1368};
1143 1369
1144=item json => $cb->($handle, $hash_or_arrayref) 1370=item json => $cb->($handle, $hash_or_arrayref)
1145 1371
1146Reads a JSON object or array, decodes it and passes it to the callback. 1372Reads a JSON object or array, decodes it and passes it to the
1373callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1147 1374
1148If a C<json> object was passed to the constructor, then that will be used 1375If a C<json> object was passed to the constructor, then that will be used
1149for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1376for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1150 1377
1151This read type uses the incremental parser available with JSON version 1378This read type uses the incremental parser available with JSON version
1160=cut 1387=cut
1161 1388
1162register_read_type json => sub { 1389register_read_type json => sub {
1163 my ($self, $cb) = @_; 1390 my ($self, $cb) = @_;
1164 1391
1165 require JSON; 1392 my $json = $self->{json} ||=
1393 eval { require JSON::XS; JSON::XS->new->utf8 }
1394 || do { require JSON; JSON->new->utf8 };
1166 1395
1167 my $data; 1396 my $data;
1168 my $rbuf = \$self->{rbuf}; 1397 my $rbuf = \$self->{rbuf};
1169 1398
1170 my $json = $self->{json} ||= JSON->new->utf8;
1171
1172 sub { 1399 sub {
1173 my $ref = $json->incr_parse ($self->{rbuf}); 1400 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1174 1401
1175 if ($ref) { 1402 if ($ref) {
1176 $self->{rbuf} = $json->incr_text; 1403 $self->{rbuf} = $json->incr_text;
1177 $json->incr_text = ""; 1404 $json->incr_text = "";
1178 $cb->($self, $ref); 1405 $cb->($self, $ref);
1179 1406
1180 1 1407 1
1408 } elsif ($@) {
1409 # error case
1410 $json->incr_skip;
1411
1412 $self->{rbuf} = $json->incr_text;
1413 $json->incr_text = "";
1414
1415 $self->_error (Errno::EBADMSG);
1416
1417 ()
1181 } else { 1418 } else {
1182 $self->{rbuf} = ""; 1419 $self->{rbuf} = "";
1420
1183 () 1421 ()
1184 } 1422 }
1185 } 1423 }
1186}; 1424};
1187 1425
1219 # read remaining chunk 1457 # read remaining chunk
1220 $_[0]->unshift_read (chunk => $len, sub { 1458 $_[0]->unshift_read (chunk => $len, sub {
1221 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1459 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1222 $cb->($_[0], $ref); 1460 $cb->($_[0], $ref);
1223 } else { 1461 } else {
1224 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1225 } 1463 }
1226 }); 1464 });
1227 } 1465 }
1228 1466
1229 1 1467 1
1290 if ($len > 0) { 1528 if ($len > 0) {
1291 $self->{_activity} = AnyEvent->now; 1529 $self->{_activity} = AnyEvent->now;
1292 1530
1293 if ($self->{tls}) { 1531 if ($self->{tls}) {
1294 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1532 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1533
1295 &_dotls ($self); 1534 &_dotls ($self);
1296 } else { 1535 } else {
1297 $self->_drain_rbuf unless $self->{_in_drain}; 1536 $self->_drain_rbuf;
1298 } 1537 }
1299 1538
1300 } elsif (defined $len) { 1539 } elsif (defined $len) {
1301 delete $self->{_rw}; 1540 delete $self->{_rw};
1302 $self->{_eof} = 1; 1541 $self->{_eof} = 1;
1303 $self->_drain_rbuf unless $self->{_in_drain}; 1542 $self->_drain_rbuf;
1304 1543
1305 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1544 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1306 return $self->_error ($!, 1); 1545 return $self->_error ($!, 1);
1307 } 1546 }
1308 }); 1547 });
1309 } 1548 }
1310} 1549}
1311 1550
1551our $ERROR_SYSCALL;
1552our $ERROR_WANT_READ;
1553
1554sub _tls_error {
1555 my ($self, $err) = @_;
1556
1557 return $self->_error ($!, 1)
1558 if $err == Net::SSLeay::ERROR_SYSCALL ();
1559
1560 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1561
1562 # reduce error string to look less scary
1563 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1564
1565 if ($self->{_on_starttls}) {
1566 (delete $self->{_on_starttls})->($self, undef, $err);
1567 &_freetls;
1568 } else {
1569 &_freetls;
1570 $self->_error (Errno::EPROTO, 1, $err);
1571 }
1572}
1573
1574# poll the write BIO and send the data if applicable
1575# also decode read data if possible
1576# this is basiclaly our TLS state machine
1577# more efficient implementations are possible with openssl,
1578# but not with the buggy and incomplete Net::SSLeay.
