ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/BDB/BDB.pm
Revision: 1.19
Committed: Wed Dec 5 13:01:46 2007 UTC (16 years, 5 months ago) by root
Branch: MAIN
Changes since 1.18: +35 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.2 BDB - Asynchronous Berkeley DB access
4 root 1.1
5     =head1 SYNOPSIS
6    
7 root 1.2 use BDB;
8 root 1.1
9 root 1.19 my $env = db_env_create;
10    
11     mkdir "bdtest", 0700;
12     db_env_open
13     $env,
14     "bdtest",
15     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL
16     | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
17     0600;
18    
19     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
20    
21     my $db = db_create $env;
22     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE
23     | BDB::READ_UNCOMMITTED, 0600;
24     db_put $db, undef, "key", "data", 0, sub {
25     db_del $db, undef, "key";
26     };
27     db_sync $db;
28    
29     # automatic result processing with AnyEvent:
30     our $FH; open $FH, "<&=" . BDB::poll_fileno;
31     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
32    
33     # automatic result processing with EV:
34     my $WATCHER = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb;
35    
36     # with Glib:
37     add_watch Glib::IO BDB::poll_fileno,
38     in => sub { BDB::poll_cb; 1 };
39    
40     # or simply flush manually
41     BDB::flush;
42    
43    
44 root 1.1 =head1 DESCRIPTION
45    
46 root 1.10 See the BerkeleyDB documentation (L<http://www.oracle.com/technology/documentation/berkeley-db/db/index.html>).
47 root 1.12 The BDB API is very similar to the C API (the translation has been very faithful).
48 root 1.10
49     See also the example sections in the document below and possibly the eg/
50     subdirectory of the BDB distribution. Last not least see the IO::AIO
51     documentation, as that module uses almost the same asynchronous request
52     model as this module.
53    
54     I know this is woefully inadequate documentation. Send a patch!
55 root 1.7
56 root 1.1
57     =head1 REQUEST ANATOMY AND LIFETIME
58    
59     Every request method creates a request. which is a C data structure not
60     directly visible to Perl.
61    
62     During their existance, bdb requests travel through the following states,
63     in order:
64    
65     =over 4
66    
67     =item ready
68    
69     Immediately after a request is created it is put into the ready state,
70     waiting for a thread to execute it.
71    
72     =item execute
73    
74     A thread has accepted the request for processing and is currently
75     executing it (e.g. blocking in read).
76    
77     =item pending
78    
79     The request has been executed and is waiting for result processing.
80    
81     While request submission and execution is fully asynchronous, result
82     processing is not and relies on the perl interpreter calling C<poll_cb>
83     (or another function with the same effect).
84    
85     =item result
86    
87     The request results are processed synchronously by C<poll_cb>.
88    
89     The C<poll_cb> function will process all outstanding aio requests by
90     calling their callbacks, freeing memory associated with them and managing
91     any groups they are contained in.
92    
93     =item done
94    
95     Request has reached the end of its lifetime and holds no resources anymore
96     (except possibly for the Perl object, but its connection to the actual
97     aio request is severed and calling its methods will either do nothing or
98     result in a runtime error).
99    
100     =back
101    
102     =cut
103    
104 root 1.2 package BDB;
105 root 1.1
106     no warnings;
107     use strict 'vars';
108    
109     use base 'Exporter';
110    
111     BEGIN {
112 root 1.17 our $VERSION = '1.2';
113 root 1.1
114 root 1.3 our @BDB_REQ = qw(
115 root 1.6 db_env_open db_env_close db_env_txn_checkpoint db_env_lock_detect
116     db_env_memp_sync db_env_memp_trickle
117     db_open db_close db_compact db_sync db_put db_get db_pget db_del db_key_range
118 root 1.15 db_txn_commit db_txn_abort db_txn_finish
119 root 1.5 db_c_close db_c_count db_c_put db_c_get db_c_pget db_c_del
120 root 1.6 db_sequence_open db_sequence_close
121     db_sequence_get db_sequence_remove
122     );
123     our @EXPORT = (@BDB_REQ, qw(dbreq_pri dbreq_nice db_env_create db_create));
124     our @EXPORT_OK = qw(
125     poll_fileno poll_cb poll_wait flush
126     min_parallel max_parallel max_idle
127     nreqs nready npending nthreads
128     max_poll_time max_poll_reqs
129 root 1.3 );
130 root 1.1
131     require XSLoader;
132 root 1.2 XSLoader::load ("BDB", $VERSION);
133 root 1.1 }
134    
135 root 1.10 =head2 BERKELEYDB FUNCTIONS
136    
137     All of these are functions. The create functions simply return a new
138     object and never block. All the remaining functions all take an optional
139     callback as last argument. If it is missing, then the fucntion will be
140     executed synchronously.
141    
142     BDB functions that cannot block (mostly functions that manipulate
143     settings) are method calls on the relevant objects, so the rule of thumb
144     is: if its a method, its not blocking, if its a function, it takes a
145     callback as last argument.
146    
147     In the following, C<$int> signifies an integer return value,
148     C<octetstring> is a "binary string" (i.e. a perl string with no character
149     indices >255), C<U32> is an unsigned 32 bit integer, C<int> is some
150     integer, C<NV> is a floating point value.
151    
152     The C<SV *> types are generic perl scalars (for input and output of data
153     values), and the C<SV *callback> is the optional callback function to call
154     when the request is completed.
155    
156 root 1.11 The various C<DB_ENV> etc. arguments are handles return by
157     C<db_env_create>, C<db_create>, C<txn_begin> and so on. If they have an
158     appended C<_ornull> this means they are optional and you can pass C<undef>
159     for them, resulting a NULL pointer on the C level.
160 root 1.10
161     =head3 BDB functions
162    
163     Functions in the BDB namespace, exported by default:
164    
165     $env = db_env_create (U32 env_flags = 0)
166 root 1.14 flags: RPCCLIENT
167 root 1.10
168     db_env_open (DB_ENV *env, octetstring db_home, U32 open_flags, int mode, SV *callback = &PL_sv_undef)
169 root 1.14 open_flags: INIT_CDB INIT_LOCK INIT_LOG INIT_MPOOL INIT_REP INIT_TXN RECOVER RECOVER_FATAL USE_ENVIRON USE_ENVIRON_ROOT CREATE LOCKDOWN PRIVATE REGISTER SYSTEM_MEM
170 root 1.10 db_env_close (DB_ENV *env, U32 flags = 0, SV *callback = &PL_sv_undef)
171     db_env_txn_checkpoint (DB_ENV *env, U32 kbyte = 0, U32 min = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
172 root 1.14 flags: FORCE
173 root 1.10 db_env_lock_detect (DB_ENV *env, U32 flags = 0, U32 atype = DB_LOCK_DEFAULT, SV *dummy = 0, SV *callback = &PL_sv_undef)
174 root 1.14 atype: LOCK_DEFAULT LOCK_EXPIRE LOCK_MAXLOCKS LOCK_MAXWRITE LOCK_MINLOCKS LOCK_MINWRITE LOCK_OLDEST LOCK_RANDOM LOCK_YOUNGEST
175 root 1.10 db_env_memp_sync (DB_ENV *env, SV *dummy = 0, SV *callback = &PL_sv_undef)
176     db_env_memp_trickle (DB_ENV *env, int percent, SV *dummy = 0, SV *callback = &PL_sv_undef)
177    
178     $db = db_create (DB_ENV *env = 0, U32 flags = 0)
179 root 1.14 flags: XA_CREATE
180 root 1.10
181     db_open (DB *db, DB_TXN_ornull *txnid, octetstring file, octetstring database, int type, U32 flags, int mode, SV *callback = &PL_sv_undef)
182 root 1.14 flags: AUTO_COMMIT CREATE EXCL MULTIVERSION NOMMAP RDONLY READ_UNCOMMITTED THREAD TRUNCATE
183 root 1.10 db_close (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
184 root 1.14 flags: DB_NOSYNC
185 root 1.12 db_compact (DB *db, DB_TXN_ornull *txn = 0, SV *start = 0, SV *stop = 0, SV *unused1 = 0, U32 flags = DB_FREE_SPACE, SV *unused2 = 0, SV *callback = &PL_sv_undef)
186 root 1.14 flags: FREELIST_ONLY FREE_SPACE
187 root 1.10 db_sync (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
188     db_key_range (DB *db, DB_TXN_ornull *txn, SV *key, SV *key_range, U32 flags = 0, SV *callback = &PL_sv_undef)
189     db_put (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
190 root 1.14 flags: APPEND NODUPDATA NOOVERWRITE
191 root 1.10 db_get (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
192 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
193 root 1.10 db_pget (DB *db, DB_TXN_ornull *txn, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
194 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
195 root 1.10 db_del (DB *db, DB_TXN_ornull *txn, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
196     db_txn_commit (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
197 root 1.14 flags: TXN_NOSYNC TXN_SYNC
198 root 1.10 db_txn_abort (DB_TXN *txn, SV *callback = &PL_sv_undef)
199 root 1.14
200 root 1.10 db_c_close (DBC *dbc, SV *callback = &PL_sv_undef)
201     db_c_count (DBC *dbc, SV *count, U32 flags = 0, SV *callback = &PL_sv_undef)
202     db_c_put (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
203 root 1.14 flags: AFTER BEFORE CURRENT KEYFIRST KEYLAST NODUPDATA
204 root 1.10 db_c_get (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
205 root 1.14 flags: CURRENT FIRST GET_BOTH GET_BOTH_RANGE GET_RECNO JOIN_ITEM LAST NEXT NEXT_DUP NEXT_NODUP PREV PREV_DUP PREV_NODUP SET SET_RANGE SET_RECNO READ_UNCOMMITTED MULTIPLE MULTIPLE_KEY RMW
206 root 1.10 db_c_pget (DBC *dbc, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
207     db_c_del (DBC *dbc, U32 flags = 0, SV *callback = &PL_sv_undef)
208    
209     db_sequence_open (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
210 root 1.14 flags: CREATE EXCL
211 root 1.10 db_sequence_close (DB_SEQUENCE *seq, U32 flags = 0, SV *callback = &PL_sv_undef)
212     db_sequence_get (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, int delta, SV *seq_value, U32 flags = DB_TXN_NOSYNC, SV *callback = &PL_sv_undef)
213 root 1.14 flags: TXN_NOSYNC
214 root 1.10 db_sequence_remove (DB_SEQUENCE *seq, DB_TXN_ornull *txnid = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
215 root 1.14 flags: TXN_NOSYNC
216 root 1.10
217 root 1.15 =head4 db_txn_finish (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
218    
219 root 1.16 This is not actually a Berkeley DB function but a BDB module
220     extension. The background for this exytension is: It is very annoying to
221     have to check every single BDB function for error returns and provide a
222     codepath out of your transaction. While the BDB module still makes this
223     possible, it contains the following extensions:
224 root 1.15
225     When a transaction-protected function returns any operating system
226     error (errno > 0), BDB will set the C<TXN_DEADLOCK> flag on the
227 root 1.16 transaction. This flag is also set by Berkeley DB functions themselves
228 root 1.15 when an operation fails with LOCK_DEADLOCK, and it causes all further
229     operations on that transaction (including C<db_txn_commit>) to fail.
230    
231     The C<db_txn_finish> request will look at this flag, and, if it is set,
232     will automatically call C<db_txn_abort> (setting errno to C<LOCK_DEADLOCK>
233 root 1.16 if it isn't set to something else yet). If it isn't set, it will call
234     C<db_txn_commit> and return the error normally.
235 root 1.15
236     How to use this? Easy: just write your transaction normally:
237    
238     my $txn = $db_env->txn_begin;
239     db_get $db, $txn, "key", my $data;
240     db_put $db, $txn, "key", $data + 1 unless $! == BDB::NOTFOUND;
241     db_txn_finish $txn;
242     die "transaction failed" if $!;
243    
244     That is, handle only the expected errors. If something unexpected happens
245     (EIO, LOCK_NOTGRANTED or a deadlock in either db_get or db_put), then the remaining
246     requests (db_put in this case) will simply be skipped (they will fail with
247     LOCK_DEADLOCK) and the transaction will be aborted.
248    
249 root 1.16 You can use the C<< $txn->failed >> method to check wether a transaction
250 root 1.15 has failed in this way and abort further processing (excluding
251     C<db_txn_finish>).
252    
253 root 1.10 =head3 DB_ENV/database environment methods
254    
255     Methods available on DB_ENV/$env handles:
256    
257     DESTROY (DB_ENV_ornull *env)
258     CODE:
259     if (env)
260     env->close (env, 0);
261    
262     $int = $env->set_data_dir (const char *dir)
263     $int = $env->set_tmp_dir (const char *dir)
264     $int = $env->set_lg_dir (const char *dir)
265     $int = $env->set_shm_key (long shm_key)
266     $int = $env->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
267     $int = $env->set_flags (U32 flags, int onoff)
268     $env->set_errfile (FILE *errfile = 0)
269     $env->set_msgfile (FILE *msgfile = 0)
270     $int = $env->set_verbose (U32 which, int onoff = 1)
271     $int = $env->set_encrypt (const char *password, U32 flags = 0)
272 root 1.15 $int = $env->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
273 root 1.10 $int = $env->set_mp_max_openfd (int maxopenfd);
274     $int = $env->set_mp_max_write (int maxwrite, int maxwrite_sleep);
275     $int = $env->set_mp_mmapsize (int mmapsize_mb)
276     $int = $env->set_lk_detect (U32 detect = DB_LOCK_DEFAULT)
277     $int = $env->set_lk_max_lockers (U32 max)
278     $int = $env->set_lk_max_locks (U32 max)
279     $int = $env->set_lk_max_objects (U32 max)
280     $int = $env->set_lg_bsize (U32 max)
281     $int = $env->set_lg_max (U32 max)
282    
283     $txn = $env->txn_begin (DB_TXN_ornull *parent = 0, U32 flags = 0)
284 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED TXN_NOSYNC TXN_NOWAIT TXN_SNAPSHOT TXN_SYNC TXN_WAIT TXN_WRITE_NOSYNC
285 root 1.10
286 root 1.12 =head4 Example:
287 root 1.10
288     use AnyEvent;
289     use BDB;
290    
291     our $FH; open $FH, "<&=" . BDB::poll_fileno;
292     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
293    
294     BDB::min_parallel 8;
295    
296     my $env = db_env_create;
297    
298     mkdir "bdtest", 0700;
299     db_env_open
300     $env,
301     "bdtest",
302     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
303     0600;
304    
305     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
306    
307    
308     =head3 DB/database methods
309    
310     Methods available on DB/$db handles:
311    
312     DESTROY (DB_ornull *db)
313     CODE:
314     if (db)
315     {
316     SV *env = (SV *)db->app_private;
317     db->close (db, 0);
318     SvREFCNT_dec (env);
319     }
320    
321     $int = $db->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
322     $int = $db->set_flags (U32 flags)
323 root 1.14 flags: CHKSUM ENCRYPT TXN_NOT_DURABLE
324     Btree: DUP DUPSORT RECNUM REVSPLITOFF
325     Hash: DUP DUPSORT
326     Queue: INORDER
327     Recno: RENUMBER SNAPSHOT
328    
329 root 1.10 $int = $db->set_encrypt (const char *password, U32 flags)
330     $int = $db->set_lorder (int lorder)
331     $int = $db->set_bt_minkey (U32 minkey)
332     $int = $db->set_re_delim (int delim)
333     $int = $db->set_re_pad (int re_pad)
334     $int = $db->set_re_source (char *source)
335     $int = $db->set_re_len (U32 re_len)
336     $int = $db->set_h_ffactor (U32 h_ffactor)
337     $int = $db->set_h_nelem (U32 h_nelem)
338     $int = $db->set_q_extentsize (U32 extentsize)
339    
340     $dbc = $db->cursor (DB_TXN_ornull *txn = 0, U32 flags = 0)
341 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED WRITECURSOR TXN_SNAPSHOT
342 root 1.10 $seq = $db->sequence (U32 flags = 0)
343    
344 root 1.12 =head4 Example:
345 root 1.10
346     my $db = db_create $env;
347     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE | BDB::READ_UNCOMMITTED, 0600;
348    
349     for (1..1000) {
350     db_put $db, undef, "key $_", "data $_";
351    
352     db_key_range $db, undef, "key $_", my $keyrange;
353     my ($lt, $eq, $gt) = @$keyrange;
354     }
355    
356     db_del $db, undef, "key $_" for 1..1000;
357    
358     db_sync $db;
359    
360    
361     =head3 DB_TXN/transaction methods
362    
363     Methods available on DB_TXN/$txn handles:
364    
365     DESTROY (DB_TXN_ornull *txn)
366     CODE:
367     if (txn)
368     txn->abort (txn);
369    
370 root 1.15 $int = $txn->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
371 root 1.14 flags: SET_LOCK_TIMEOUT SET_TXN_TIMEOUT
372 root 1.10
373 root 1.15 $bool = $txn->failed
374     # see db_txn_finish documentation, above
375    
376 root 1.10
377     =head3 DBC/cursor methods
378    
379     Methods available on DBC/$dbc handles:
380    
381     DESTROY (DBC_ornull *dbc)
382     CODE:
383     if (dbc)
384     dbc->c_close (dbc);
385    
386 root 1.12 =head4 Example:
387 root 1.10
388     my $c = $db->cursor;
389    
390     for (;;) {
391     db_c_get $c, my $key, my $data, BDB::NEXT;
392     warn "<$!,$key,$data>";
393     last if $!;
394     }
395    
396     db_c_close $c;
397    
398 root 1.12
399 root 1.10 =head3 DB_SEQUENCE/sequence methods
400    
401     Methods available on DB_SEQUENCE/$seq handles:
402    
403     DESTROY (DB_SEQUENCE_ornull *seq)
404     CODE:
405     if (seq)
406     seq->close (seq, 0);
407    
408     $int = $seq->initial_value (db_seq_t value)
409     $int = $seq->set_cachesize (U32 size)
410     $int = $seq->set_flags (U32 flags)
411 root 1.14 flags: SEQ_DEC SEQ_INC SEQ_WRAP
412 root 1.10 $int = $seq->set_range (db_seq_t min, db_seq_t max)
413    
414 root 1.12 =head4 Example:
415 root 1.10
416     my $seq = $db->sequence;
417    
418     db_sequence_open $seq, undef, "seq", BDB::CREATE;
419     db_sequence_get $seq, undef, 1, my $value;
420    
421    
422 root 1.1 =head2 SUPPORT FUNCTIONS
423    
424     =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
425    
426     =over 4
427    
428 root 1.2 =item $fileno = BDB::poll_fileno
429 root 1.1
430     Return the I<request result pipe file descriptor>. This filehandle must be
431     polled for reading by some mechanism outside this module (e.g. Event or
432     select, see below or the SYNOPSIS). If the pipe becomes readable you have
433     to call C<poll_cb> to check the results.
434    
435     See C<poll_cb> for an example.
436    
437 root 1.2 =item BDB::poll_cb
438 root 1.1
439     Process some outstanding events on the result pipe. You have to call this
440     regularly. Returns the number of events processed. Returns immediately
441     when no events are outstanding. The amount of events processed depends on
442 root 1.2 the settings of C<BDB::max_poll_req> and C<BDB::max_poll_time>.
443 root 1.1
444     If not all requests were processed for whatever reason, the filehandle
445     will still be ready when C<poll_cb> returns.
446    
447     Example: Install an Event watcher that automatically calls
448 root 1.2 BDB::poll_cb with high priority:
449 root 1.1
450 root 1.2 Event->io (fd => BDB::poll_fileno,
451 root 1.1 poll => 'r', async => 1,
452 root 1.2 cb => \&BDB::poll_cb);
453 root 1.1
454 root 1.2 =item BDB::max_poll_reqs $nreqs
455 root 1.1
456 root 1.2 =item BDB::max_poll_time $seconds
457 root 1.1
458     These set the maximum number of requests (default C<0>, meaning infinity)
459 root 1.2 that are being processed by C<BDB::poll_cb> in one call, respectively
460 root 1.1 the maximum amount of time (default C<0>, meaning infinity) spent in
461 root 1.2 C<BDB::poll_cb> to process requests (more correctly the mininum amount
462 root 1.1 of time C<poll_cb> is allowed to use).
463    
464     Setting C<max_poll_time> to a non-zero value creates an overhead of one
465     syscall per request processed, which is not normally a problem unless your
466     callbacks are really really fast or your OS is really really slow (I am
467     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
468    
469     Setting these is useful if you want to ensure some level of
470     interactiveness when perl is not fast enough to process all requests in
471     time.
472    
473     For interactive programs, values such as C<0.01> to C<0.1> should be fine.
474    
475 root 1.18 Example: Install an EV watcher that automatically calls
476 root 1.2 BDB::poll_cb with low priority, to ensure that other parts of the
477 root 1.18 program get the CPU sometimes even under high load.
478 root 1.1
479     # try not to spend much more than 0.1s in poll_cb
480 root 1.2 BDB::max_poll_time 0.1;
481 root 1.1
482 root 1.18 my $bdb_poll = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb);
483 root 1.1
484 root 1.2 =item BDB::poll_wait
485 root 1.1
486     If there are any outstanding requests and none of them in the result
487     phase, wait till the result filehandle becomes ready for reading (simply
488     does a C<select> on the filehandle. This is useful if you want to
489     synchronously wait for some requests to finish).
490    
491     See C<nreqs> for an example.
492    
493 root 1.2 =item BDB::poll
494 root 1.1
495     Waits until some requests have been handled.
496    
497     Returns the number of requests processed, but is otherwise strictly
498     equivalent to:
499    
500 root 1.2 BDB::poll_wait, BDB::poll_cb
501 root 1.1
502 root 1.2 =item BDB::flush
503 root 1.1
504 root 1.18 Wait till all outstanding BDB requests have been handled.
505 root 1.1
506     Strictly equivalent to:
507    
508 root 1.2 BDB::poll_wait, BDB::poll_cb
509     while BDB::nreqs;
510 root 1.1
511 root 1.8 =back
512    
513 root 1.1 =head3 CONTROLLING THE NUMBER OF THREADS
514    
515 root 1.8 =over 4
516    
517 root 1.2 =item BDB::min_parallel $nthreads
518 root 1.1
519 root 1.18 Set the minimum number of BDB threads to C<$nthreads>. The current
520 root 1.1 default is C<8>, which means eight asynchronous operations can execute
521     concurrently at any one time (the number of outstanding requests,
522     however, is unlimited).
523    
524 root 1.18 BDB starts threads only on demand, when an BDB request is queued and
525 root 1.1 no free thread exists. Please note that queueing up a hundred requests can
526     create demand for a hundred threads, even if it turns out that everything
527     is in the cache and could have been processed faster by a single thread.
528    
529     It is recommended to keep the number of threads relatively low, as some
530     Linux kernel versions will scale negatively with the number of threads
531     (higher parallelity => MUCH higher latency). With current Linux 2.6
532     versions, 4-32 threads should be fine.
533    
534     Under most circumstances you don't need to call this function, as the
535     module selects a default that is suitable for low to moderate load.
536    
537 root 1.2 =item BDB::max_parallel $nthreads
538 root 1.1
539 root 1.18 Sets the maximum number of BDB threads to C<$nthreads>. If more than the
540 root 1.1 specified number of threads are currently running, this function kills
541     them. This function blocks until the limit is reached.
542    
543     While C<$nthreads> are zero, aio requests get queued but not executed
544     until the number of threads has been increased again.
545    
546     This module automatically runs C<max_parallel 0> at program end, to ensure
547     that all threads are killed and that there are no outstanding requests.
548    
549     Under normal circumstances you don't need to call this function.
550    
551 root 1.2 =item BDB::max_idle $nthreads
552 root 1.1
553     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
554     threads that did not get a request to process within 10 seconds). That
555     means if a thread becomes idle while C<$nthreads> other threads are also
556     idle, it will free its resources and exit.
557    
558     This is useful when you allow a large number of threads (e.g. 100 or 1000)
559     to allow for extremely high load situations, but want to free resources
560     under normal circumstances (1000 threads can easily consume 30MB of RAM).
561    
562     The default is probably ok in most situations, especially if thread
563     creation is fast. If thread creation is very slow on your system you might
564     want to use larger values.
565    
566 root 1.2 =item $oldmaxreqs = BDB::max_outstanding $maxreqs
567 root 1.1
568     This is a very bad function to use in interactive programs because it
569     blocks, and a bad way to reduce concurrency because it is inexact: Better
570     use an C<aio_group> together with a feed callback.
571    
572     Sets the maximum number of outstanding requests to C<$nreqs>. If you
573     to queue up more than this number of requests, the next call to the
574     C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
575     function will block until the limit is no longer exceeded.
576    
577     The default value is very large, so there is no practical limit on the
578     number of outstanding requests.
579    
580     You can still queue as many requests as you want. Therefore,
581     C<max_oustsanding> is mainly useful in simple scripts (with low values) or
582     as a stop gap to shield against fatal memory overflow (with large values).
583    
584 root 1.3 =item BDB::set_sync_prepare $cb
585    
586     Sets a callback that is called whenever a request is created without an
587     explicit callback. It has to return two code references. The first is used
588     as the request callback, and the second is called to wait until the first
589     callback has been called. The default implementation works like this:
590    
591     sub {
592     my $status;
593     (
594     sub { $status = $! },
595     sub { BDB::poll while !defined $status; $! = $status },
596     )
597     }
598    
599     =back
600    
601 root 1.1 =head3 STATISTICAL INFORMATION
602    
603 root 1.3 =over 4
604    
605 root 1.2 =item BDB::nreqs
606 root 1.1
607     Returns the number of requests currently in the ready, execute or pending
608     states (i.e. for which their callback has not been invoked yet).
609    
610     Example: wait till there are no outstanding requests anymore:
611    
612 root 1.2 BDB::poll_wait, BDB::poll_cb
613     while BDB::nreqs;
614 root 1.1
615 root 1.2 =item BDB::nready
616 root 1.1
617     Returns the number of requests currently in the ready state (not yet
618     executed).
619    
620 root 1.2 =item BDB::npending
621 root 1.1
622     Returns the number of requests currently in the pending state (executed,
623     but not yet processed by poll_cb).
624    
625     =back
626    
627     =cut
628    
629 root 1.3 set_sync_prepare {
630     my $status;
631     (
632     sub {
633     $status = $!;
634     },
635     sub {
636     BDB::poll while !defined $status;
637     $! = $status;
638     },
639     )
640     };
641    
642 root 1.1 min_parallel 8;
643    
644     END { flush }
645    
646     1;
647    
648     =head2 FORK BEHAVIOUR
649    
650     This module should do "the right thing" when the process using it forks:
651    
652 root 1.18 Before the fork, BDB enters a quiescent state where no requests
653 root 1.1 can be added in other threads and no results will be processed. After
654     the fork the parent simply leaves the quiescent state and continues
655     request/result processing, while the child frees the request/result queue
656     (so that the requests started before the fork will only be handled in the
657     parent). Threads will be started on demand until the limit set in the
658     parent process has been reached again.
659    
660     In short: the parent will, after a short pause, continue as if fork had
661 root 1.18 not been called, while the child will act as if BDB has not been used
662 root 1.1 yet.
663    
664     =head2 MEMORY USAGE
665    
666     Per-request usage:
667    
668     Each aio request uses - depending on your architecture - around 100-200
669     bytes of memory. In addition, stat requests need a stat buffer (possibly
670     a few hundred bytes), readdir requires a result buffer and so on. Perl
671     scalars and other data passed into aio requests will also be locked and
672     will consume memory till the request has entered the done state.
673    
674 root 1.13 This is not awfully much, so queuing lots of requests is not usually a
675 root 1.1 problem.
676    
677     Per-thread usage:
678    
679     In the execution phase, some aio requests require more memory for
680     temporary buffers, and each thread requires a stack and other data
681     structures (usually around 16k-128k, depending on the OS).
682    
683     =head1 KNOWN BUGS
684    
685 root 1.15 Known bugs will be fixed in the next release, except:
686    
687     If you use a transaction in any request, and the request returns
688     with an operating system error or DB_LOCK_NOTGRANTED, the internal
689     TXN_DEADLOCK flag will be set on the transaction. See C<db_txn_finish>,
690     above.
691 root 1.1
692     =head1 SEE ALSO
693    
694 root 1.18 L<Coro::BDB>, L<IO::AIO>.
695 root 1.1
696     =head1 AUTHOR
697    
698     Marc Lehmann <schmorp@schmorp.de>
699     http://home.schmorp.de/
700    
701     =cut
702