ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.96 by root, Thu Oct 2 08:10:27 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.3;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
64=head2 SIGPIPE is not handled by this module 51=cut
65 52
66SIGPIPE is not handled by this module, so one of the practical 53package AnyEvent::Handle;
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} = 54
68'IGNORE'>). At least, this is highly recommend in a networked program: If 55use Scalar::Util ();
69you use AnyEvent::Handle in a filter program (like sort), exiting on 56use List::Util ();
70SIGPIPE is probably the right thing to do. 57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
71 64
72=head1 METHODS 65=head1 METHODS
73 66
74=over 4 67=over 4
75 68
76=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 70
78The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
79 72
80=over 4 73=over 4
81 74
82=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 76
84The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 80that mode.
89 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
90=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
91 100
92Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
94connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
95 106
96For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 109timeout is to be used).
99down.
100 110
101While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 112
105If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
108=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
109 138
110This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 141connect or a read error.
113 142
114Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
119 155
120Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 160
125On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
127 164
128While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
130C<croak>. 167C<croak>.
131 168
135and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
137read buffer). 174read buffer).
138 175
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
141 180
142When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
146 206
147=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
148 208
149This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
157memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty. 218the file when the write queue becomes empty.
159 219
160=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
161 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
162If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
163seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
164handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
165missing, a non-fatal C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
166 237
167Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
243 314
244This will not work for partial TLS data that could not be encoded 315This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 316yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 317help.
247 318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 330
250When this parameter is given, it enables TLS (SSL) mode, that means 331When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 332AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
253 337
254TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 339automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 340have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 341to add the dependency yourself.
261mode. 345mode.
262 346
263You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
267 361
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 363
270=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
271 365
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
275 405
276=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
277 407
278This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
279 409
288 418
289=cut 419=cut
290 420
291sub new { 421sub new {
292 my $class = shift; 422 my $class = shift;
293
294 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
295 424
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
297 488
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
490
491 $self->{_activity} =
492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
299 500
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301 if $self->{tls}; 502 if $self->{tls};
302 503
303 $self->{_activity} = AnyEvent->now;
304 $self->_timeout;
305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 505
309 $self->start_read 506 $self->start_read
310 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
311 508
312 $self 509 $self->_drain_wbuf;
313}
314
315sub _shutdown {
316 my ($self) = @_;
317
318 delete $self->{_tw};
319 delete $self->{_rw};
320 delete $self->{_ww};
321 delete $self->{fh};
322
323 &_freetls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327} 510}
328 511
329sub _error { 512sub _error {
330 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 514
335 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
336 517
337 if ($self->{on_error}) { 518 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
339 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 524 }
342} 525}
343 526
344=item $fh = $handle->fh 527=item $fh = $handle->fh
345 528
369 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
370} 553}
371 554
372=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
373 556
374Replace the current C<on_timeout> callback, or disables the callback (but 557=item $handle->on_rtimeout ($cb)
375not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
376argument and method.
377 558
378=cut 559=item $handle->on_wtimeout ($cb)
379 560
380sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
381 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
382} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
383 568
384=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
385 570
386Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 572constructor argument). Changes will only take effect on the next write.
388 573
389=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
390 579
391=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
392 581
393Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 583the same name for details).
398sub no_delay { 587sub no_delay {
399 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
400 589
401 eval { 590 eval {
402 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
404 }; 594 };
405} 595}
406 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
407############################################################################# 627#############################################################################
408 628
409=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
410 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
411Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
412 636
413=cut 637=item $handle->timeout_reset
414 638
415sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
416 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
417 662
418 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
419 $self->_timeout; 664 delete $self->{$tw}; &$cb;
420} 665 };
421 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
422# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
423# also check for time-outs 673 # also check for time-outs
424sub _timeout { 674 $cb = sub {
425 my ($self) = @_; 675 my ($self) = @_;
426 676
427 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
429 679
430 # when would the timeout trigger? 680 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
432 682
433 # now or in the past already? 683 # now or in the past already?
434 if ($after <= 0) { 684 if ($after <= 0) {
435 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
436 686
437 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
438 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
439 } else { 689 } else {
440 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
441 } 698 }
442 699
443 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
444 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
445 702
446 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
447 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
448 } 709 }
449
450 Scalar::Util::weaken $self;
451 return unless $self; # ->error could have destroyed $self
452
453 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
454 delete $self->{_tw};
455 $self->_timeout;
456 });
457 } else {
458 delete $self->{_tw};
459 } 710 }
460} 711}
461 712
462############################################################################# 713#############################################################################
463 714
508 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
509 760
510 my $cb = sub { 761 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
512 763
513 if ($len >= 0) { 764 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
515 766
516 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
517 768
518 $self->{on_drain}($self) 769 $self->{on_drain}($self)
519 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 && $self->{on_drain}; 771 && $self->{on_drain};
521 772
527 778
528 # try to write data immediately 779 # try to write data immediately
529 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
530 781
531 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
532 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
533 if length $self->{wbuf}; 784 if length $self->{wbuf};
534 }; 785 };
535} 786}
536 787
537our %WH; 788our %WH;
550 ->($self, @_); 801 ->($self, @_);
551 } 802 }
552 803
553 if ($self->{tls}) { 804 if ($self->{tls}) {
554 $self->{_tls_wbuf} .= $_[0]; 805 $self->{_tls_wbuf} .= $_[0];
555 &_dotls ($self); 806 &_dotls ($self) if $self->{fh};
556 } else { 807 } else {
557 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
558 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
559 } 810 }
560} 811}
561 812
562=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
563 814
627Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
628this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
629 880
630=cut 881=cut
631 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
632register_write_type json => sub { 888register_write_type json => sub {
633 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
634 890
635 require JSON; 891 my $json = $self->{json} ||= json_coder;
636 892
637 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
638 : JSON::encode_json ($ref)
639}; 894};
640 895
641=item storable => $reference 896=item storable => $reference
642 897
643Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
652 907
653 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
654}; 909};
655 910
656=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
657 937
658=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
659 939
660This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
661Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
755=cut 1035=cut
756 1036
757sub _drain_rbuf { 1037sub _drain_rbuf {
758 my ($self) = @_; 1038 my ($self) = @_;
759 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
760 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
761
762 if (
763 defined $self->{rbuf_max}
764 && $self->{rbuf_max} < length $self->{rbuf}
765 ) {
766 $self->_error (&Errno::ENOSPC, 1), return;
767 }
768 1043
769 while () { 1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
770 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
771 1051
772 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
773 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
774 if ($self->{_eof}) { 1054 # no progress can be made
775 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
776 $self->_error (&Errno::EPIPE, 1), return; 1056 $self->_error (Errno::EPIPE, 1), return
777 } 1057 if $self->{_eof};
778 1058
779 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
780 last; 1060 last;
781 } 1061 }
782 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
789 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
790 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
791 ) { 1071 ) {
792 # no further data will arrive 1072 # no further data will arrive
793 # so no progress can be made 1073 # so no progress can be made
794 $self->_error (&Errno::EPIPE, 1), return 1074 $self->_error (Errno::EPIPE, 1), return
795 if $self->{_eof}; 1075 if $self->{_eof};
796 1076
797 last; # more data might arrive 1077 last; # more data might arrive
798 } 1078 }
799 } else { 1079 } else {
802 last; 1082 last;
803 } 1083 }
804 } 1084 }
805 1085
806 if ($self->{_eof}) { 1086 if ($self->{_eof}) {
807 if ($self->{on_eof}) { 1087 $self->{on_eof}
808 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
809 } else { 1089 : $self->_error (0, 1, "Unexpected end-of-file");
810 $self->_error (0, 1); 1090
811 } 1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
812 } 1099 }
813 1100
814 # may need to restart read watcher 1101 # may need to restart read watcher
815 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
816 $self->start_read 1103 $self->start_read
828 1115
829sub on_read { 1116sub on_read {
830 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
831 1118
832 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
833 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
834} 1121}
835 1122
836=item $handle->rbuf 1123=item $handle->rbuf
837 1124
838Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
839 1126
840You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
841you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
842 1132
843NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
844C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
845automatically manage the read buffer. 1135automatically manage the read buffer.