1312sub _dotls { 1579sub _dotls {
1313 my ($self) = @_; 1580 my ($self) = @_;
1314 1581
1315 my $buf; 1582 my $tmp;
1316 1583
1317 if (length $self->{_tls_wbuf}) { 1584 if (length $self->{_tls_wbuf}) {
1318 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1585 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1319 substr $self->{_tls_wbuf}, 0, $len, ""; 1586 substr $self->{_tls_wbuf}, 0, $tmp, "";
1320 } 1587 }
1321 }
1322 1588
1589 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1590 return $self->_tls_error ($tmp)
1591 if $tmp != $ERROR_WANT_READ
1592 && ($tmp != $ERROR_SYSCALL || $!);
1593 }
1594
1323 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1595 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1324 unless (length $buf) { 1596 unless (length $tmp) {
1325 # let's treat SSL-eof as we treat normal EOF 1597 $self->{_on_starttls}
1326 delete $self->{_rw}; 1598 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1327 $self->{_eof} = 1;
1328 &_freetls; 1599 &_freetls;
1600
1601 if ($self->{on_stoptls}) {
1602 $self->{on_stoptls}($self);
1603 return;
1604 } else {
1605 # let's treat SSL-eof as we treat normal EOF
1606 delete $self->{_rw};
1607 $self->{_eof} = 1;
1608 }
1329 } 1609 }
1330 1610
1331 $self->{rbuf} .= $buf; 1611 $self->{_tls_rbuf} .= $tmp;
1332 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1333 $self->{tls} or return; # tls session might have gone away in callback 1613 $self->{tls} or return; # tls session might have gone away in callback
1334 } 1614 }
1335 1615
1336 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1616 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1337
1338 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1339 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1340 return $self->_error ($!, 1); 1617 return $self->_tls_error ($tmp)
1341 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1618 if $tmp != $ERROR_WANT_READ
1342 return $self->_error (&Errno::EIO, 1); 1619 && ($tmp != $ERROR_SYSCALL || $!);
1343 }
1344 1620
1345 # all others are fine for our purposes
1346 }
1347
1348 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1621 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1349 $self->{wbuf} .= $buf; 1622 $self->{wbuf} .= $tmp;
1350 $self->_drain_wbuf; 1623 $self->_drain_wbuf;
1351 } 1624 }
1625
1626 $self->{_on_starttls}
1627 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1628 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1352} 1629}
1353 1630
1354=item $handle->starttls ($tls[, $tls_ctx]) 1631=item $handle->starttls ($tls[, $tls_ctx])
1355 1632
1356Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1633Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1357object is created, you can also do that at a later time by calling 1634object is created, you can also do that at a later time by calling
1358C<starttls>. 1635C<starttls>.
1359 1636
1637Starting TLS is currently an asynchronous operation - when you push some
1638write data and then call C<< ->starttls >> then TLS negotiation will start
1639immediately, after which the queued write data is then sent.
1640
1360The first argument is the same as the C<tls> constructor argument (either 1641The first argument is the same as the C<tls> constructor argument (either
1361C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1642C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362 1643
1363The second argument is the optional C<Net::SSLeay::CTX> object that is 1644The second argument is the optional C<AnyEvent::TLS> object that is used
1364used when AnyEvent::Handle has to create its own TLS connection object. 1645when AnyEvent::Handle has to create its own TLS connection object, or
1646a hash reference with C<< key => value >> pairs that will be used to
1647construct a new context.
1365 1648
1366The TLS connection object will end up in C<< $handle->{tls} >> after this 1649The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1367call and can be used or changed to your liking. Note that the handshake 1650context in C<< $handle->{tls_ctx} >> after this call and can be used or
1368might have already started when this function returns. 1651changed to your liking. Note that the handshake might have already started
1652when this function returns.
1369 1653
1370If it an error to start a TLS handshake more than once per 1654If it an error to start a TLS handshake more than once per
1371AnyEvent::Handle object (this is due to bugs in OpenSSL). 1655AnyEvent::Handle object (this is due to bugs in OpenSSL).
1372 1656
1373=cut 1657=cut
1374 1658
1659our %TLS_CACHE; #TODO not yet documented, should we?
