ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/BDB/BDB.pm
Revision: 1.12
Committed: Mon Aug 13 12:07:46 2007 UTC (16 years, 9 months ago) by root
Branch: MAIN
Changes since 1.11: +7 -6 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.2 BDB - Asynchronous Berkeley DB access
4 root 1.1
5     =head1 SYNOPSIS
6    
7 root 1.2 use BDB;
8 root 1.1
9     =head1 DESCRIPTION
10    
11 root 1.10 See the BerkeleyDB documentation (L<http://www.oracle.com/technology/documentation/berkeley-db/db/index.html>).
12 root 1.12 The BDB API is very similar to the C API (the translation has been very faithful).
13 root 1.10
14     See also the example sections in the document below and possibly the eg/
15     subdirectory of the BDB distribution. Last not least see the IO::AIO
16     documentation, as that module uses almost the same asynchronous request
17     model as this module.
18    
19     I know this is woefully inadequate documentation. Send a patch!
20 root 1.7
21 root 1.1
22     =head1 REQUEST ANATOMY AND LIFETIME
23    
24     Every request method creates a request. which is a C data structure not
25     directly visible to Perl.
26    
27     During their existance, bdb requests travel through the following states,
28     in order:
29    
30     =over 4
31    
32     =item ready
33    
34     Immediately after a request is created it is put into the ready state,
35     waiting for a thread to execute it.
36    
37     =item execute
38    
39     A thread has accepted the request for processing and is currently
40     executing it (e.g. blocking in read).
41    
42     =item pending
43    
44     The request has been executed and is waiting for result processing.
45    
46     While request submission and execution is fully asynchronous, result
47     processing is not and relies on the perl interpreter calling C<poll_cb>
48     (or another function with the same effect).
49    
50     =item result
51    
52     The request results are processed synchronously by C<poll_cb>.
53    
54     The C<poll_cb> function will process all outstanding aio requests by
55     calling their callbacks, freeing memory associated with them and managing
56     any groups they are contained in.
57    
58     =item done
59    
60     Request has reached the end of its lifetime and holds no resources anymore
61     (except possibly for the Perl object, but its connection to the actual
62     aio request is severed and calling its methods will either do nothing or
63     result in a runtime error).
64    
65     =back
66    
67     =cut
68    
69 root 1.2 package BDB;
70 root 1.1
71     no warnings;
72     use strict 'vars';
73    
74     use base 'Exporter';
75    
76     BEGIN {
77 root 1.11 our $VERSION = '1.0';
78 root 1.1
79 root 1.3 our @BDB_REQ = qw(
80 root 1.6 db_env_open db_env_close db_env_txn_checkpoint db_env_lock_detect
81     db_env_memp_sync db_env_memp_trickle
82     db_open db_close db_compact db_sync db_put db_get db_pget db_del db_key_range
83 root 1.4 db_txn_commit db_txn_abort
84 root 1.5 db_c_close db_c_count db_c_put db_c_get db_c_pget db_c_del
85 root 1.6 db_sequence_open db_sequence_close
86     db_sequence_get db_sequence_remove
87     );
88     our @EXPORT = (@BDB_REQ, qw(dbreq_pri dbreq_nice db_env_create db_create));
89     our @EXPORT_OK = qw(
90     poll_fileno poll_cb poll_wait flush
91     min_parallel max_parallel max_idle
92     nreqs nready npending nthreads
93     max_poll_time max_poll_reqs
94 root 1.3 );
95 root 1.1
96     require XSLoader;
97 root 1.2 XSLoader::load ("BDB", $VERSION);
98 root 1.1 }
99    
100 root 1.10 =head2 BERKELEYDB FUNCTIONS
101    
102     All of these are functions. The create functions simply return a new
103     object and never block. All the remaining functions all take an optional
104     callback as last argument. If it is missing, then the fucntion will be
105     executed synchronously.
106    
107     BDB functions that cannot block (mostly functions that manipulate
108     settings) are method calls on the relevant objects, so the rule of thumb
109     is: if its a method, its not blocking, if its a function, it takes a
110     callback as last argument.
111    
112     In the following, C<$int> signifies an integer return value,
113     C<octetstring> is a "binary string" (i.e. a perl string with no character
114     indices >255), C<U32> is an unsigned 32 bit integer, C<int> is some
115     integer, C<NV> is a floating point value.
116    
117     The C<SV *> types are generic perl scalars (for input and output of data
118     values), and the C<SV *callback> is the optional callback function to call
119     when the request is completed.
120    
121 root 1.11 The various C<DB_ENV> etc. arguments are handles return by
122     C<db_env_create>, C<db_create>, C<txn_begin> and so on. If they have an
123     appended C<_ornull> this means they are optional and you can pass C<undef>
124     for them, resulting a NULL pointer on the C level.
125 root 1.10
126     =head3 BDB functions
127    
128     Functions in the BDB namespace, exported by default:
129    
130     $env = db_env_create (U32 env_flags = 0)
131    
132     db_env_open (DB_ENV *env, octetstring db_home, U32 open_flags, int mode, SV *callback = &PL_sv_undef)
133     db_env_close (DB_ENV *env, U32 flags = 0, SV *callback = &PL_sv_undef)
134     db_env_txn_checkpoint (DB_ENV *env, U32 kbyte = 0, U32 min = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
135     db_env_lock_detect (DB_ENV *env, U32 flags = 0, U32 atype = DB_LOCK_DEFAULT, SV *dummy = 0, SV *callback = &PL_sv_undef)
136     db_env_memp_sync (DB_ENV *env, SV *dummy = 0, SV *callback = &PL_sv_undef)
137     db_env_memp_trickle (DB_ENV *env, int percent, SV *dummy = 0, SV *callback = &PL_sv_undef)
138    
139     $db = db_create (DB_ENV *env = 0, U32 flags = 0)
140    
141     db_open (DB *db, DB_TXN_ornull *txnid, octetstring file, octetstring database, int type, U32 flags, int mode, SV *callback = &PL_sv_undef)
142     db_close (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
143 root 1.12 db_compact (DB *db, DB_TXN_ornull *txn = 0, SV *start = 0, SV *stop = 0, SV *unused1 = 0, U32 flags = DB_FREE_SPACE, SV *unused2 = 0, SV *callback = &PL_sv_undef)
144 root 1.10 db_sync (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
145     db_key_range (DB *db, DB_TXN_ornull *txn, SV *key, SV *key_range, U32 flags = 0, SV *callback = &PL_sv_undef)
146     db_put (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
147     db_get (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
148     db_pget (DB *db, DB_TXN_ornull *txn, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
149     db_del (DB *db, DB_TXN_ornull *txn, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
150     db_txn_commit (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
151     db_txn_abort (DB_TXN *txn, SV *callback = &PL_sv_undef)
152     db_c_close (DBC *dbc, SV *callback = &PL_sv_undef)
153     db_c_count (DBC *dbc, SV *count, U32 flags = 0, SV *callback = &PL_sv_undef)
154     db_c_put (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
155     db_c_get (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
156     db_c_pget (DBC *dbc, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
157     db_c_del (DBC *dbc, U32 flags = 0, SV *callback = &PL_sv_undef)
158    
159     db_sequence_open (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
160     db_sequence_close (DB_SEQUENCE *seq, U32 flags = 0, SV *callback = &PL_sv_undef)
161     db_sequence_get (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, int delta, SV *seq_value, U32 flags = DB_TXN_NOSYNC, SV *callback = &PL_sv_undef)
162     db_sequence_remove (DB_SEQUENCE *seq, DB_TXN_ornull *txnid = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
163    
164    
165     =head3 DB_ENV/database environment methods
166    
167     Methods available on DB_ENV/$env handles:
168    
169     DESTROY (DB_ENV_ornull *env)
170     CODE:
171     if (env)
172     env->close (env, 0);
173    
174     $int = $env->set_data_dir (const char *dir)
175     $int = $env->set_tmp_dir (const char *dir)
176     $int = $env->set_lg_dir (const char *dir)
177     $int = $env->set_shm_key (long shm_key)
178     $int = $env->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
179     $int = $env->set_flags (U32 flags, int onoff)
180     $env->set_errfile (FILE *errfile = 0)
181     $env->set_msgfile (FILE *msgfile = 0)
182     $int = $env->set_verbose (U32 which, int onoff = 1)
183     $int = $env->set_encrypt (const char *password, U32 flags = 0)
184     $int = $env->set_timeout (NV timeout, U32 flags)
185     $int = $env->set_mp_max_openfd (int maxopenfd);
186     $int = $env->set_mp_max_write (int maxwrite, int maxwrite_sleep);
187     $int = $env->set_mp_mmapsize (int mmapsize_mb)
188     $int = $env->set_lk_detect (U32 detect = DB_LOCK_DEFAULT)
189     $int = $env->set_lk_max_lockers (U32 max)
190     $int = $env->set_lk_max_locks (U32 max)
191     $int = $env->set_lk_max_objects (U32 max)
192     $int = $env->set_lg_bsize (U32 max)
193     $int = $env->set_lg_max (U32 max)
194    
195     $txn = $env->txn_begin (DB_TXN_ornull *parent = 0, U32 flags = 0)
196    
197 root 1.12 =head4 Example:
198 root 1.10
199     use AnyEvent;
200     use BDB;
201    
202     our $FH; open $FH, "<&=" . BDB::poll_fileno;
203     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
204    
205     BDB::min_parallel 8;
206    
207     my $env = db_env_create;
208    
209     mkdir "bdtest", 0700;
210     db_env_open
211     $env,
212     "bdtest",
213     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
214     0600;
215    
216     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
217    
218    
219     =head3 DB/database methods
220    
221     Methods available on DB/$db handles:
222    
223     DESTROY (DB_ornull *db)
224     CODE:
225     if (db)
226     {
227     SV *env = (SV *)db->app_private;
228     db->close (db, 0);
229     SvREFCNT_dec (env);
230     }
231    
232     $int = $db->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
233     $int = $db->set_flags (U32 flags)
234     $int = $db->set_encrypt (const char *password, U32 flags)
235     $int = $db->set_lorder (int lorder)
236     $int = $db->set_bt_minkey (U32 minkey)
237     $int = $db->set_re_delim (int delim)
238     $int = $db->set_re_pad (int re_pad)
239     $int = $db->set_re_source (char *source)
240     $int = $db->set_re_len (U32 re_len)
241     $int = $db->set_h_ffactor (U32 h_ffactor)
242     $int = $db->set_h_nelem (U32 h_nelem)
243     $int = $db->set_q_extentsize (U32 extentsize)
244    
245     $dbc = $db->cursor (DB_TXN_ornull *txn = 0, U32 flags = 0)
246     $seq = $db->sequence (U32 flags = 0)
247    
248 root 1.12 =head4 Example:
249 root 1.10
250     my $db = db_create $env;
251     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE | BDB::READ_UNCOMMITTED, 0600;
252    
253     for (1..1000) {
254     db_put $db, undef, "key $_", "data $_";
255    
256     db_key_range $db, undef, "key $_", my $keyrange;
257     my ($lt, $eq, $gt) = @$keyrange;
258     }
259    
260     db_del $db, undef, "key $_" for 1..1000;
261    
262     db_sync $db;
263    
264    
265     =head3 DB_TXN/transaction methods
266    
267     Methods available on DB_TXN/$txn handles:
268    
269     DESTROY (DB_TXN_ornull *txn)
270     CODE:
271     if (txn)
272     txn->abort (txn);
273    
274     $int = $txn->set_timeout (NV timeout, U32 flags)
275    
276    
277     =head3 DBC/cursor methods
278    
279     Methods available on DBC/$dbc handles:
280    
281     DESTROY (DBC_ornull *dbc)
282     CODE:
283     if (dbc)
284     dbc->c_close (dbc);
285    
286 root 1.12 =head4 Example:
287 root 1.10
288     my $c = $db->cursor;
289    
290     for (;;) {
291     db_c_get $c, my $key, my $data, BDB::NEXT;
292     warn "<$!,$key,$data>";
293     last if $!;
294     }
295    
296     db_c_close $c;
297    
298 root 1.12
299 root 1.10 =head3 DB_SEQUENCE/sequence methods
300    
301     Methods available on DB_SEQUENCE/$seq handles:
302    
303     DESTROY (DB_SEQUENCE_ornull *seq)
304     CODE:
305     if (seq)
306     seq->close (seq, 0);
307    
308     $int = $seq->initial_value (db_seq_t value)
309     $int = $seq->set_cachesize (U32 size)
310     $int = $seq->set_flags (U32 flags)
311     $int = $seq->set_range (db_seq_t min, db_seq_t max)
312    
313 root 1.12 =head4 Example:
314 root 1.10
315     my $seq = $db->sequence;
316    
317     db_sequence_open $seq, undef, "seq", BDB::CREATE;
318     db_sequence_get $seq, undef, 1, my $value;
319    
320    
321 root 1.1 =head2 SUPPORT FUNCTIONS
322    
323     =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
324    
325     =over 4
326    
327 root 1.2 =item $fileno = BDB::poll_fileno
328 root 1.1
329     Return the I<request result pipe file descriptor>. This filehandle must be
330     polled for reading by some mechanism outside this module (e.g. Event or
331     select, see below or the SYNOPSIS). If the pipe becomes readable you have
332     to call C<poll_cb> to check the results.
333    
334     See C<poll_cb> for an example.
335    
336 root 1.2 =item BDB::poll_cb
337 root 1.1
338     Process some outstanding events on the result pipe. You have to call this
339     regularly. Returns the number of events processed. Returns immediately
340     when no events are outstanding. The amount of events processed depends on
341 root 1.2 the settings of C<BDB::max_poll_req> and C<BDB::max_poll_time>.
342 root 1.1
343     If not all requests were processed for whatever reason, the filehandle
344     will still be ready when C<poll_cb> returns.
345    
346     Example: Install an Event watcher that automatically calls
347 root 1.2 BDB::poll_cb with high priority:
348 root 1.1
349 root 1.2 Event->io (fd => BDB::poll_fileno,
350 root 1.1 poll => 'r', async => 1,
351 root 1.2 cb => \&BDB::poll_cb);
352 root 1.1
353 root 1.2 =item BDB::max_poll_reqs $nreqs
354 root 1.1
355 root 1.2 =item BDB::max_poll_time $seconds
356 root 1.1
357     These set the maximum number of requests (default C<0>, meaning infinity)
358 root 1.2 that are being processed by C<BDB::poll_cb> in one call, respectively
359 root 1.1 the maximum amount of time (default C<0>, meaning infinity) spent in
360 root 1.2 C<BDB::poll_cb> to process requests (more correctly the mininum amount
361 root 1.1 of time C<poll_cb> is allowed to use).
362    
363     Setting C<max_poll_time> to a non-zero value creates an overhead of one
364     syscall per request processed, which is not normally a problem unless your
365     callbacks are really really fast or your OS is really really slow (I am
366     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
367    
368     Setting these is useful if you want to ensure some level of
369     interactiveness when perl is not fast enough to process all requests in
370     time.
371    
372     For interactive programs, values such as C<0.01> to C<0.1> should be fine.
373    
374     Example: Install an Event watcher that automatically calls
375 root 1.2 BDB::poll_cb with low priority, to ensure that other parts of the
376 root 1.1 program get the CPU sometimes even under high AIO load.
377    
378     # try not to spend much more than 0.1s in poll_cb
379 root 1.2 BDB::max_poll_time 0.1;
380 root 1.1
381     # use a low priority so other tasks have priority
382 root 1.2 Event->io (fd => BDB::poll_fileno,
383 root 1.1 poll => 'r', nice => 1,
384 root 1.2 cb => &BDB::poll_cb);
385 root 1.1
386 root 1.2 =item BDB::poll_wait
387 root 1.1
388     If there are any outstanding requests and none of them in the result
389     phase, wait till the result filehandle becomes ready for reading (simply
390     does a C<select> on the filehandle. This is useful if you want to
391     synchronously wait for some requests to finish).
392    
393     See C<nreqs> for an example.
394    
395 root 1.2 =item BDB::poll
396 root 1.1
397     Waits until some requests have been handled.
398    
399     Returns the number of requests processed, but is otherwise strictly
400     equivalent to:
401    
402 root 1.2 BDB::poll_wait, BDB::poll_cb
403 root 1.1
404 root 1.2 =item BDB::flush
405 root 1.1
406     Wait till all outstanding AIO requests have been handled.
407    
408     Strictly equivalent to:
409    
410 root 1.2 BDB::poll_wait, BDB::poll_cb
411     while BDB::nreqs;
412 root 1.1
413 root 1.8 =back
414    
415 root 1.1 =head3 CONTROLLING THE NUMBER OF THREADS
416    
417 root 1.8 =over 4
418    
419 root 1.2 =item BDB::min_parallel $nthreads
420 root 1.1
421     Set the minimum number of AIO threads to C<$nthreads>. The current
422     default is C<8>, which means eight asynchronous operations can execute
423     concurrently at any one time (the number of outstanding requests,
424     however, is unlimited).
425    
426 root 1.2 BDB starts threads only on demand, when an AIO request is queued and
427 root 1.1 no free thread exists. Please note that queueing up a hundred requests can
428     create demand for a hundred threads, even if it turns out that everything
429     is in the cache and could have been processed faster by a single thread.
430    
431     It is recommended to keep the number of threads relatively low, as some
432     Linux kernel versions will scale negatively with the number of threads
433     (higher parallelity => MUCH higher latency). With current Linux 2.6
434     versions, 4-32 threads should be fine.
435    
436     Under most circumstances you don't need to call this function, as the
437     module selects a default that is suitable for low to moderate load.
438    
439 root 1.2 =item BDB::max_parallel $nthreads
440 root 1.1
441     Sets the maximum number of AIO threads to C<$nthreads>. If more than the
442     specified number of threads are currently running, this function kills
443     them. This function blocks until the limit is reached.
444    
445     While C<$nthreads> are zero, aio requests get queued but not executed
446     until the number of threads has been increased again.
447    
448     This module automatically runs C<max_parallel 0> at program end, to ensure
449     that all threads are killed and that there are no outstanding requests.
450    
451     Under normal circumstances you don't need to call this function.
452    
453 root 1.2 =item BDB::max_idle $nthreads
454 root 1.1
455     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
456     threads that did not get a request to process within 10 seconds). That
457     means if a thread becomes idle while C<$nthreads> other threads are also
458     idle, it will free its resources and exit.
459    
460     This is useful when you allow a large number of threads (e.g. 100 or 1000)
461     to allow for extremely high load situations, but want to free resources
462     under normal circumstances (1000 threads can easily consume 30MB of RAM).
463    
464     The default is probably ok in most situations, especially if thread
465     creation is fast. If thread creation is very slow on your system you might
466     want to use larger values.
467    
468 root 1.2 =item $oldmaxreqs = BDB::max_outstanding $maxreqs
469 root 1.1
470     This is a very bad function to use in interactive programs because it
471     blocks, and a bad way to reduce concurrency because it is inexact: Better
472     use an C<aio_group> together with a feed callback.
473    
474     Sets the maximum number of outstanding requests to C<$nreqs>. If you
475     to queue up more than this number of requests, the next call to the
476     C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
477     function will block until the limit is no longer exceeded.
478    
479     The default value is very large, so there is no practical limit on the
480     number of outstanding requests.
481    
482     You can still queue as many requests as you want. Therefore,
483     C<max_oustsanding> is mainly useful in simple scripts (with low values) or
484     as a stop gap to shield against fatal memory overflow (with large values).
485    
486 root 1.3 =item BDB::set_sync_prepare $cb
487    
488     Sets a callback that is called whenever a request is created without an
489     explicit callback. It has to return two code references. The first is used
490     as the request callback, and the second is called to wait until the first
491     callback has been called. The default implementation works like this:
492    
493     sub {
494     my $status;
495     (
496     sub { $status = $! },
497     sub { BDB::poll while !defined $status; $! = $status },
498     )
499     }
500    
501     =back
502    
503 root 1.1 =head3 STATISTICAL INFORMATION
504    
505 root 1.3 =over 4
506    
507 root 1.2 =item BDB::nreqs
508 root 1.1
509     Returns the number of requests currently in the ready, execute or pending
510     states (i.e. for which their callback has not been invoked yet).
511    
512     Example: wait till there are no outstanding requests anymore:
513    
514 root 1.2 BDB::poll_wait, BDB::poll_cb
515     while BDB::nreqs;
516 root 1.1
517 root 1.2 =item BDB::nready
518 root 1.1
519     Returns the number of requests currently in the ready state (not yet
520     executed).
521    
522 root 1.2 =item BDB::npending
523 root 1.1
524     Returns the number of requests currently in the pending state (executed,
525     but not yet processed by poll_cb).
526    
527     =back
528    
529     =cut
530    
531 root 1.3 set_sync_prepare {
532     my $status;
533     (
534     sub {
535     $status = $!;
536     },
537     sub {
538     BDB::poll while !defined $status;
539     $! = $status;
540     },
541     )
542     };
543    
544 root 1.1 min_parallel 8;
545    
546     END { flush }
547    
548     1;
549    
550     =head2 FORK BEHAVIOUR
551    
552     This module should do "the right thing" when the process using it forks:
553    
554     Before the fork, IO::AIO enters a quiescent state where no requests
555     can be added in other threads and no results will be processed. After
556     the fork the parent simply leaves the quiescent state and continues
557     request/result processing, while the child frees the request/result queue
558     (so that the requests started before the fork will only be handled in the
559     parent). Threads will be started on demand until the limit set in the
560     parent process has been reached again.
561    
562     In short: the parent will, after a short pause, continue as if fork had
563     not been called, while the child will act as if IO::AIO has not been used
564     yet.
565    
566     =head2 MEMORY USAGE
567    
568     Per-request usage:
569    
570     Each aio request uses - depending on your architecture - around 100-200
571     bytes of memory. In addition, stat requests need a stat buffer (possibly
572     a few hundred bytes), readdir requires a result buffer and so on. Perl
573     scalars and other data passed into aio requests will also be locked and
574     will consume memory till the request has entered the done state.
575    
576     This is now awfully much, so queuing lots of requests is not usually a
577     problem.
578    
579     Per-thread usage:
580    
581     In the execution phase, some aio requests require more memory for
582     temporary buffers, and each thread requires a stack and other data
583     structures (usually around 16k-128k, depending on the OS).
584    
585     =head1 KNOWN BUGS
586    
587     Known bugs will be fixed in the next release.
588    
589     =head1 SEE ALSO
590    
591     L<Coro::AIO>.
592    
593     =head1 AUTHOR
594    
595     Marc Lehmann <schmorp@schmorp.de>
596     http://home.schmorp.de/
597    
598     =cut
599