ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/BDB/BDB.pm
Revision: 1.20
Committed: Fri Dec 7 13:14:41 2007 UTC (16 years, 5 months ago) by root
Branch: MAIN
Changes since 1.19: +4 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.2 BDB - Asynchronous Berkeley DB access
4 root 1.1
5     =head1 SYNOPSIS
6    
7 root 1.2 use BDB;
8 root 1.1
9 root 1.19 my $env = db_env_create;
10    
11     mkdir "bdtest", 0700;
12     db_env_open
13     $env,
14     "bdtest",
15     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL
16     | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
17     0600;
18    
19     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
20    
21     my $db = db_create $env;
22     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE
23     | BDB::READ_UNCOMMITTED, 0600;
24     db_put $db, undef, "key", "data", 0, sub {
25     db_del $db, undef, "key";
26     };
27     db_sync $db;
28    
29     # automatic result processing with AnyEvent:
30     our $FH; open $FH, "<&=" . BDB::poll_fileno;
31     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
32    
33     # automatic result processing with EV:
34     my $WATCHER = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb;
35    
36     # with Glib:
37     add_watch Glib::IO BDB::poll_fileno,
38     in => sub { BDB::poll_cb; 1 };
39    
40     # or simply flush manually
41     BDB::flush;
42    
43    
44 root 1.1 =head1 DESCRIPTION
45    
46 root 1.10 See the BerkeleyDB documentation (L<http://www.oracle.com/technology/documentation/berkeley-db/db/index.html>).
47 root 1.12 The BDB API is very similar to the C API (the translation has been very faithful).
48 root 1.10
49     See also the example sections in the document below and possibly the eg/
50     subdirectory of the BDB distribution. Last not least see the IO::AIO
51     documentation, as that module uses almost the same asynchronous request
52     model as this module.
53    
54     I know this is woefully inadequate documentation. Send a patch!
55 root 1.7
56 root 1.1
57     =head1 REQUEST ANATOMY AND LIFETIME
58    
59     Every request method creates a request. which is a C data structure not
60     directly visible to Perl.
61    
62     During their existance, bdb requests travel through the following states,
63     in order:
64    
65     =over 4
66    
67     =item ready
68    
69     Immediately after a request is created it is put into the ready state,
70     waiting for a thread to execute it.
71    
72     =item execute
73    
74     A thread has accepted the request for processing and is currently
75     executing it (e.g. blocking in read).
76    
77     =item pending
78    
79     The request has been executed and is waiting for result processing.
80    
81     While request submission and execution is fully asynchronous, result
82     processing is not and relies on the perl interpreter calling C<poll_cb>
83     (or another function with the same effect).
84    
85     =item result
86    
87     The request results are processed synchronously by C<poll_cb>.
88    
89     The C<poll_cb> function will process all outstanding aio requests by
90     calling their callbacks, freeing memory associated with them and managing
91     any groups they are contained in.
92    
93     =item done
94    
95     Request has reached the end of its lifetime and holds no resources anymore
96     (except possibly for the Perl object, but its connection to the actual
97     aio request is severed and calling its methods will either do nothing or
98     result in a runtime error).
99    
100     =back
101    
102     =cut
103    
104 root 1.2 package BDB;
105 root 1.1
106     no warnings;
107     use strict 'vars';
108    
109     use base 'Exporter';
110    
111     BEGIN {
112 root 1.17 our $VERSION = '1.2';
113 root 1.1
114 root 1.3 our @BDB_REQ = qw(
115 root 1.6 db_env_open db_env_close db_env_txn_checkpoint db_env_lock_detect
116     db_env_memp_sync db_env_memp_trickle
117     db_open db_close db_compact db_sync db_put db_get db_pget db_del db_key_range
118 root 1.15 db_txn_commit db_txn_abort db_txn_finish
119 root 1.5 db_c_close db_c_count db_c_put db_c_get db_c_pget db_c_del
120 root 1.6 db_sequence_open db_sequence_close
121     db_sequence_get db_sequence_remove
122     );
123     our @EXPORT = (@BDB_REQ, qw(dbreq_pri dbreq_nice db_env_create db_create));
124     our @EXPORT_OK = qw(
125     poll_fileno poll_cb poll_wait flush
126     min_parallel max_parallel max_idle
127     nreqs nready npending nthreads
128     max_poll_time max_poll_reqs
129 root 1.3 );
130 root 1.1
131     require XSLoader;
132 root 1.2 XSLoader::load ("BDB", $VERSION);
133 root 1.1 }
134    
135 root 1.10 =head2 BERKELEYDB FUNCTIONS
136    
137     All of these are functions. The create functions simply return a new
138     object and never block. All the remaining functions all take an optional
139     callback as last argument. If it is missing, then the fucntion will be
140     executed synchronously.
141    
142     BDB functions that cannot block (mostly functions that manipulate
143     settings) are method calls on the relevant objects, so the rule of thumb
144     is: if its a method, its not blocking, if its a function, it takes a
145     callback as last argument.
146    
147     In the following, C<$int> signifies an integer return value,
148     C<octetstring> is a "binary string" (i.e. a perl string with no character
149     indices >255), C<U32> is an unsigned 32 bit integer, C<int> is some
150     integer, C<NV> is a floating point value.
151    
152     The C<SV *> types are generic perl scalars (for input and output of data
153     values), and the C<SV *callback> is the optional callback function to call
154     when the request is completed.
155    
156 root 1.11 The various C<DB_ENV> etc. arguments are handles return by
157     C<db_env_create>, C<db_create>, C<txn_begin> and so on. If they have an
158     appended C<_ornull> this means they are optional and you can pass C<undef>
159     for them, resulting a NULL pointer on the C level.
160 root 1.10
161     =head3 BDB functions
162    
163     Functions in the BDB namespace, exported by default:
164    
165     $env = db_env_create (U32 env_flags = 0)
166 root 1.14 flags: RPCCLIENT
167 root 1.10
168     db_env_open (DB_ENV *env, octetstring db_home, U32 open_flags, int mode, SV *callback = &PL_sv_undef)
169 root 1.14 open_flags: INIT_CDB INIT_LOCK INIT_LOG INIT_MPOOL INIT_REP INIT_TXN RECOVER RECOVER_FATAL USE_ENVIRON USE_ENVIRON_ROOT CREATE LOCKDOWN PRIVATE REGISTER SYSTEM_MEM
170 root 1.10 db_env_close (DB_ENV *env, U32 flags = 0, SV *callback = &PL_sv_undef)
171     db_env_txn_checkpoint (DB_ENV *env, U32 kbyte = 0, U32 min = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
172 root 1.14 flags: FORCE
173 root 1.10 db_env_lock_detect (DB_ENV *env, U32 flags = 0, U32 atype = DB_LOCK_DEFAULT, SV *dummy = 0, SV *callback = &PL_sv_undef)
174 root 1.14 atype: LOCK_DEFAULT LOCK_EXPIRE LOCK_MAXLOCKS LOCK_MAXWRITE LOCK_MINLOCKS LOCK_MINWRITE LOCK_OLDEST LOCK_RANDOM LOCK_YOUNGEST
175 root 1.10 db_env_memp_sync (DB_ENV *env, SV *dummy = 0, SV *callback = &PL_sv_undef)
176     db_env_memp_trickle (DB_ENV *env, int percent, SV *dummy = 0, SV *callback = &PL_sv_undef)
177    
178     $db = db_create (DB_ENV *env = 0, U32 flags = 0)
179 root 1.14 flags: XA_CREATE
180 root 1.10
181     db_open (DB *db, DB_TXN_ornull *txnid, octetstring file, octetstring database, int type, U32 flags, int mode, SV *callback = &PL_sv_undef)
182 root 1.14 flags: AUTO_COMMIT CREATE EXCL MULTIVERSION NOMMAP RDONLY READ_UNCOMMITTED THREAD TRUNCATE
183 root 1.10 db_close (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
184 root 1.14 flags: DB_NOSYNC
185 root 1.12 db_compact (DB *db, DB_TXN_ornull *txn = 0, SV *start = 0, SV *stop = 0, SV *unused1 = 0, U32 flags = DB_FREE_SPACE, SV *unused2 = 0, SV *callback = &PL_sv_undef)
186 root 1.14 flags: FREELIST_ONLY FREE_SPACE
187 root 1.10 db_sync (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
188     db_key_range (DB *db, DB_TXN_ornull *txn, SV *key, SV *key_range, U32 flags = 0, SV *callback = &PL_sv_undef)
189     db_put (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
190 root 1.14 flags: APPEND NODUPDATA NOOVERWRITE
191 root 1.10 db_get (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
192 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
193 root 1.10 db_pget (DB *db, DB_TXN_ornull *txn, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
194 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
195 root 1.10 db_del (DB *db, DB_TXN_ornull *txn, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
196     db_txn_commit (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
197 root 1.14 flags: TXN_NOSYNC TXN_SYNC
198 root 1.10 db_txn_abort (DB_TXN *txn, SV *callback = &PL_sv_undef)
199 root 1.14
200 root 1.10 db_c_close (DBC *dbc, SV *callback = &PL_sv_undef)
201     db_c_count (DBC *dbc, SV *count, U32 flags = 0, SV *callback = &PL_sv_undef)
202     db_c_put (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
203 root 1.14 flags: AFTER BEFORE CURRENT KEYFIRST KEYLAST NODUPDATA
204 root 1.10 db_c_get (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
205 root 1.14 flags: CURRENT FIRST GET_BOTH GET_BOTH_RANGE GET_RECNO JOIN_ITEM LAST NEXT NEXT_DUP NEXT_NODUP PREV PREV_DUP PREV_NODUP SET SET_RANGE SET_RECNO READ_UNCOMMITTED MULTIPLE MULTIPLE_KEY RMW
206 root 1.10 db_c_pget (DBC *dbc, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
207     db_c_del (DBC *dbc, U32 flags = 0, SV *callback = &PL_sv_undef)
208    
209     db_sequence_open (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
210 root 1.14 flags: CREATE EXCL
211 root 1.10 db_sequence_close (DB_SEQUENCE *seq, U32 flags = 0, SV *callback = &PL_sv_undef)
212     db_sequence_get (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, int delta, SV *seq_value, U32 flags = DB_TXN_NOSYNC, SV *callback = &PL_sv_undef)
213 root 1.14 flags: TXN_NOSYNC
214 root 1.10 db_sequence_remove (DB_SEQUENCE *seq, DB_TXN_ornull *txnid = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
215 root 1.14 flags: TXN_NOSYNC
216 root 1.10
217 root 1.15 =head4 db_txn_finish (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
218    
219 root 1.16 This is not actually a Berkeley DB function but a BDB module
220     extension. The background for this exytension is: It is very annoying to
221     have to check every single BDB function for error returns and provide a
222     codepath out of your transaction. While the BDB module still makes this
223     possible, it contains the following extensions:
224 root 1.15
225     When a transaction-protected function returns any operating system
226     error (errno > 0), BDB will set the C<TXN_DEADLOCK> flag on the
227 root 1.16 transaction. This flag is also set by Berkeley DB functions themselves
228 root 1.15 when an operation fails with LOCK_DEADLOCK, and it causes all further
229     operations on that transaction (including C<db_txn_commit>) to fail.
230    
231     The C<db_txn_finish> request will look at this flag, and, if it is set,
232     will automatically call C<db_txn_abort> (setting errno to C<LOCK_DEADLOCK>
233 root 1.16 if it isn't set to something else yet). If it isn't set, it will call
234     C<db_txn_commit> and return the error normally.
235 root 1.15
236     How to use this? Easy: just write your transaction normally:
237    
238     my $txn = $db_env->txn_begin;
239     db_get $db, $txn, "key", my $data;
240     db_put $db, $txn, "key", $data + 1 unless $! == BDB::NOTFOUND;
241     db_txn_finish $txn;
242     die "transaction failed" if $!;
243    
244     That is, handle only the expected errors. If something unexpected happens
245     (EIO, LOCK_NOTGRANTED or a deadlock in either db_get or db_put), then the remaining
246     requests (db_put in this case) will simply be skipped (they will fail with
247     LOCK_DEADLOCK) and the transaction will be aborted.
248    
249 root 1.16 You can use the C<< $txn->failed >> method to check wether a transaction
250 root 1.15 has failed in this way and abort further processing (excluding
251     C<db_txn_finish>).
252    
253 root 1.10 =head3 DB_ENV/database environment methods
254    
255     Methods available on DB_ENV/$env handles:
256    
257     DESTROY (DB_ENV_ornull *env)
258     CODE:
259     if (env)
260     env->close (env, 0);
261    
262     $int = $env->set_data_dir (const char *dir)
263     $int = $env->set_tmp_dir (const char *dir)
264     $int = $env->set_lg_dir (const char *dir)
265     $int = $env->set_shm_key (long shm_key)
266     $int = $env->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
267     $int = $env->set_flags (U32 flags, int onoff)
268     $env->set_errfile (FILE *errfile = 0)
269     $env->set_msgfile (FILE *msgfile = 0)
270     $int = $env->set_verbose (U32 which, int onoff = 1)
271     $int = $env->set_encrypt (const char *password, U32 flags = 0)
272 root 1.15 $int = $env->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
273 root 1.10 $int = $env->set_mp_max_openfd (int maxopenfd);
274     $int = $env->set_mp_max_write (int maxwrite, int maxwrite_sleep);
275     $int = $env->set_mp_mmapsize (int mmapsize_mb)
276     $int = $env->set_lk_detect (U32 detect = DB_LOCK_DEFAULT)
277     $int = $env->set_lk_max_lockers (U32 max)
278     $int = $env->set_lk_max_locks (U32 max)
279     $int = $env->set_lk_max_objects (U32 max)
280     $int = $env->set_lg_bsize (U32 max)
281     $int = $env->set_lg_max (U32 max)
282 root 1.20 $int = $env->mutex_set_increment (U32 increment)
283     $int = $env->mutex_set_tas_spins (U32 tas_spins)
284     $int = $env->mutex_set_max (U32 max)
285     $int = $env->mutex_set_align (U32 align)
286 root 1.10
287     $txn = $env->txn_begin (DB_TXN_ornull *parent = 0, U32 flags = 0)
288 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED TXN_NOSYNC TXN_NOWAIT TXN_SNAPSHOT TXN_SYNC TXN_WAIT TXN_WRITE_NOSYNC
289 root 1.10
290 root 1.12 =head4 Example:
291 root 1.10
292     use AnyEvent;
293     use BDB;
294    
295     our $FH; open $FH, "<&=" . BDB::poll_fileno;
296     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
297    
298     BDB::min_parallel 8;
299    
300     my $env = db_env_create;
301    
302     mkdir "bdtest", 0700;
303     db_env_open
304     $env,
305     "bdtest",
306     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
307     0600;
308    
309     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
310    
311    
312     =head3 DB/database methods
313    
314     Methods available on DB/$db handles:
315    
316     DESTROY (DB_ornull *db)
317     CODE:
318     if (db)
319     {
320     SV *env = (SV *)db->app_private;
321     db->close (db, 0);
322     SvREFCNT_dec (env);
323     }
324    
325     $int = $db->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
326     $int = $db->set_flags (U32 flags)
327 root 1.14 flags: CHKSUM ENCRYPT TXN_NOT_DURABLE
328     Btree: DUP DUPSORT RECNUM REVSPLITOFF
329     Hash: DUP DUPSORT
330     Queue: INORDER
331     Recno: RENUMBER SNAPSHOT
332    
333 root 1.10 $int = $db->set_encrypt (const char *password, U32 flags)
334     $int = $db->set_lorder (int lorder)
335     $int = $db->set_bt_minkey (U32 minkey)
336     $int = $db->set_re_delim (int delim)
337     $int = $db->set_re_pad (int re_pad)
338     $int = $db->set_re_source (char *source)
339     $int = $db->set_re_len (U32 re_len)
340     $int = $db->set_h_ffactor (U32 h_ffactor)
341     $int = $db->set_h_nelem (U32 h_nelem)
342     $int = $db->set_q_extentsize (U32 extentsize)
343    
344     $dbc = $db->cursor (DB_TXN_ornull *txn = 0, U32 flags = 0)
345 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED WRITECURSOR TXN_SNAPSHOT
346 root 1.10 $seq = $db->sequence (U32 flags = 0)
347    
348 root 1.12 =head4 Example:
349 root 1.10
350     my $db = db_create $env;
351     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE | BDB::READ_UNCOMMITTED, 0600;
352    
353     for (1..1000) {
354     db_put $db, undef, "key $_", "data $_";
355    
356     db_key_range $db, undef, "key $_", my $keyrange;
357     my ($lt, $eq, $gt) = @$keyrange;
358     }
359    
360     db_del $db, undef, "key $_" for 1..1000;
361    
362     db_sync $db;
363    
364    
365     =head3 DB_TXN/transaction methods
366    
367     Methods available on DB_TXN/$txn handles:
368    
369     DESTROY (DB_TXN_ornull *txn)
370     CODE:
371     if (txn)
372     txn->abort (txn);
373    
374 root 1.15 $int = $txn->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
375 root 1.14 flags: SET_LOCK_TIMEOUT SET_TXN_TIMEOUT
376 root 1.10
377 root 1.15 $bool = $txn->failed
378     # see db_txn_finish documentation, above
379    
380 root 1.10
381     =head3 DBC/cursor methods
382    
383     Methods available on DBC/$dbc handles:
384    
385     DESTROY (DBC_ornull *dbc)
386     CODE:
387     if (dbc)
388     dbc->c_close (dbc);
389    
390 root 1.12 =head4 Example:
391 root 1.10
392     my $c = $db->cursor;
393    
394     for (;;) {
395     db_c_get $c, my $key, my $data, BDB::NEXT;
396     warn "<$!,$key,$data>";
397     last if $!;
398     }
399    
400     db_c_close $c;
401    
402 root 1.12
403 root 1.10 =head3 DB_SEQUENCE/sequence methods
404    
405     Methods available on DB_SEQUENCE/$seq handles:
406    
407     DESTROY (DB_SEQUENCE_ornull *seq)
408     CODE:
409     if (seq)
410     seq->close (seq, 0);
411    
412     $int = $seq->initial_value (db_seq_t value)
413     $int = $seq->set_cachesize (U32 size)
414     $int = $seq->set_flags (U32 flags)
415 root 1.14 flags: SEQ_DEC SEQ_INC SEQ_WRAP
416 root 1.10 $int = $seq->set_range (db_seq_t min, db_seq_t max)
417    
418 root 1.12 =head4 Example:
419 root 1.10
420     my $seq = $db->sequence;
421    
422     db_sequence_open $seq, undef, "seq", BDB::CREATE;
423     db_sequence_get $seq, undef, 1, my $value;
424    
425    
426 root 1.1 =head2 SUPPORT FUNCTIONS
427    
428     =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
429    
430     =over 4
431    
432 root 1.2 =item $fileno = BDB::poll_fileno
433 root 1.1
434     Return the I<request result pipe file descriptor>. This filehandle must be
435     polled for reading by some mechanism outside this module (e.g. Event or
436     select, see below or the SYNOPSIS). If the pipe becomes readable you have
437     to call C<poll_cb> to check the results.
438    
439     See C<poll_cb> for an example.
440    
441 root 1.2 =item BDB::poll_cb
442 root 1.1
443     Process some outstanding events on the result pipe. You have to call this
444     regularly. Returns the number of events processed. Returns immediately
445     when no events are outstanding. The amount of events processed depends on
446 root 1.2 the settings of C<BDB::max_poll_req> and C<BDB::max_poll_time>.
447 root 1.1
448     If not all requests were processed for whatever reason, the filehandle
449     will still be ready when C<poll_cb> returns.
450    
451     Example: Install an Event watcher that automatically calls
452 root 1.2 BDB::poll_cb with high priority:
453 root 1.1
454 root 1.2 Event->io (fd => BDB::poll_fileno,
455 root 1.1 poll => 'r', async => 1,
456 root 1.2 cb => \&BDB::poll_cb);
457 root 1.1
458 root 1.2 =item BDB::max_poll_reqs $nreqs
459 root 1.1
460 root 1.2 =item BDB::max_poll_time $seconds
461 root 1.1
462     These set the maximum number of requests (default C<0>, meaning infinity)
463 root 1.2 that are being processed by C<BDB::poll_cb> in one call, respectively
464 root 1.1 the maximum amount of time (default C<0>, meaning infinity) spent in
465 root 1.2 C<BDB::poll_cb> to process requests (more correctly the mininum amount
466 root 1.1 of time C<poll_cb> is allowed to use).
467    
468     Setting C<max_poll_time> to a non-zero value creates an overhead of one
469     syscall per request processed, which is not normally a problem unless your
470     callbacks are really really fast or your OS is really really slow (I am
471     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
472    
473     Setting these is useful if you want to ensure some level of
474     interactiveness when perl is not fast enough to process all requests in
475     time.
476    
477     For interactive programs, values such as C<0.01> to C<0.1> should be fine.
478    
479 root 1.18 Example: Install an EV watcher that automatically calls
480 root 1.2 BDB::poll_cb with low priority, to ensure that other parts of the
481 root 1.18 program get the CPU sometimes even under high load.
482 root 1.1
483     # try not to spend much more than 0.1s in poll_cb
484 root 1.2 BDB::max_poll_time 0.1;
485 root 1.1
486 root 1.18 my $bdb_poll = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb);
487 root 1.1
488 root 1.2 =item BDB::poll_wait
489 root 1.1
490     If there are any outstanding requests and none of them in the result
491     phase, wait till the result filehandle becomes ready for reading (simply
492     does a C<select> on the filehandle. This is useful if you want to
493     synchronously wait for some requests to finish).
494    
495     See C<nreqs> for an example.
496    
497 root 1.2 =item BDB::poll
498 root 1.1
499     Waits until some requests have been handled.
500    
501     Returns the number of requests processed, but is otherwise strictly
502     equivalent to:
503    
504 root 1.2 BDB::poll_wait, BDB::poll_cb
505 root 1.1
506 root 1.2 =item BDB::flush
507 root 1.1
508 root 1.18 Wait till all outstanding BDB requests have been handled.
509 root 1.1
510     Strictly equivalent to:
511    
512 root 1.2 BDB::poll_wait, BDB::poll_cb
513     while BDB::nreqs;
514 root 1.1
515 root 1.8 =back
516    
517 root 1.1 =head3 CONTROLLING THE NUMBER OF THREADS
518    
519 root 1.8 =over 4
520    
521 root 1.2 =item BDB::min_parallel $nthreads
522 root 1.1
523 root 1.18 Set the minimum number of BDB threads to C<$nthreads>. The current
524 root 1.1 default is C<8>, which means eight asynchronous operations can execute
525     concurrently at any one time (the number of outstanding requests,
526     however, is unlimited).
527    
528 root 1.18 BDB starts threads only on demand, when an BDB request is queued and
529 root 1.1 no free thread exists. Please note that queueing up a hundred requests can
530     create demand for a hundred threads, even if it turns out that everything
531     is in the cache and could have been processed faster by a single thread.
532    
533     It is recommended to keep the number of threads relatively low, as some
534     Linux kernel versions will scale negatively with the number of threads
535     (higher parallelity => MUCH higher latency). With current Linux 2.6
536     versions, 4-32 threads should be fine.
537    
538     Under most circumstances you don't need to call this function, as the
539     module selects a default that is suitable for low to moderate load.
540    
541 root 1.2 =item BDB::max_parallel $nthreads
542 root 1.1
543 root 1.18 Sets the maximum number of BDB threads to C<$nthreads>. If more than the
544 root 1.1 specified number of threads are currently running, this function kills
545     them. This function blocks until the limit is reached.
546    
547     While C<$nthreads> are zero, aio requests get queued but not executed
548     until the number of threads has been increased again.
549    
550     This module automatically runs C<max_parallel 0> at program end, to ensure
551     that all threads are killed and that there are no outstanding requests.
552    
553     Under normal circumstances you don't need to call this function.
554    
555 root 1.2 =item BDB::max_idle $nthreads
556 root 1.1
557     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
558     threads that did not get a request to process within 10 seconds). That
559     means if a thread becomes idle while C<$nthreads> other threads are also
560     idle, it will free its resources and exit.
561    
562     This is useful when you allow a large number of threads (e.g. 100 or 1000)
563     to allow for extremely high load situations, but want to free resources
564     under normal circumstances (1000 threads can easily consume 30MB of RAM).
565    
566     The default is probably ok in most situations, especially if thread
567     creation is fast. If thread creation is very slow on your system you might
568     want to use larger values.
569    
570 root 1.2 =item $oldmaxreqs = BDB::max_outstanding $maxreqs
571 root 1.1
572     This is a very bad function to use in interactive programs because it
573     blocks, and a bad way to reduce concurrency because it is inexact: Better
574     use an C<aio_group> together with a feed callback.
575    
576     Sets the maximum number of outstanding requests to C<$nreqs>. If you
577     to queue up more than this number of requests, the next call to the
578     C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
579     function will block until the limit is no longer exceeded.
580    
581     The default value is very large, so there is no practical limit on the
582     number of outstanding requests.
583    
584     You can still queue as many requests as you want. Therefore,
585     C<max_oustsanding> is mainly useful in simple scripts (with low values) or
586     as a stop gap to shield against fatal memory overflow (with large values).
587    
588 root 1.3 =item BDB::set_sync_prepare $cb
589    
590     Sets a callback that is called whenever a request is created without an
591     explicit callback. It has to return two code references. The first is used
592     as the request callback, and the second is called to wait until the first
593     callback has been called. The default implementation works like this:
594    
595     sub {
596     my $status;
597     (
598     sub { $status = $! },
599     sub { BDB::poll while !defined $status; $! = $status },
600     )
601     }
602    
603     =back
604    
605 root 1.1 =head3 STATISTICAL INFORMATION
606    
607 root 1.3 =over 4
608    
609 root 1.2 =item BDB::nreqs
610 root 1.1
611     Returns the number of requests currently in the ready, execute or pending
612     states (i.e. for which their callback has not been invoked yet).
613    
614     Example: wait till there are no outstanding requests anymore:
615    
616 root 1.2 BDB::poll_wait, BDB::poll_cb
617     while BDB::nreqs;
618 root 1.1
619 root 1.2 =item BDB::nready
620 root 1.1
621     Returns the number of requests currently in the ready state (not yet
622     executed).
623    
624 root 1.2 =item BDB::npending
625 root 1.1
626     Returns the number of requests currently in the pending state (executed,
627     but not yet processed by poll_cb).
628    
629     =back
630    
631     =cut
632    
633 root 1.3 set_sync_prepare {
634     my $status;
635     (
636     sub {
637     $status = $!;
638     },
639     sub {
640     BDB::poll while !defined $status;
641     $! = $status;
642     },
643     )
644     };
645    
646 root 1.1 min_parallel 8;
647    
648     END { flush }
649    
650     1;
651    
652     =head2 FORK BEHAVIOUR
653    
654     This module should do "the right thing" when the process using it forks:
655    
656 root 1.18 Before the fork, BDB enters a quiescent state where no requests
657 root 1.1 can be added in other threads and no results will be processed. After
658     the fork the parent simply leaves the quiescent state and continues
659     request/result processing, while the child frees the request/result queue
660     (so that the requests started before the fork will only be handled in the
661     parent). Threads will be started on demand until the limit set in the
662     parent process has been reached again.
663    
664     In short: the parent will, after a short pause, continue as if fork had
665 root 1.18 not been called, while the child will act as if BDB has not been used
666 root 1.1 yet.
667    
668     =head2 MEMORY USAGE
669    
670     Per-request usage:
671    
672     Each aio request uses - depending on your architecture - around 100-200
673     bytes of memory. In addition, stat requests need a stat buffer (possibly
674     a few hundred bytes), readdir requires a result buffer and so on. Perl
675     scalars and other data passed into aio requests will also be locked and
676     will consume memory till the request has entered the done state.
677    
678 root 1.13 This is not awfully much, so queuing lots of requests is not usually a
679 root 1.1 problem.
680    
681     Per-thread usage:
682    
683     In the execution phase, some aio requests require more memory for
684     temporary buffers, and each thread requires a stack and other data
685     structures (usually around 16k-128k, depending on the OS).
686    
687     =head1 KNOWN BUGS
688    
689 root 1.15 Known bugs will be fixed in the next release, except:
690    
691     If you use a transaction in any request, and the request returns
692     with an operating system error or DB_LOCK_NOTGRANTED, the internal
693     TXN_DEADLOCK flag will be set on the transaction. See C<db_txn_finish>,
694     above.
695 root 1.1
696     =head1 SEE ALSO
697    
698 root 1.18 L<Coro::BDB>, L<IO::AIO>.
699 root 1.1
700     =head1 AUTHOR
701    
702     Marc Lehmann <schmorp@schmorp.de>
703     http://home.schmorp.de/
704    
705     =cut
706