1660
1375sub starttls { 1661sub starttls {
1376 my ($self, $ssl, $ctx) = @_; 1662 my ($self, $ssl, $ctx) = @_;
1377 1663
1378 require Net::SSLeay; 1664 require Net::SSLeay;
1379 1665
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1666 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1381 if $self->{tls}; 1667 if $self->{tls};
1668
1669 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1670 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1671
1672 $ctx ||= $self->{tls_ctx};
1673
1674 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1675
1676 if ("HASH" eq ref $ctx) {
1677 require AnyEvent::TLS;
1678
1679 if ($ctx->{cache}) {
1680 my $key = $ctx+0;
1681 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1682 } else {
1683 $ctx = new AnyEvent::TLS %$ctx;
1684 }
1685 }
1382 1686
1383 if ($ssl eq "accept") { 1687 $self->{tls_ctx} = $ctx || TLS_CTX ();
1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1688 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1385 Net::SSLeay::set_accept_state ($ssl);
1386 } elsif ($ssl eq "connect") {
1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388 Net::SSLeay::set_connect_state ($ssl);
1389 }
1390
1391 $self->{tls} = $ssl;
1392 1689
1393 # basically, this is deep magic (because SSL_read should have the same issues) 1690 # basically, this is deep magic (because SSL_read should have the same issues)
1394 # but the openssl maintainers basically said: "trust us, it just works". 1691 # but the openssl maintainers basically said: "trust us, it just works".
1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1692 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396 # and mismaintained ssleay-module doesn't even offer them). 1693 # and mismaintained ssleay-module doesn't even offer them).
1400 # 1697 #
1401 # note that we do not try to keep the length constant between writes as we are required to do. 1698 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1699 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1700 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area. 1701 # have identity issues in that area.
1405 Net::SSLeay::CTX_set_mode ($self->{tls}, 1702# Net::SSLeay::CTX_set_mode ($ssl,
1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1703# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1704# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1705 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1408 1706
1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1707 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1708 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 1709
1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1710 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1711
1712 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1713 if $self->{on_starttls};
1413 1714
1414 &_dotls; # need to trigger the initial handshake 1715 &_dotls; # need to trigger the initial handshake
1415 $self->start_read; # make sure we actually do read 1716 $self->start_read; # make sure we actually do read
1416} 1717}
1417 1718
1430 if ($self->{tls}) { 1731 if ($self->{tls}) {
1431 Net::SSLeay::shutdown ($self->{tls}); 1732 Net::SSLeay::shutdown ($self->{tls});
1432 1733
1433 &_dotls; 1734 &_dotls;
1434 1735
1435 # we don't give a shit. no, we do, but we can't. no... 1736# # we don't give a shit. no, we do, but we can't. no...#d#
1436 # we, we... have to use openssl :/ 1737# # we, we... have to use openssl :/#d#
1437 &_freetls; 1738# &_freetls;#d#
1438 } 1739 }
1439} 1740}
1440 1741
1441sub _freetls { 1742sub _freetls {
1442 my ($self) = @_; 1743 my ($self) = @_;
1443 1744
1444 return unless $self->{tls}; 1745 return unless $self->{tls};
1445 1746
1446 Net::SSLeay::free (delete $self->{tls}); 1747 $self->{tls_ctx}->_put_session (delete $self->{tls});
1447 1748
1448 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1749 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1449} 1750}
1450 1751
1451sub DESTROY { 1752sub DESTROY {
1452 my $self = shift; 1753 my ($self) = @_;
1453 1754
1454 &_freetls; 1755 &_freetls;
1455 1756
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1757 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457 1758
1458 if ($linger && length $self->{wbuf}) { 1759 if ($linger && length $self->{wbuf} && $self->{fh}) {
1459 my $fh = delete $self->{fh}; 1760 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf}; 1761 my $wbuf = delete $self->{wbuf};
1461 1762
1462 my @linger; 1763 my @linger;
1463 1764
1474 @linger = (); 1775 @linger = ();
1475 }); 1776 });
1476 } 1777 }
1477} 1778}
1478 1779
1780=item $handle->destroy
1781
1782Shuts down the handle object as much as possible - this call ensures that
1783no further callbacks will be invoked and as many resources as possible
1784will be freed. You must not call any methods on the object afterwards.
1785
1786Normally, you can just "forget" any references to an AnyEvent::Handle
1787object and it will simply shut down. This works in fatal error and EOF
1788callbacks, as well as code outside. It does I<NOT> work in a read or write
1789callback, so when you want to destroy the AnyEvent::Handle object from
1790within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1791that case.
1792
1793Destroying the handle object in this way has the advantage that callbacks
1794will be removed as well, so if those are the only reference holders (as
1795is common), then one doesn't need to do anything special to break any
1796reference cycles.
1797
1798The handle might still linger in the background and write out remaining
1799data, as specified by the C<linger> option, however.
1800
1801=cut
1802
1803sub destroy {
1804 my ($self) = @_;
1805
1806 $self->DESTROY;
1807 %$self = ();
1808}
1809
1479=item AnyEvent::Handle::TLS_CTX 1810=item AnyEvent::Handle::TLS_CTX
1480 1811
1481This function creates and returns the Net::SSLeay::CTX object used by 1812This function creates and returns the AnyEvent::TLS object used by default
1482default for TLS mode. 1813for TLS mode.
1483 1814
1484The context is created like this: 1815The context is created by calling L<AnyEvent::TLS> without any arguments.
1485
1486 Net::SSLeay::load_error_strings;
1487 Net::SSLeay::SSLeay_add_ssl_algorithms;
1488 Net::SSLeay::randomize;
1489
1490 my $CTX = Net::SSLeay::CTX_new;
1491
1492 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493 1816
1494=cut 1817=cut
1495 1818
1496our $TLS_CTX; 1819our $TLS_CTX;
1497 1820
1498sub TLS_CTX() { 1821sub TLS_CTX() {
1499 $TLS_CTX || do { 1822 $TLS_CTX ||= do {
1500 require Net::SSLeay; 1823 require AnyEvent::TLS;
1501 1824
1502 Net::SSLeay::load_error_strings (); 1825 new AnyEvent::TLS
1503 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504 Net::SSLeay::randomize ();
1505
1506 $TLS_CTX = Net::SSLeay::CTX_new ();
1507
1508 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509
1510 $TLS_CTX
1511 } 1826 }
1512} 1827}
1513 1828
1514=back 1829=back
1515 1830
1516 1831
1517=head1 NONFREQUENTLY ASKED QUESTIONS 1832=head1 NONFREQUENTLY ASKED QUESTIONS
1518 1833
1519=over 4 1834=over 4
1520 1835
1836=item I C<undef> the AnyEvent::Handle reference inside my callback and
1837still get further invocations!
1838
1839That's because AnyEvent::Handle keeps a reference to itself when handling
1840read or write callbacks.
1841
1842It is only safe to "forget" the reference inside EOF or error callbacks,
1843from within all other callbacks, you need to explicitly call the C<<
1844->destroy >> method.
1845
1846=item I get different callback invocations in TLS mode/Why can't I pause
1847reading?
1848
1849Unlike, say, TCP, TLS connections do not consist of two independent
1850communication channels, one for each direction. Or put differently. The
1851read and write directions are not independent of each other: you cannot
1852write data unless you are also prepared to read, and vice versa.
1853
1854This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1855callback invocations when you are not expecting any read data - the reason
1856is that AnyEvent::Handle always reads in TLS mode.
1857
1858During the connection, you have to make sure that you always have a
1859non-empty read-queue, or an C<on_read> watcher. At the end of the
1860connection (or when you no longer want to use it) you can call the
1861C<destroy> method.
1862
1521=item How do I read data until the other side closes the connection? 1863=item How do I read data until the other side closes the connection?
1522 1864
1523If you just want to read your data into a perl scalar, the easiest way to achieve this is 1865If you just want to read your data into a perl scalar, the easiest way
1524by setting an C<on_read> callback that does nothing, clearing the C<on_eof> callback 1866to achieve this is by setting an C<on_read> callback that does nothing,
1525and in the C<on_error> callback, the data will be in C<$_[0]{rbuf}>: 1867clearing the C<on_eof> callback and in the C<on_error> callback, the data
1868will be in C<$_[0]{rbuf}>:
1526 1869
1527 $handle->on_read (sub { }); 1870 $handle->on_read (sub { });
1528 $handle->on_eof (undef); 1871 $handle->on_eof (undef);
1529 $handle->on_error (sub { 1872 $handle->on_error (sub {
1530 my $data = delete $_[0]{rbuf}; 1873 my $data = delete $_[0]{rbuf};
1531 undef $handle;
1532 }); 1874 });
1533 1875
1534The reason to use C<on_error> is that TCP connections, due to latencies 1876The reason to use C<on_error> is that TCP connections, due to latencies
1535and packets loss, might get closed quite violently with an error, when in 1877and packets loss, might get closed quite violently with an error, when in
1536fact, all data has been received. 1878fact, all data has been received.
1537 1879
1538It is usually better to use acknowledgements when transfering data, 1880It is usually better to use acknowledgements when transferring data,
1539to make sure the other side hasn't just died and you got the data 1881to make sure the other side hasn't just died and you got the data
1540intact. This is also one reason why so many internet protocols have an 1882intact. This is also one reason why so many internet protocols have an
1541explicit QUIT command. 1883explicit QUIT command.
1542 1884
1543
1544=item I don't want to destroy the handle too early - how do I wait until all data has been sent? 1885=item I don't want to destroy the handle too early - how do I wait until
1886all data has been written?
1545 1887
1546After writing your last bits of data, set the C<on_drain> callback 1888After writing your last bits of data, set the C<on_drain> callback
1547and destroy the handle in there - with the default setting of 1889and destroy the handle in there - with the default setting of
1548C<low_water_mark> this will be called precisely when all data has been 1890C<low_water_mark> this will be called precisely when all data has been
1549written to the socket: 1891written to the socket:
1552 $handle->on_drain (sub { 1894 $handle->on_drain (sub {
1553 warn "all data submitted to the kernel\n"; 1895 warn "all data submitted to the kernel\n";
1554 undef $handle; 1896 undef $handle;
1555 }); 1897 });
1556 1898
1899If you just want to queue some data and then signal EOF to the other side,
1900consider using C<< ->push_shutdown >> instead.
1901
1902=item I want to contact a TLS/SSL server, I don't care about security.
1903
1904If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1905simply connect to it and then create the AnyEvent::Handle with the C<tls>
1906parameter:
1907
1908 tcp_connect $host, $port, sub {
1909 my ($fh) = @_;
1910
1911 my $handle = new AnyEvent::Handle
1912 fh => $fh,
1913 tls => "connect",
1914 on_error => sub { ... };
1915
1916 $handle->push_write (...);
1917 };
1918
1919=item I want to contact a TLS/SSL server, I do care about security.
1920
1921Then you should additionally enable certificate verification, including
1922peername verification, if the protocol you use supports it (see
1923L<AnyEvent::TLS>, C<verify_peername>).
1924
1925E.g. for HTTPS:
1926
1927 tcp_connect $host, $port, sub {
1928 my ($fh) = @_;
1929
1930 my $handle = new AnyEvent::Handle
1931 fh => $fh,
1932 peername => $host,
1933 tls => "connect",
1934 tls_ctx => { verify => 1, verify_peername => "https" },
1935 ...
1936
1937Note that you must specify the hostname you connected to (or whatever
1938"peername" the protocol needs) as the C<peername> argument, otherwise no
1939peername verification will be done.
1940
1941The above will use the system-dependent default set of trusted CA
1942certificates. If you want to check against a specific CA, add the
1943C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1944
1945 tls_ctx => {
1946 verify => 1,
1947 verify_peername => "https",
1948 ca_file => "my-ca-cert.pem",
1949 },
1950
1951=item I want to create a TLS/SSL server, how do I do that?
1952
1953Well, you first need to get a server certificate and key. You have
1954three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1955self-signed certificate (cheap. check the search engine of your choice,
1956there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1957nice program for that purpose).
1958
1959Then create a file with your private key (in PEM format, see
1960L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1961file should then look like this:
1962
1963 -----BEGIN RSA PRIVATE KEY-----
1964 ...header data
1965 ... lots of base64'y-stuff
1966 -----END RSA PRIVATE KEY-----
1967
1968 -----BEGIN CERTIFICATE-----
1969 ... lots of base64'y-stuff
1970 -----END CERTIFICATE-----
1971
1972The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1973specify this file as C<cert_file>:
1974
1975 tcp_server undef, $port, sub {
1976 my ($fh) = @_;
1977
1978 my $handle = new AnyEvent::Handle
1979 fh => $fh,
1980 tls => "accept",
1981 tls_ctx => { cert_file => "my-server-keycert.pem" },
1982 ...
1983
1984When you have intermediate CA certificates that your clients might not
1985know about, just append them to the C<cert_file>.
1986
1557=back 1987=back
1558 1988
1559 1989
1560=head1 SUBCLASSING AnyEvent::Handle 1990=head1 SUBCLASSING AnyEvent::Handle
1561 1991

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines