ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/BDB/BDB.pm
Revision: 1.27
Committed: Tue Dec 11 02:32:50 2007 UTC (16 years, 5 months ago) by root
Branch: MAIN
CVS Tags: rel-1_4
Changes since 1.26: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.2 BDB - Asynchronous Berkeley DB access
4 root 1.1
5     =head1 SYNOPSIS
6    
7 root 1.2 use BDB;
8 root 1.1
9 root 1.19 my $env = db_env_create;
10    
11     mkdir "bdtest", 0700;
12     db_env_open
13     $env,
14     "bdtest",
15     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL
16     | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
17     0600;
18    
19     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
20    
21     my $db = db_create $env;
22     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE
23     | BDB::READ_UNCOMMITTED, 0600;
24     db_put $db, undef, "key", "data", 0, sub {
25     db_del $db, undef, "key";
26     };
27     db_sync $db;
28    
29     # automatic result processing with AnyEvent:
30     our $FH; open $FH, "<&=" . BDB::poll_fileno;
31     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
32    
33     # automatic result processing with EV:
34     my $WATCHER = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb;
35    
36     # with Glib:
37     add_watch Glib::IO BDB::poll_fileno,
38     in => sub { BDB::poll_cb; 1 };
39    
40     # or simply flush manually
41     BDB::flush;
42    
43    
44 root 1.1 =head1 DESCRIPTION
45    
46 root 1.10 See the BerkeleyDB documentation (L<http://www.oracle.com/technology/documentation/berkeley-db/db/index.html>).
47 root 1.12 The BDB API is very similar to the C API (the translation has been very faithful).
48 root 1.10
49     See also the example sections in the document below and possibly the eg/
50     subdirectory of the BDB distribution. Last not least see the IO::AIO
51     documentation, as that module uses almost the same asynchronous request
52     model as this module.
53    
54     I know this is woefully inadequate documentation. Send a patch!
55 root 1.7
56 root 1.1
57     =head1 REQUEST ANATOMY AND LIFETIME
58    
59     Every request method creates a request. which is a C data structure not
60     directly visible to Perl.
61    
62     During their existance, bdb requests travel through the following states,
63     in order:
64    
65     =over 4
66    
67     =item ready
68    
69     Immediately after a request is created it is put into the ready state,
70     waiting for a thread to execute it.
71    
72     =item execute
73    
74     A thread has accepted the request for processing and is currently
75     executing it (e.g. blocking in read).
76    
77     =item pending
78    
79     The request has been executed and is waiting for result processing.
80    
81     While request submission and execution is fully asynchronous, result
82     processing is not and relies on the perl interpreter calling C<poll_cb>
83     (or another function with the same effect).
84    
85     =item result
86    
87     The request results are processed synchronously by C<poll_cb>.
88    
89     The C<poll_cb> function will process all outstanding aio requests by
90     calling their callbacks, freeing memory associated with them and managing
91     any groups they are contained in.
92    
93     =item done
94    
95     Request has reached the end of its lifetime and holds no resources anymore
96     (except possibly for the Perl object, but its connection to the actual
97     aio request is severed and calling its methods will either do nothing or
98     result in a runtime error).
99    
100     =back
101    
102     =cut
103    
104 root 1.2 package BDB;
105 root 1.1
106     no warnings;
107     use strict 'vars';
108    
109     use base 'Exporter';
110    
111     BEGIN {
112 root 1.27 our $VERSION = '1.4';
113 root 1.1
114 root 1.3 our @BDB_REQ = qw(
115 root 1.6 db_env_open db_env_close db_env_txn_checkpoint db_env_lock_detect
116     db_env_memp_sync db_env_memp_trickle
117 root 1.25 db_open db_close db_compact db_sync db_upgrade
118     db_put db_get db_pget db_del db_key_range
119 root 1.15 db_txn_commit db_txn_abort db_txn_finish
120 root 1.5 db_c_close db_c_count db_c_put db_c_get db_c_pget db_c_del
121 root 1.6 db_sequence_open db_sequence_close
122     db_sequence_get db_sequence_remove
123     );
124     our @EXPORT = (@BDB_REQ, qw(dbreq_pri dbreq_nice db_env_create db_create));
125     our @EXPORT_OK = qw(
126     poll_fileno poll_cb poll_wait flush
127     min_parallel max_parallel max_idle
128     nreqs nready npending nthreads
129     max_poll_time max_poll_reqs
130 root 1.3 );
131 root 1.1
132     require XSLoader;
133 root 1.2 XSLoader::load ("BDB", $VERSION);
134 root 1.1 }
135    
136 root 1.10 =head2 BERKELEYDB FUNCTIONS
137    
138     All of these are functions. The create functions simply return a new
139     object and never block. All the remaining functions all take an optional
140 root 1.24 callback as last argument. If it is missing, then the function will be
141     executed synchronously. In both cases, C<$!> will reflect the return value
142     of the function.
143 root 1.10
144     BDB functions that cannot block (mostly functions that manipulate
145     settings) are method calls on the relevant objects, so the rule of thumb
146     is: if its a method, its not blocking, if its a function, it takes a
147     callback as last argument.
148    
149     In the following, C<$int> signifies an integer return value,
150     C<octetstring> is a "binary string" (i.e. a perl string with no character
151     indices >255), C<U32> is an unsigned 32 bit integer, C<int> is some
152     integer, C<NV> is a floating point value.
153    
154     The C<SV *> types are generic perl scalars (for input and output of data
155     values), and the C<SV *callback> is the optional callback function to call
156     when the request is completed.
157    
158 root 1.11 The various C<DB_ENV> etc. arguments are handles return by
159     C<db_env_create>, C<db_create>, C<txn_begin> and so on. If they have an
160     appended C<_ornull> this means they are optional and you can pass C<undef>
161     for them, resulting a NULL pointer on the C level.
162 root 1.10
163     =head3 BDB functions
164    
165     Functions in the BDB namespace, exported by default:
166    
167     $env = db_env_create (U32 env_flags = 0)
168 root 1.14 flags: RPCCLIENT
169 root 1.10
170     db_env_open (DB_ENV *env, octetstring db_home, U32 open_flags, int mode, SV *callback = &PL_sv_undef)
171 root 1.14 open_flags: INIT_CDB INIT_LOCK INIT_LOG INIT_MPOOL INIT_REP INIT_TXN RECOVER RECOVER_FATAL USE_ENVIRON USE_ENVIRON_ROOT CREATE LOCKDOWN PRIVATE REGISTER SYSTEM_MEM
172 root 1.10 db_env_close (DB_ENV *env, U32 flags = 0, SV *callback = &PL_sv_undef)
173     db_env_txn_checkpoint (DB_ENV *env, U32 kbyte = 0, U32 min = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
174 root 1.14 flags: FORCE
175 root 1.10 db_env_lock_detect (DB_ENV *env, U32 flags = 0, U32 atype = DB_LOCK_DEFAULT, SV *dummy = 0, SV *callback = &PL_sv_undef)
176 root 1.14 atype: LOCK_DEFAULT LOCK_EXPIRE LOCK_MAXLOCKS LOCK_MAXWRITE LOCK_MINLOCKS LOCK_MINWRITE LOCK_OLDEST LOCK_RANDOM LOCK_YOUNGEST
177 root 1.10 db_env_memp_sync (DB_ENV *env, SV *dummy = 0, SV *callback = &PL_sv_undef)
178     db_env_memp_trickle (DB_ENV *env, int percent, SV *dummy = 0, SV *callback = &PL_sv_undef)
179    
180     $db = db_create (DB_ENV *env = 0, U32 flags = 0)
181 root 1.14 flags: XA_CREATE
182 root 1.10
183     db_open (DB *db, DB_TXN_ornull *txnid, octetstring file, octetstring database, int type, U32 flags, int mode, SV *callback = &PL_sv_undef)
184 root 1.14 flags: AUTO_COMMIT CREATE EXCL MULTIVERSION NOMMAP RDONLY READ_UNCOMMITTED THREAD TRUNCATE
185 root 1.10 db_close (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
186 root 1.14 flags: DB_NOSYNC
187 root 1.25 db_upgrade (DB *db, octetstring file, U32 flags = 0, SV *callback = &PL_sv_undef)
188 root 1.12 db_compact (DB *db, DB_TXN_ornull *txn = 0, SV *start = 0, SV *stop = 0, SV *unused1 = 0, U32 flags = DB_FREE_SPACE, SV *unused2 = 0, SV *callback = &PL_sv_undef)
189 root 1.14 flags: FREELIST_ONLY FREE_SPACE
190 root 1.10 db_sync (DB *db, U32 flags = 0, SV *callback = &PL_sv_undef)
191     db_key_range (DB *db, DB_TXN_ornull *txn, SV *key, SV *key_range, U32 flags = 0, SV *callback = &PL_sv_undef)
192     db_put (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
193 root 1.14 flags: APPEND NODUPDATA NOOVERWRITE
194 root 1.10 db_get (DB *db, DB_TXN_ornull *txn, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
195 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
196 root 1.10 db_pget (DB *db, DB_TXN_ornull *txn, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
197 root 1.14 flags: CONSUME CONSUME_WAIT GET_BOTH SET_RECNO MULTIPLE READ_COMMITTED READ_UNCOMMITTED RMW
198 root 1.10 db_del (DB *db, DB_TXN_ornull *txn, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
199     db_txn_commit (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
200 root 1.14 flags: TXN_NOSYNC TXN_SYNC
201 root 1.10 db_txn_abort (DB_TXN *txn, SV *callback = &PL_sv_undef)
202 root 1.14
203 root 1.10 db_c_close (DBC *dbc, SV *callback = &PL_sv_undef)
204     db_c_count (DBC *dbc, SV *count, U32 flags = 0, SV *callback = &PL_sv_undef)
205     db_c_put (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
206 root 1.14 flags: AFTER BEFORE CURRENT KEYFIRST KEYLAST NODUPDATA
207 root 1.10 db_c_get (DBC *dbc, SV *key, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
208 root 1.14 flags: CURRENT FIRST GET_BOTH GET_BOTH_RANGE GET_RECNO JOIN_ITEM LAST NEXT NEXT_DUP NEXT_NODUP PREV PREV_DUP PREV_NODUP SET SET_RANGE SET_RECNO READ_UNCOMMITTED MULTIPLE MULTIPLE_KEY RMW
209 root 1.10 db_c_pget (DBC *dbc, SV *key, SV *pkey, SV *data, U32 flags = 0, SV *callback = &PL_sv_undef)
210     db_c_del (DBC *dbc, U32 flags = 0, SV *callback = &PL_sv_undef)
211    
212     db_sequence_open (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, SV *key, U32 flags = 0, SV *callback = &PL_sv_undef)
213 root 1.14 flags: CREATE EXCL
214 root 1.10 db_sequence_close (DB_SEQUENCE *seq, U32 flags = 0, SV *callback = &PL_sv_undef)
215     db_sequence_get (DB_SEQUENCE *seq, DB_TXN_ornull *txnid, int delta, SV *seq_value, U32 flags = DB_TXN_NOSYNC, SV *callback = &PL_sv_undef)
216 root 1.14 flags: TXN_NOSYNC
217 root 1.10 db_sequence_remove (DB_SEQUENCE *seq, DB_TXN_ornull *txnid = 0, U32 flags = 0, SV *callback = &PL_sv_undef)
218 root 1.14 flags: TXN_NOSYNC
219 root 1.10
220 root 1.15 =head4 db_txn_finish (DB_TXN *txn, U32 flags = 0, SV *callback = &PL_sv_undef)
221    
222 root 1.16 This is not actually a Berkeley DB function but a BDB module
223     extension. The background for this exytension is: It is very annoying to
224     have to check every single BDB function for error returns and provide a
225     codepath out of your transaction. While the BDB module still makes this
226     possible, it contains the following extensions:
227 root 1.15
228     When a transaction-protected function returns any operating system
229     error (errno > 0), BDB will set the C<TXN_DEADLOCK> flag on the
230 root 1.16 transaction. This flag is also set by Berkeley DB functions themselves
231 root 1.15 when an operation fails with LOCK_DEADLOCK, and it causes all further
232     operations on that transaction (including C<db_txn_commit>) to fail.
233    
234     The C<db_txn_finish> request will look at this flag, and, if it is set,
235     will automatically call C<db_txn_abort> (setting errno to C<LOCK_DEADLOCK>
236 root 1.16 if it isn't set to something else yet). If it isn't set, it will call
237     C<db_txn_commit> and return the error normally.
238 root 1.15
239     How to use this? Easy: just write your transaction normally:
240    
241     my $txn = $db_env->txn_begin;
242     db_get $db, $txn, "key", my $data;
243     db_put $db, $txn, "key", $data + 1 unless $! == BDB::NOTFOUND;
244     db_txn_finish $txn;
245     die "transaction failed" if $!;
246    
247     That is, handle only the expected errors. If something unexpected happens
248     (EIO, LOCK_NOTGRANTED or a deadlock in either db_get or db_put), then the remaining
249     requests (db_put in this case) will simply be skipped (they will fail with
250     LOCK_DEADLOCK) and the transaction will be aborted.
251    
252 root 1.16 You can use the C<< $txn->failed >> method to check wether a transaction
253 root 1.15 has failed in this way and abort further processing (excluding
254     C<db_txn_finish>).
255    
256 root 1.10 =head3 DB_ENV/database environment methods
257    
258     Methods available on DB_ENV/$env handles:
259    
260     DESTROY (DB_ENV_ornull *env)
261     CODE:
262     if (env)
263     env->close (env, 0);
264    
265     $int = $env->set_data_dir (const char *dir)
266     $int = $env->set_tmp_dir (const char *dir)
267     $int = $env->set_lg_dir (const char *dir)
268     $int = $env->set_shm_key (long shm_key)
269     $int = $env->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
270     $int = $env->set_flags (U32 flags, int onoff)
271     $env->set_errfile (FILE *errfile = 0)
272     $env->set_msgfile (FILE *msgfile = 0)
273     $int = $env->set_verbose (U32 which, int onoff = 1)
274     $int = $env->set_encrypt (const char *password, U32 flags = 0)
275 root 1.15 $int = $env->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
276 root 1.10 $int = $env->set_mp_max_openfd (int maxopenfd);
277     $int = $env->set_mp_max_write (int maxwrite, int maxwrite_sleep);
278     $int = $env->set_mp_mmapsize (int mmapsize_mb)
279     $int = $env->set_lk_detect (U32 detect = DB_LOCK_DEFAULT)
280     $int = $env->set_lk_max_lockers (U32 max)
281     $int = $env->set_lk_max_locks (U32 max)
282     $int = $env->set_lk_max_objects (U32 max)
283     $int = $env->set_lg_bsize (U32 max)
284     $int = $env->set_lg_max (U32 max)
285 root 1.20 $int = $env->mutex_set_increment (U32 increment)
286     $int = $env->mutex_set_tas_spins (U32 tas_spins)
287     $int = $env->mutex_set_max (U32 max)
288     $int = $env->mutex_set_align (U32 align)
289 root 1.10
290     $txn = $env->txn_begin (DB_TXN_ornull *parent = 0, U32 flags = 0)
291 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED TXN_NOSYNC TXN_NOWAIT TXN_SNAPSHOT TXN_SYNC TXN_WAIT TXN_WRITE_NOSYNC
292 root 1.10
293 root 1.12 =head4 Example:
294 root 1.10
295     use AnyEvent;
296     use BDB;
297    
298     our $FH; open $FH, "<&=" . BDB::poll_fileno;
299     our $WATCHER = AnyEvent->io (fh => $FH, poll => 'r', cb => \&BDB::poll_cb);
300    
301     BDB::min_parallel 8;
302    
303     my $env = db_env_create;
304    
305     mkdir "bdtest", 0700;
306     db_env_open
307     $env,
308     "bdtest",
309     BDB::INIT_LOCK | BDB::INIT_LOG | BDB::INIT_MPOOL | BDB::INIT_TXN | BDB::RECOVER | BDB::USE_ENVIRON | BDB::CREATE,
310     0600;
311    
312     $env->set_flags (BDB::AUTO_COMMIT | BDB::TXN_NOSYNC, 1);
313    
314    
315     =head3 DB/database methods
316    
317     Methods available on DB/$db handles:
318    
319     DESTROY (DB_ornull *db)
320     CODE:
321     if (db)
322     {
323     SV *env = (SV *)db->app_private;
324     db->close (db, 0);
325     SvREFCNT_dec (env);
326     }
327    
328     $int = $db->set_cachesize (U32 gbytes, U32 bytes, int ncache = 0)
329     $int = $db->set_flags (U32 flags)
330 root 1.14 flags: CHKSUM ENCRYPT TXN_NOT_DURABLE
331     Btree: DUP DUPSORT RECNUM REVSPLITOFF
332     Hash: DUP DUPSORT
333     Queue: INORDER
334     Recno: RENUMBER SNAPSHOT
335    
336 root 1.10 $int = $db->set_encrypt (const char *password, U32 flags)
337     $int = $db->set_lorder (int lorder)
338     $int = $db->set_bt_minkey (U32 minkey)
339     $int = $db->set_re_delim (int delim)
340     $int = $db->set_re_pad (int re_pad)
341     $int = $db->set_re_source (char *source)
342     $int = $db->set_re_len (U32 re_len)
343     $int = $db->set_h_ffactor (U32 h_ffactor)
344     $int = $db->set_h_nelem (U32 h_nelem)
345     $int = $db->set_q_extentsize (U32 extentsize)
346    
347     $dbc = $db->cursor (DB_TXN_ornull *txn = 0, U32 flags = 0)
348 root 1.14 flags: READ_COMMITTED READ_UNCOMMITTED WRITECURSOR TXN_SNAPSHOT
349 root 1.10 $seq = $db->sequence (U32 flags = 0)
350    
351 root 1.12 =head4 Example:
352 root 1.10
353     my $db = db_create $env;
354     db_open $db, undef, "table", undef, BDB::BTREE, BDB::AUTO_COMMIT | BDB::CREATE | BDB::READ_UNCOMMITTED, 0600;
355    
356     for (1..1000) {
357     db_put $db, undef, "key $_", "data $_";
358    
359     db_key_range $db, undef, "key $_", my $keyrange;
360     my ($lt, $eq, $gt) = @$keyrange;
361     }
362    
363     db_del $db, undef, "key $_" for 1..1000;
364    
365     db_sync $db;
366    
367    
368     =head3 DB_TXN/transaction methods
369    
370     Methods available on DB_TXN/$txn handles:
371    
372     DESTROY (DB_TXN_ornull *txn)
373     CODE:
374     if (txn)
375     txn->abort (txn);
376    
377 root 1.15 $int = $txn->set_timeout (NV timeout_seconds, U32 flags = SET_TXN_TIMEOUT)
378 root 1.14 flags: SET_LOCK_TIMEOUT SET_TXN_TIMEOUT
379 root 1.10
380 root 1.15 $bool = $txn->failed
381     # see db_txn_finish documentation, above
382    
383 root 1.10
384     =head3 DBC/cursor methods
385    
386     Methods available on DBC/$dbc handles:
387    
388     DESTROY (DBC_ornull *dbc)
389     CODE:
390     if (dbc)
391     dbc->c_close (dbc);
392    
393 root 1.12 =head4 Example:
394 root 1.10
395     my $c = $db->cursor;
396    
397     for (;;) {
398     db_c_get $c, my $key, my $data, BDB::NEXT;
399     warn "<$!,$key,$data>";
400     last if $!;
401     }
402    
403     db_c_close $c;
404    
405 root 1.12
406 root 1.10 =head3 DB_SEQUENCE/sequence methods
407    
408     Methods available on DB_SEQUENCE/$seq handles:
409    
410     DESTROY (DB_SEQUENCE_ornull *seq)
411     CODE:
412     if (seq)
413     seq->close (seq, 0);
414    
415     $int = $seq->initial_value (db_seq_t value)
416     $int = $seq->set_cachesize (U32 size)
417     $int = $seq->set_flags (U32 flags)
418 root 1.14 flags: SEQ_DEC SEQ_INC SEQ_WRAP
419 root 1.10 $int = $seq->set_range (db_seq_t min, db_seq_t max)
420    
421 root 1.12 =head4 Example:
422 root 1.10
423     my $seq = $db->sequence;
424    
425     db_sequence_open $seq, undef, "seq", BDB::CREATE;
426     db_sequence_get $seq, undef, 1, my $value;
427    
428    
429 root 1.1 =head2 SUPPORT FUNCTIONS
430    
431     =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
432    
433     =over 4
434    
435 root 1.23 =item $msg = BDB::strerror [$errno]
436    
437     Returns the string corresponding to the given errno value. If no argument
438     is given, use C<$!>.
439    
440 root 1.2 =item $fileno = BDB::poll_fileno
441 root 1.1
442     Return the I<request result pipe file descriptor>. This filehandle must be
443     polled for reading by some mechanism outside this module (e.g. Event or
444     select, see below or the SYNOPSIS). If the pipe becomes readable you have
445     to call C<poll_cb> to check the results.
446    
447     See C<poll_cb> for an example.
448    
449 root 1.2 =item BDB::poll_cb
450 root 1.1
451     Process some outstanding events on the result pipe. You have to call this
452     regularly. Returns the number of events processed. Returns immediately
453     when no events are outstanding. The amount of events processed depends on
454 root 1.2 the settings of C<BDB::max_poll_req> and C<BDB::max_poll_time>.
455 root 1.1
456     If not all requests were processed for whatever reason, the filehandle
457     will still be ready when C<poll_cb> returns.
458    
459     Example: Install an Event watcher that automatically calls
460 root 1.2 BDB::poll_cb with high priority:
461 root 1.1
462 root 1.2 Event->io (fd => BDB::poll_fileno,
463 root 1.1 poll => 'r', async => 1,
464 root 1.2 cb => \&BDB::poll_cb);
465 root 1.1
466 root 1.2 =item BDB::max_poll_reqs $nreqs
467 root 1.1
468 root 1.2 =item BDB::max_poll_time $seconds
469 root 1.1
470     These set the maximum number of requests (default C<0>, meaning infinity)
471 root 1.2 that are being processed by C<BDB::poll_cb> in one call, respectively
472 root 1.1 the maximum amount of time (default C<0>, meaning infinity) spent in
473 root 1.2 C<BDB::poll_cb> to process requests (more correctly the mininum amount
474 root 1.1 of time C<poll_cb> is allowed to use).
475    
476     Setting C<max_poll_time> to a non-zero value creates an overhead of one
477     syscall per request processed, which is not normally a problem unless your
478     callbacks are really really fast or your OS is really really slow (I am
479     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
480    
481     Setting these is useful if you want to ensure some level of
482     interactiveness when perl is not fast enough to process all requests in
483     time.
484    
485     For interactive programs, values such as C<0.01> to C<0.1> should be fine.
486    
487 root 1.18 Example: Install an EV watcher that automatically calls
488 root 1.2 BDB::poll_cb with low priority, to ensure that other parts of the
489 root 1.18 program get the CPU sometimes even under high load.
490 root 1.1
491     # try not to spend much more than 0.1s in poll_cb
492 root 1.2 BDB::max_poll_time 0.1;
493 root 1.1
494 root 1.18 my $bdb_poll = EV::io BDB::poll_fileno, EV::READ, \&BDB::poll_cb);
495 root 1.1
496 root 1.2 =item BDB::poll_wait
497 root 1.1
498     If there are any outstanding requests and none of them in the result
499     phase, wait till the result filehandle becomes ready for reading (simply
500     does a C<select> on the filehandle. This is useful if you want to
501     synchronously wait for some requests to finish).
502    
503     See C<nreqs> for an example.
504    
505 root 1.2 =item BDB::poll
506 root 1.1
507     Waits until some requests have been handled.
508    
509     Returns the number of requests processed, but is otherwise strictly
510     equivalent to:
511    
512 root 1.2 BDB::poll_wait, BDB::poll_cb
513 root 1.1
514 root 1.2 =item BDB::flush
515 root 1.1
516 root 1.18 Wait till all outstanding BDB requests have been handled.
517 root 1.1
518     Strictly equivalent to:
519    
520 root 1.2 BDB::poll_wait, BDB::poll_cb
521     while BDB::nreqs;
522 root 1.1
523 root 1.8 =back
524    
525 root 1.1 =head3 CONTROLLING THE NUMBER OF THREADS
526    
527 root 1.8 =over 4
528    
529 root 1.2 =item BDB::min_parallel $nthreads
530 root 1.1
531 root 1.18 Set the minimum number of BDB threads to C<$nthreads>. The current
532 root 1.1 default is C<8>, which means eight asynchronous operations can execute
533     concurrently at any one time (the number of outstanding requests,
534     however, is unlimited).
535    
536 root 1.18 BDB starts threads only on demand, when an BDB request is queued and
537 root 1.1 no free thread exists. Please note that queueing up a hundred requests can
538     create demand for a hundred threads, even if it turns out that everything
539     is in the cache and could have been processed faster by a single thread.
540    
541     It is recommended to keep the number of threads relatively low, as some
542     Linux kernel versions will scale negatively with the number of threads
543     (higher parallelity => MUCH higher latency). With current Linux 2.6
544     versions, 4-32 threads should be fine.
545    
546     Under most circumstances you don't need to call this function, as the
547     module selects a default that is suitable for low to moderate load.
548    
549 root 1.2 =item BDB::max_parallel $nthreads
550 root 1.1
551 root 1.18 Sets the maximum number of BDB threads to C<$nthreads>. If more than the
552 root 1.1 specified number of threads are currently running, this function kills
553     them. This function blocks until the limit is reached.
554    
555     While C<$nthreads> are zero, aio requests get queued but not executed
556     until the number of threads has been increased again.
557    
558     This module automatically runs C<max_parallel 0> at program end, to ensure
559     that all threads are killed and that there are no outstanding requests.
560    
561     Under normal circumstances you don't need to call this function.
562    
563 root 1.2 =item BDB::max_idle $nthreads
564 root 1.1
565     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
566     threads that did not get a request to process within 10 seconds). That
567     means if a thread becomes idle while C<$nthreads> other threads are also
568     idle, it will free its resources and exit.
569    
570     This is useful when you allow a large number of threads (e.g. 100 or 1000)
571     to allow for extremely high load situations, but want to free resources
572     under normal circumstances (1000 threads can easily consume 30MB of RAM).
573    
574     The default is probably ok in most situations, especially if thread
575     creation is fast. If thread creation is very slow on your system you might
576     want to use larger values.
577    
578 root 1.2 =item $oldmaxreqs = BDB::max_outstanding $maxreqs
579 root 1.1
580     This is a very bad function to use in interactive programs because it
581     blocks, and a bad way to reduce concurrency because it is inexact: Better
582     use an C<aio_group> together with a feed callback.
583    
584     Sets the maximum number of outstanding requests to C<$nreqs>. If you
585     to queue up more than this number of requests, the next call to the
586     C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
587     function will block until the limit is no longer exceeded.
588    
589     The default value is very large, so there is no practical limit on the
590     number of outstanding requests.
591    
592     You can still queue as many requests as you want. Therefore,
593     C<max_oustsanding> is mainly useful in simple scripts (with low values) or
594     as a stop gap to shield against fatal memory overflow (with large values).
595    
596 root 1.3 =item BDB::set_sync_prepare $cb
597    
598     Sets a callback that is called whenever a request is created without an
599     explicit callback. It has to return two code references. The first is used
600     as the request callback, and the second is called to wait until the first
601     callback has been called. The default implementation works like this:
602    
603     sub {
604     my $status;
605     (
606     sub { $status = $! },
607     sub { BDB::poll while !defined $status; $! = $status },
608     )
609     }
610    
611     =back
612    
613 root 1.1 =head3 STATISTICAL INFORMATION
614    
615 root 1.3 =over 4
616    
617 root 1.2 =item BDB::nreqs
618 root 1.1
619     Returns the number of requests currently in the ready, execute or pending
620     states (i.e. for which their callback has not been invoked yet).
621    
622     Example: wait till there are no outstanding requests anymore:
623    
624 root 1.2 BDB::poll_wait, BDB::poll_cb
625     while BDB::nreqs;
626 root 1.1
627 root 1.2 =item BDB::nready
628 root 1.1
629     Returns the number of requests currently in the ready state (not yet
630     executed).
631    
632 root 1.2 =item BDB::npending
633 root 1.1
634     Returns the number of requests currently in the pending state (executed,
635     but not yet processed by poll_cb).
636    
637     =back
638    
639     =cut
640    
641 root 1.3 set_sync_prepare {
642     my $status;
643     (
644     sub {
645     $status = $!;
646     },
647     sub {
648     BDB::poll while !defined $status;
649     $! = $status;
650     },
651     )
652     };
653    
654 root 1.1 min_parallel 8;
655    
656     END { flush }
657    
658     1;
659    
660     =head2 FORK BEHAVIOUR
661    
662     This module should do "the right thing" when the process using it forks:
663    
664 root 1.18 Before the fork, BDB enters a quiescent state where no requests
665 root 1.1 can be added in other threads and no results will be processed. After
666     the fork the parent simply leaves the quiescent state and continues
667     request/result processing, while the child frees the request/result queue
668     (so that the requests started before the fork will only be handled in the
669     parent). Threads will be started on demand until the limit set in the
670     parent process has been reached again.
671    
672     In short: the parent will, after a short pause, continue as if fork had
673 root 1.18 not been called, while the child will act as if BDB has not been used
674 root 1.1 yet.
675    
676 root 1.26 Win32 note: there is no fork on win32, and perls emulation of it is too
677     broken to be supported, so do not use BDB in a windows pseudo-fork, better
678     yet, switch to a more capable platform.
679    
680 root 1.1 =head2 MEMORY USAGE
681    
682     Per-request usage:
683    
684     Each aio request uses - depending on your architecture - around 100-200
685     bytes of memory. In addition, stat requests need a stat buffer (possibly
686     a few hundred bytes), readdir requires a result buffer and so on. Perl
687     scalars and other data passed into aio requests will also be locked and
688     will consume memory till the request has entered the done state.
689    
690 root 1.13 This is not awfully much, so queuing lots of requests is not usually a
691 root 1.1 problem.
692    
693     Per-thread usage:
694    
695     In the execution phase, some aio requests require more memory for
696     temporary buffers, and each thread requires a stack and other data
697     structures (usually around 16k-128k, depending on the OS).
698    
699     =head1 KNOWN BUGS
700    
701 root 1.15 Known bugs will be fixed in the next release, except:
702    
703     If you use a transaction in any request, and the request returns
704     with an operating system error or DB_LOCK_NOTGRANTED, the internal
705     TXN_DEADLOCK flag will be set on the transaction. See C<db_txn_finish>,
706     above.
707 root 1.1
708     =head1 SEE ALSO
709    
710 root 1.18 L<Coro::BDB>, L<IO::AIO>.
711 root 1.1
712     =head1 AUTHOR
713    
714     Marc Lehmann <schmorp@schmorp.de>
715     http://home.schmorp.de/
716    
717     =cut
718