846 1136
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
888 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
889 } 1179 }
890 1180
891 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
892 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
893} 1183}
894 1184
895sub unshift_read { 1185sub unshift_read {
896 my $self = shift; 1186 my $self = shift;
897 my $cb = pop; 1187 my $cb = pop;
903 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
904 } 1194 }
905 1195
906 1196
907 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
908 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
909} 1199}
910 1200
911=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
912 1202
913=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
1046 return 1; 1336 return 1;
1047 } 1337 }
1048 1338
1049 # reject 1339 # reject
1050 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
1051 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
1052 } 1342 }
1053 1343
1054 # skip 1344 # skip
1055 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
1056 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
1072 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
1073 1363
1074 sub { 1364 sub {
1075 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1077 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
1078 } 1368 }
1079 return; 1369 return;
1080 } 1370 }
1081 1371
1082 my $len = $1; 1372 my $len = $1;
1085 my $string = $_[1]; 1375 my $string = $_[1];
1086 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
1087 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
1088 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1089 } else { 1379 } else {
1090 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1091 } 1381 }
1092 }); 1382 });
1093 }); 1383 });
1094 1384
1095 1 1385 1
1142 } 1432 }
1143}; 1433};
1144 1434
1145=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1146 1436
1147Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1148 1439
1149If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1150for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1151 1442
1152This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1161=cut 1452=cut
1162 1453
1163register_read_type json => sub { 1454register_read_type json => sub {
1164 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1165 1456
1166 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1167 1458
1168 my $data; 1459 my $data;
1169 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1170 1461
1171 my $json = $self->{json} ||= JSON->new->utf8;
1172
1173 sub { 1462 sub {
1174 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1175 1464
1176 if ($ref) { 1465 if ($ref) {
1177 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1178 $json->incr_text = ""; 1467 $json->incr_text = "";
1179 $cb->($self, $ref); 1468 $cb->($self, $ref);
1180 1469
1181 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1182 } else { 1481 } else {
1183 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1184 () 1484 ()
1185 } 1485 }
1186 } 1486 }
1187}; 1487};
1188 1488
1220 # read remaining chunk 1520 # read remaining chunk
1221 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1222 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1223 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1224 } else { 1524 } else {
1225 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1226 } 1526 }
1227 }); 1527 });
1228 } 1528 }
1229 1529
1230 1 1530 1
1282 my ($self) = @_; 1582 my ($self) = @_;
1283 1583
1284 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1285 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1286 1586
1287 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1288 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1289 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1290 1590
1291 if ($len > 0) { 1591 if ($len > 0) {
1292 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1293 1593
1294 if ($self->{tls}) { 1594 if ($self->{tls}) {
1295 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1596
1296 &_dotls ($self); 1597 &_dotls ($self);
1297 } else { 1598 } else {
1298 $self->_drain_rbuf unless $self->{_in_drain}; 1599 $self->_drain_rbuf;
1299 } 1600 }
1300 1601
1301 } elsif (defined $len) { 1602 } elsif (defined $len) {
1302 delete $self->{_rw}; 1603 delete $self->{_rw};
1303 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1305 1606
1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1308 } 1609 }
1309 }); 1610 };
1310 } 1611 }
1311} 1612}
1312 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1642sub _dotls {
1314 my ($self) = @_; 1643 my ($self) = @_;
1315 1644
1316 my $buf; 1645 my $tmp;
1317 1646
1318 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1650 }
1322 }
1323 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) { 1659 unless (length $tmp) {
1326 # let's treat SSL-eof as we treat normal EOF 1660 $self->{_on_starttls}
1327 delete $self->{_rw}; 1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1328 $self->{_eof} = 1;
1329 &_freetls; 1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1330 } 1672 }
1331 1673
1332 $self->{rbuf} .= $buf; 1674 $self->{_tls_rbuf} .= $tmp;
1333 $self->_drain_rbuf unless $self->{_in_drain}; 1675 $self->_drain_rbuf;
1334 $self->{tls} or return; # tls session might have gone away in callback 1676 $self->{tls} or return; # tls session might have gone away in callback
1335 } 1677 }
1336 1678
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1); 1680 return $self->_tls_error ($tmp)
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1681 if $tmp != $ERROR_WANT_READ
1343 return $self->_error (&Errno::EIO, 1); 1682 && ($tmp != $ERROR_SYSCALL || $!);
1344 }
1345 1683
1346 # all others are fine for our purposes
1347 }
1348
1349 while (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1351 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1352 } 1687 }
1688
1689 $self->{_on_starttls}
1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1353} 1692}
1354 1693
1355=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1356 1695
1357Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1359C<starttls>. 1698C<starttls>.
1360 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1361The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1362C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363 1706
1364The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1365used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1366 1711
1367The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1368call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1369might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1370 1716
1371If it an error to start a TLS handshake more than once per 1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1372AnyEvent::Handle object (this is due to bugs in OpenSSL). 1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1373 1720
1374=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1375 1724
1376sub starttls { 1725sub starttls {
1377 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1727
1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1730
1731 $self->{tls} = $tls;
1732 $self->{tls_ctx} = $ctx if @_ > 2;
1733
1734 return unless $self->{fh};
1378 1735
1379 require Net::SSLeay; 1736 require Net::SSLeay;
1380 1737
1381 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1382 if $self->{tls}; 1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1383 1756
1384 if ($ssl eq "accept") { 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1385 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1386 Net::SSLeay::set_accept_state ($ssl);
1387 } elsif ($ssl eq "connect") {
1388 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1389 Net::SSLeay::set_connect_state ($ssl);
1390 }
1391
1392 $self->{tls} = $ssl;
1393 1759
1394 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1395 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1396 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1397 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1401 # 1767 #
1402 # note that we do not try to keep the length constant between writes as we are required to do. 1768 # note that we do not try to keep the length constant between writes as we are required to do.
1403 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1404 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1405 # have identity issues in that area. 1771 # have identity issues in that area.
1406 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1407 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1408 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1409 1776
1410 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1412 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1413 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1783
1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1785 if $self->{on_starttls};
1414 1786
1415 &_dotls; # need to trigger the initial handshake 1787 &_dotls; # need to trigger the initial handshake
1416 $self->start_read; # make sure we actually do read 1788 $self->start_read; # make sure we actually do read
1417} 1789}
1418 1790
1419=item $handle->stoptls 1791=item $handle->stoptls
1420 1792
1421Shuts down the SSL connection - this makes a proper EOF handshake by 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1422sending a close notify to the other side, but since OpenSSL doesn't 1794sending a close notify to the other side, but since OpenSSL doesn't
1423support non-blocking shut downs, it is not possible to re-use the stream 1795support non-blocking shut downs, it is not guarenteed that you can re-use
1424afterwards. 1796the stream afterwards.
1425 1797
1426=cut 1798=cut
1427 1799
1428sub stoptls { 1800sub stoptls {
1429 my ($self) = @_; 1801 my ($self) = @_;
1431 if ($self->{tls}) { 1803 if ($self->{tls}) {
1432 Net::SSLeay::shutdown ($self->{tls}); 1804 Net::SSLeay::shutdown ($self->{tls});
1433 1805
1434 &_dotls; 1806 &_dotls;
1435 1807
1436 # we don't give a shit. no, we do, but we can't. no... 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1437 # we, we... have to use openssl :/ 1809# # we, we... have to use openssl :/#d#
1438 &_freetls; 1810# &_freetls;#d#
1439 } 1811 }
1440} 1812}
1441 1813
1442sub _freetls { 1814sub _freetls {
1443 my ($self) = @_; 1815 my ($self) = @_;
1444 1816
1445 return unless $self->{tls}; 1817 return unless $self->{tls};
1446 1818
1447 Net::SSLeay::free (delete $self->{tls}); 1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1448 1821
1449 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1450} 1823}
1451 1824
1452sub DESTROY { 1825sub DESTROY {
1453 my $self = shift; 1826 my ($self) = @_;
1454 1827
1455 &_freetls; 1828 &_freetls;
1456 1829
1457 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1458 1831
1459 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1460 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1461 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1462 1835
1463 my @linger; 1836 my @linger;
1464 1837
1465 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1466 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1467 1840
1468 if ($len > 0) { 1841 if ($len > 0) {
1469 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1470 } else { 1843 } else {
1471 @linger = (); # end 1844 @linger = (); # end
1472 } 1845 }
1473 }); 1846 };
1474 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1475 @linger = (); 1848 @linger = ();
1476 }); 1849 };
1477 } 1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1478} 1888}
1479 1889
1480=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1481 1891
1482This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1483default for TLS mode. 1893for TLS mode.
1484 1894
1485The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1486
1487 Net::SSLeay::load_error_strings;
1488 Net::SSLeay::SSLeay_add_ssl_algorithms;
1489 Net::SSLeay::randomize;
1490
1491 my $CTX = Net::SSLeay::CTX_new;
1492
1493 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1494 1896
1495=cut 1897=cut
1496 1898
1497our $TLS_CTX; 1899our $TLS_CTX;
1498 1900
1499sub TLS_CTX() { 1901sub TLS_CTX() {
1500 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1501 require Net::SSLeay; 1903 require AnyEvent::TLS;
1502 1904
1503 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1504 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1505 Net::SSLeay::randomize ();
1506
1507 $TLS_CTX = Net::SSLeay::CTX_new ();
1508
1509 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1510
1511 $TLS_CTX
1512 } 1906 }
1513} 1907}
1514 1908
1515=back 1909=back
1516 1910
1517 1911
1518=head1 NONFREQUENTLY ASKED QUESTIONS 1912=head1 NONFREQUENTLY ASKED QUESTIONS
1519 1913
1520=over 4 1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1521 1942
1522=item How do I read data until the other side closes the connection? 1943=item How do I read data until the other side closes the connection?
1523 1944
1524If you just want to read your data into a perl scalar, the easiest way 1945If you just want to read your data into a perl scalar, the easiest way
1525to achieve this is by setting an C<on_read> callback that does nothing, 1946to achieve this is by setting an C<on_read> callback that does nothing,
1528 1949
1529 $handle->on_read (sub { }); 1950 $handle->on_read (sub { });
1530 $handle->on_eof (undef); 1951 $handle->on_eof (undef);
1531 $handle->on_error (sub { 1952 $handle->on_error (sub {
1532 my $data = delete $_[0]{rbuf}; 1953 my $data = delete $_[0]{rbuf};
1533 undef $handle;
1534 }); 1954 });
1535 1955
1536The reason to use C<on_error> is that TCP connections, due to latencies 1956The reason to use C<on_error> is that TCP connections, due to latencies
1537and packets loss, might get closed quite violently with an error, when in 1957and packets loss, might get closed quite violently with an error, when in
1538fact, all data has been received. 1958fact, all data has been received.
1539 1959
1540It is usually better to use acknowledgements when transfering data, 1960It is usually better to use acknowledgements when transferring data,
1541to make sure the other side hasn't just died and you got the data 1961to make sure the other side hasn't just died and you got the data
1542intact. This is also one reason why so many internet protocols have an 1962intact. This is also one reason why so many internet protocols have an
1543explicit QUIT command. 1963explicit QUIT command.
1544
1545 1964
1546=item I don't want to destroy the handle too early - how do I wait until 1965=item I don't want to destroy the handle too early - how do I wait until
1547all data has been written? 1966all data has been written?
1548 1967
1549After writing your last bits of data, set the C<on_drain> callback 1968After writing your last bits of data, set the C<on_drain> callback
1555 $handle->on_drain (sub { 1974 $handle->on_drain (sub {
1556 warn "all data submitted to the kernel\n"; 1975 warn "all data submitted to the kernel\n";
1557 undef $handle; 1976 undef $handle;
1558 }); 1977 });
1559 1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
1560=back 2067=back
1561 2068
1562 2069
1563=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1564 2071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines