ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Convert-BER-XS/XS.pm
Revision: 1.33
Committed: Sat Apr 20 17:23:21 2019 UTC (5 years, 1 month ago) by root
Branch: MAIN
Changes since 1.32: +4 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.4 Convert::BER::XS - I<very> low level BER en-/decoding
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use Convert::BER::XS ':all';
8    
9 root 1.20 my $ber = ber_decode $buf, $Convert::BER::XS::SNMP_PROFILE
10 root 1.6 or die "unable to decode SNMP message";
11 root 1.1
12 root 1.13 # The above results in a data structure consisting of
13 root 1.29 # (class, tag, flags, data)
14 root 1.13 # tuples. Below is such a message, SNMPv1 trap
15 root 1.6 # with a Cisco mac change notification.
16 root 1.13 # Did you know that Cisco is in the news almost
17 root 1.20 # every week because of some backdoor password
18 root 1.13 # or other extremely stupid security bug?
19 root 1.3
20     [ ASN_UNIVERSAL, ASN_SEQUENCE, 1,
21     [
22 root 1.25 [ ASN_UNIVERSAL, ASN_INTEGER, 0, 0 ], # snmp version 1
23 root 1.3 [ ASN_UNIVERSAL, 4, 0, "public" ], # community
24 root 1.6 [ ASN_CONTEXT, 4, 1, # CHOICE, constructed - trap PDU
25 root 1.3 [
26     [ ASN_UNIVERSAL, ASN_OBJECT_IDENTIFIER, 0, "1.3.6.1.4.1.9.9.215.2" ], # enterprise oid
27 root 1.20 [ ASN_APPLICATION, SNMP_IPADDRESS, 0, "10.0.0.1" ], # SNMP IpAddress
28 root 1.25 [ ASN_UNIVERSAL, ASN_INTEGER, 0, 6 ], # generic trap
29     [ ASN_UNIVERSAL, ASN_INTEGER, 0, 1 ], # specific trap
30 root 1.20 [ ASN_APPLICATION, SNMP_TIMETICKS, 0, 1817903850 ], # SNMP TimeTicks
31 root 1.3 [ ASN_UNIVERSAL, ASN_SEQUENCE, 1, # the varbindlist
32     [
33     [ ASN_UNIVERSAL, ASN_SEQUENCE, 1, # a single varbind, "key value" pair
34     [
35 root 1.8 [ ASN_UNIVERSAL, ASN_OBJECT_IDENTIFIER, 0, "1.3.6.1.4.1.9.9.215.1.1.8.1.2.1" ],
36 root 1.3 [ ASN_UNIVERSAL, ASN_OCTET_STRING, 0, "...data..." # the value
37     ]
38     ]
39     ],
40     ...
41    
42     # let's decode it a bit with some helper functions
43    
44 root 1.1 my $msg = ber_is_seq $ber
45     or die "SNMP message does not start with a sequence";
46    
47 root 1.25 ber_is $msg->[0], ASN_UNIVERSAL, ASN_INTEGER, 0
48 root 1.1 or die "SNMP message does not start with snmp version\n";
49    
50 root 1.3 # message is SNMP v1 or v2c?
51 root 1.1 if ($msg->[0][BER_DATA] == 0 || $msg->[0][BER_DATA] == 1) {
52    
53 root 1.3 # message is v1 trap?
54 root 1.1 if (ber_is $msg->[2], ASN_CONTEXT, 4, 1) {
55     my $trap = $msg->[2][BER_DATA];
56    
57     # check whether trap is a cisco mac notification mac changed message
58     if (
59     (ber_is_oid $trap->[0], "1.3.6.1.4.1.9.9.215.2") # cmnInterfaceObjects
60 root 1.25 and (ber_is_int $trap->[2], 6)
61     and (ber_is_int $trap->[3], 1) # mac changed msg
62 root 1.1 ) {
63     ... and so on
64    
65 root 1.4 # finally, let's encode it again and hope it results in the same bit pattern
66    
67 root 1.20 my $buf = ber_encode $ber, $Convert::BER::XS::SNMP_PROFILE;
68 root 1.4
69 root 1.1 =head1 DESCRIPTION
70    
71 root 1.7 WARNING: Before release 1.0, the API is not considered stable in any way.
72    
73 root 1.4 This module implements a I<very> low level BER/DER en-/decoder.
74 root 1.1
75 root 1.20 It is tuned for low memory and high speed, while still maintaining some
76 root 1.1 level of user-friendlyness.
77    
78 root 1.19 =head2 EXPORT TAGS AND CONSTANTS
79    
80     By default this module doesn't export any symbols, but if you don't want
81 root 1.23 to break your keyboard, editor or eyesight with extremely long names, I
82 root 1.19 recommend importing the C<:all> tag. Still, you can selectively import
83 root 1.21 things.
84 root 1.19
85     =over
86    
87 root 1.21 =item C<:all>
88 root 1.19
89 root 1.23 All of the below. Really. Recommended for at least first steps, or if you
90 root 1.19 don't care about a few kilobytes of wasted memory (and namespace).
91    
92 root 1.21 =item C<:const>
93 root 1.19
94 root 1.23 All of the strictly ASN.1-related constants defined by this module, the
95 root 1.19 same as C<:const_asn :const_index>. Notably, this does not contain
96     C<:const_ber_type> and C<:const_snmp>.
97    
98     A good set to get everything you need to decode and match BER data would be
99     C<:decode :const>.
100    
101 root 1.22 =item C<:const_index>
102 root 1.19
103     The BER tuple array index constants:
104    
105 root 1.28 BER_CLASS BER_TAG BER_FLAGS BER_DATA
106 root 1.19
107     =item C<:const_asn>
108    
109 root 1.23 ASN class values (these are C<0>, C<1>, C<2> and C<3>, respectively -
110     exactly thw two topmost bits from the identifier octet shifted 6 bits to
111 root 1.19 the right):
112    
113     ASN_UNIVERSAL ASN_APPLICATION ASN_CONTEXT ASN_PRIVATE
114    
115     ASN tag values (some of which are aliases, such as C<ASN_OID>). Their
116     numerical value corresponds exactly to the numbers used in BER/X.690.
117    
118 root 1.25 ASN_BOOLEAN ASN_INTEGER ASN_BIT_STRING ASN_OCTET_STRING ASN_NULL ASN_OBJECT_IDENTIFIER
119 root 1.19 ASN_OBJECT_DESCRIPTOR ASN_OID ASN_EXTERNAL ASN_REAL ASN_SEQUENCE ASN_ENUMERATED
120     ASN_EMBEDDED_PDV ASN_UTF8_STRING ASN_RELATIVE_OID ASN_SET ASN_NUMERIC_STRING
121     ASN_PRINTABLE_STRING ASN_TELETEX_STRING ASN_T61_STRING ASN_VIDEOTEX_STRING ASN_IA5_STRING
122     ASN_ASCII_STRING ASN_UTC_TIME ASN_GENERALIZED_TIME ASN_GRAPHIC_STRING ASN_VISIBLE_STRING
123     ASN_ISO646_STRING ASN_GENERAL_STRING ASN_UNIVERSAL_STRING ASN_CHARACTER_STRING ASN_BMP_STRING
124    
125     =item C<:const_ber_type>
126    
127     The BER type constants, explained in the PROFILES section.
128    
129     BER_TYPE_BYTES BER_TYPE_UTF8 BER_TYPE_UCS2 BER_TYPE_UCS4 BER_TYPE_INT
130     BER_TYPE_OID BER_TYPE_RELOID BER_TYPE_NULL BER_TYPE_BOOL BER_TYPE_REAL
131     BER_TYPE_IPADDRESS BER_TYPE_CROAK
132    
133     =item C<:const_snmp>
134    
135     Constants only relevant to SNMP. These are the tag values used by SNMP in
136     the C<ASN_APPLICATION> namespace and have the exact numerical value as in
137     BER/RFC 2578.
138    
139 root 1.33 SNMP_IPADDRESS SNMP_COUNTER32 SNMP_UNSIGNED32 SNMP_GAUGE32
140     SNMP_TIMETICKS SNMP_OPAQUE SNMP_COUNTER64
141 root 1.19
142     =item C<:decode>
143    
144     C<ber_decode> and the match helper functions:
145    
146 root 1.25 ber_decode ber_is ber_is_seq ber_is_int ber_is_oid
147 root 1.19
148     =item C<:encode>
149    
150     C<ber_encode> and the construction helper functions:
151    
152 root 1.25 ber_encode ber_int
153 root 1.19
154     =back
155    
156 root 1.4 =head2 ASN.1/BER/DER/... BASICS
157    
158 root 1.15 ASN.1 is a strange language that can be used to describe protocols and
159 root 1.4 data structures. It supports various mappings to JSON, XML, but most
160     importantly, to a various binary encodings such as BER, that is the topic
161 root 1.27 of this module, and is used in SNMP, LDAP or X.509 for example.
162 root 1.4
163     While ASN.1 defines a schema that is useful to interpret encoded data,
164 root 1.12 the BER encoding is actually somewhat self-describing: you might not know
165 root 1.4 whether something is a string or a number or a sequence or something else,
166     but you can nevertheless decode the overall structure, even if you end up
167     with just a binary blob for the actual value.
168    
169     This works because BER values are tagged with a type and a namespace,
170 root 1.15 and also have a flag that says whether a value consists of subvalues (is
171 root 1.4 "constructed") or not (is "primitive").
172    
173 root 1.25 Tags are simple integers, and ASN.1 defines a somewhat weird assortment
174     of those - for example, you have one integers and 16(!) different
175 root 1.23 string types, but there is no Unsigned32 type for example. Different
176 root 1.4 applications work around this in different ways, for example, SNMP defines
177     application-specific Gauge32, Counter32 and Unsigned32, which are mapped
178     to two different tags: you can distinguish between Counter32 and the
179     others, but not between Gause32 and Unsigned32, without the ASN.1 schema.
180    
181     Ugh.
182    
183     =head2 DECODED BER REPRESENTATION
184    
185     This module represents every BER value as a 4-element tuple (actually an
186     array-reference):
187    
188 root 1.28 [CLASS, TAG, FLAGS, DATA]
189 root 1.4
190 root 1.23 For example:
191    
192 root 1.25 [ASN_UNIVERSAL, ASN_INTEGER, 0, 177] # the integer 177
193 root 1.23 [ASN_UNIVERSAL, ASN_OCTET_STRING, 0, "john"] # the string "john"
194     [ASN_UNIVERSAL, ASN_OID, 0, "1.3.6.133"] # some OID
195 root 1.24 [ASN_UNIVERSAL, ASN_SEQUENCE, 1, [ [ASN_UNIVERSAL... # a sequence
196 root 1.23
197 root 1.6 To avoid non-descriptive hardcoded array index numbers, this module
198     defines symbolic constants to access these members: C<BER_CLASS>,
199 root 1.28 C<BER_TAG>, C<BER_FLAGS> and C<BER_DATA>.
200 root 1.6
201     Also, the first three members are integers with a little caveat: for
202     performance reasons, these are readonly and shared, so you must not modify
203     them (increment, assign to them etc.) in any way. You may modify the
204     I<DATA> member, and you may re-assign the array itself, e.g.:
205    
206     $ber = ber_decode $binbuf;
207    
208     # the following is NOT legal:
209 root 1.28 $ber->[BER_CLASS] = ASN_PRIVATE; # ERROR, CLASS/TAG/FLAGS are READ ONLY(!)
210 root 1.6
211     # but all of the following are fine:
212     $ber->[BER_DATA] = "string";
213 root 1.25 $ber->[BER_DATA] = [ASN_UNIVERSAL, ASN_INTEGER, 0, 123];
214 root 1.11 @$ber = (ASN_APPLICATION, SNMP_TIMETICKS, 0, 1000);
215 root 1.6
216 root 1.4 I<CLASS> is something like a namespace for I<TAG>s - there is the
217     C<ASN_UNIVERSAL> namespace which defines tags common to all ASN.1
218     implementations, the C<ASN_APPLICATION> namespace which defines tags for
219     specific applications (for example, the SNMP C<Unsigned32> type is in this
220     namespace), a special-purpose context namespace (C<ASN_CONTEXT>, used e.g.
221     for C<CHOICE>) and a private namespace (C<ASN_PRIVATE>).
222    
223     The meaning of the I<TAG> depends on the namespace, and defines a
224 root 1.24 (partial) interpretation of the data value. For example, SNMP defines
225     extra tags in the C<ASN_APPLICATION> namespace, and to take full advantage
226     of these, you need to tell this module how to handle those via profiles.
227 root 1.4
228     The most common tags in the C<ASN_UNIVERSAL> namespace are
229 root 1.25 C<ASN_INTEGER>, C<ASN_BIT_STRING>, C<ASN_NULL>, C<ASN_OCTET_STRING>,
230 root 1.4 C<ASN_OBJECT_IDENTIFIER>, C<ASN_SEQUENCE>, C<ASN_SET> and
231     C<ASN_IA5_STRING>.
232    
233 root 1.24 The most common tags in SNMP's C<ASN_APPLICATION> namespace are
234     C<SNMP_COUNTER32>, C<SNMP_UNSIGNED32>, C<SNMP_TIMETICKS> and
235     C<SNMP_COUNTER64>.
236 root 1.4
237 root 1.28 The I<FLAGS> value is really just a boolean at this time (but might
238     get extended) - if it is C<0>, the value is "primitive" and contains
239     no subvalues, kind of like a non-reference perl scalar. If it is C<1>,
240     then the value is "constructed" which just means it contains a list of
241     subvalues which this module will en-/decode as BER tuples themselves.
242    
243     The I<DATA> value is either a reference to an array of further tuples
244     (if the value is I<FLAGS>), some decoded representation of the value, if
245     this module knows how to decode it (e.g. for the integer types above) or
246     a binary string with the raw octets if this module doesn't know how to
247 root 1.4 interpret the namespace/tag.
248    
249     Thus, you can always decode a BER data structure and at worst you get a
250     string in place of some nice decoded value.
251    
252     See the SYNOPSIS for an example of such an encoded tuple representation.
253    
254 root 1.7 =head2 DECODING AND ENCODING
255    
256     =over
257    
258 root 1.24 =item $tuple = ber_decoded $bindata[, $profile]
259 root 1.7
260     Decodes binary BER data in C<$bindata> and returns the resulting BER
261     tuple. Croaks on any decoding error, so the returned C<$tuple> is always
262     valid.
263    
264 root 1.24 How tags are interpreted is defined by the second argument, which must
265     be a C<Convert::BER::XS::Profile> object. If it is missing, the default
266     profile will be used (C<$Convert::BER::XS::DEFAULT_PROFILE>).
267    
268     In addition to rolling your own, this module provides a
269     C<$Convert::BER::XS::SNMP_PROFILE> that knows about the additional SNMP
270     types.
271 root 1.7
272 root 1.25 Example: decode a BER blob using the default profile - SNMP values will be
273     decided as raw strings.
274    
275     $tuple = ber_decode $data;
276    
277     Example: as above, but use the provided SNMP profile.
278    
279     $tuple = ber_encode $data, $Convert::BER::XS::SNMP_PROFILE;
280    
281 root 1.24 =item $bindata = ber_encode $tuple[, $profile]
282    
283     Encodes the BER tuple into a BER/DER data structure. AS with
284     Cyber_decode>, an optional profile can be given.
285 root 1.7
286 root 1.28 The encoded data should be both BER and DER ("shortest form") compliant
287     unless the input says otherwise (e.g. it uses constructed strings).
288    
289 root 1.7 =back
290    
291 root 1.6 =head2 HELPER FUNCTIONS
292    
293     Working with a 4-tuple for every value can be annoying. Or, rather, I<is>
294     annoying. To reduce this a bit, this module defines a number of helper
295 root 1.24 functions, both to match BER tuples and to construct BER tuples:
296 root 1.6
297     =head3 MATCH HELPERS
298    
299 root 1.24 These functions accept a BER tuple as first argument and either partially
300 root 1.6 or fully match it. They often come in two forms, one which exactly matches
301     a value, and one which only matches the type and returns the value.
302    
303     They do check whether valid tuples are passed in and croak otherwise. As
304     a ease-of-use exception, they usually also accept C<undef> instead of a
305 root 1.24 tuple reference, in which case they silently fail to match.
306 root 1.6
307     =over
308    
309 root 1.29 =item $bool = ber_is $tuple, $class, $tag, $flags, $data
310 root 1.6
311 root 1.24 This takes a BER C<$tuple> and matches its elements against the provided
312 root 1.6 values, all of which are optional - values that are either missing or
313     C<undef> will be ignored, the others will be matched exactly (e.g. as if
314     you used C<==> or C<eq> (for C<$data>)).
315    
316     Some examples:
317    
318     ber_is $tuple, ASN_UNIVERSAL, ASN_SEQUENCE, 1
319     orf die "tuple is not an ASN SEQUENCE";
320    
321     ber_is $tuple, ASN_UNIVERSAL, ASN_NULL
322     or die "tuple is not an ASN NULL value";
323    
324 root 1.25 ber_is $tuple, ASN_UNIVERSAL, ASN_INTEGER, 0, 50
325 root 1.6 or die "BER integer must be 50";
326    
327     =item $seq = ber_is_seq $tuple
328    
329     Returns the sequence members (the array of subvalues) if the C<$tuple> is
330     an ASN SEQUENCE, i.e. the C<BER_DATA> member. If the C<$tuple> is not a
331     sequence it returns C<undef>. For example, SNMP version 1/2c/3 packets all
332     consist of an outer SEQUENCE value:
333    
334     my $ber = ber_decode $snmp_data;
335    
336     my $snmp = ber_is_seq $ber
337     or die "SNMP packet invalid: does not start with SEQUENCE";
338    
339     # now we know $snmp is a sequence, so decode the SNMP version
340    
341 root 1.25 my $version = ber_is_int $snmp->[0]
342 root 1.6 or die "SNMP packet invalid: does not start with version number";
343    
344 root 1.25 =item $bool = ber_is_int $tuple, $int
345 root 1.6
346 root 1.25 Returns a true value if the C<$tuple> represents an ASN INTEGER with
347     the value C<$int>.
348 root 1.6
349 root 1.25 =item $int = ber_is_int $tuple
350 root 1.6
351 root 1.25 Returns true (and extracts the integer value) if the C<$tuple> is an
352     C<ASN_INTEGER>. For C<0>, this function returns a special value that is 0
353     but true.
354 root 1.6
355     =item $bool = ber_is_oid $tuple, $oid_string
356    
357     Returns true if the C<$tuple> represents an ASN_OBJECT_IDENTIFIER
358 root 1.12 that exactly matches C<$oid_string>. Example:
359 root 1.6
360     ber_is_oid $tuple, "1.3.6.1.4"
361     or die "oid must be 1.3.6.1.4";
362    
363     =item $oid = ber_is_oid $tuple
364    
365     Returns true (and extracts the OID string) if the C<$tuple> is an ASN
366     OBJECT IDENTIFIER. Otherwise, it returns C<undef>.
367    
368     =back
369    
370     =head3 CONSTRUCTION HELPERS
371    
372     =over
373    
374 root 1.25 =item $tuple = ber_int $value
375 root 1.6
376 root 1.25 Constructs a new C<ASN_INTEGER> tuple.
377 root 1.6
378     =back
379    
380 root 1.2 =head2 RELATIONSHIP TO L<Convert::BER> and L<Convert::ASN1>
381    
382     This module is I<not> the XS version of L<Convert::BER>, but a different
383     take at doing the same thing. I imagine this module would be a good base
384 root 1.4 for speeding up either of these, or write a similar module, or write your
385 root 1.2 own LDAP or SNMP module for example.
386    
387 root 1.1 =cut
388    
389     package Convert::BER::XS;
390    
391     use common::sense;
392    
393     use XSLoader ();
394     use Exporter qw(import);
395    
396 root 1.13 our $VERSION;
397 root 1.1
398 root 1.13 BEGIN {
399 root 1.31 $VERSION = 0.9;
400 root 1.13 XSLoader::load __PACKAGE__, $VERSION;
401     }
402 root 1.1
403     our %EXPORT_TAGS = (
404 root 1.19 const_index => [qw(
405 root 1.28 BER_CLASS BER_TAG BER_FLAGS BER_DATA
406 root 1.19 )],
407     const_asn => [qw(
408 root 1.25 ASN_BOOLEAN ASN_INTEGER ASN_BIT_STRING ASN_OCTET_STRING ASN_NULL ASN_OBJECT_IDENTIFIER
409 root 1.13 ASN_OBJECT_DESCRIPTOR ASN_OID ASN_EXTERNAL ASN_REAL ASN_SEQUENCE ASN_ENUMERATED
410     ASN_EMBEDDED_PDV ASN_UTF8_STRING ASN_RELATIVE_OID ASN_SET ASN_NUMERIC_STRING
411     ASN_PRINTABLE_STRING ASN_TELETEX_STRING ASN_T61_STRING ASN_VIDEOTEX_STRING ASN_IA5_STRING
412     ASN_ASCII_STRING ASN_UTC_TIME ASN_GENERALIZED_TIME ASN_GRAPHIC_STRING ASN_VISIBLE_STRING
413     ASN_ISO646_STRING ASN_GENERAL_STRING ASN_UNIVERSAL_STRING ASN_CHARACTER_STRING ASN_BMP_STRING
414    
415     ASN_UNIVERSAL ASN_APPLICATION ASN_CONTEXT ASN_PRIVATE
416 root 1.19 )],
417     const_ber_type => [qw(
418 root 1.13 BER_TYPE_BYTES BER_TYPE_UTF8 BER_TYPE_UCS2 BER_TYPE_UCS4 BER_TYPE_INT
419     BER_TYPE_OID BER_TYPE_RELOID BER_TYPE_NULL BER_TYPE_BOOL BER_TYPE_REAL
420     BER_TYPE_IPADDRESS BER_TYPE_CROAK
421     )],
422     const_snmp => [qw(
423 root 1.33 SNMP_IPADDRESS SNMP_COUNTER32 SNMP_GAUGE32 SNMP_UNSIGNED32
424     SNMP_TIMETICKS SNMP_OPAQUE SNMP_COUNTER64
425 root 1.4 )],
426 root 1.19 decode => [qw(
427 root 1.4 ber_decode
428 root 1.25 ber_is ber_is_seq ber_is_int ber_is_oid
429 root 1.4 )],
430 root 1.19 encode => [qw(
431 root 1.4 ber_encode
432 root 1.25 ber_int
433 root 1.1 )],
434     );
435    
436     our @EXPORT_OK = map @$_, values %EXPORT_TAGS;
437    
438 root 1.4 $EXPORT_TAGS{all} = \@EXPORT_OK;
439 root 1.19 $EXPORT_TAGS{const} = [map @{ $EXPORT_TAGS{$_} }, qw(const_index const_asn)];
440 root 1.4
441 root 1.13 =head1 PROFILES
442    
443     While any BER data can be correctly encoded and decoded out of the box, it
444     can be inconvenient to have to manually decode some values into a "better"
445     format: for instance, SNMP TimeTicks values are decoded into the raw octet
446     strings of their BER representation, which is quite hard to decode. With
447     profiles, you can change which class/tag combinations map to which decoder
448     function inside C<ber_decode> (and of course also which encoder functions
449     are used in C<ber_encode>).
450    
451     This works by mapping specific class/tag combinations to an internal "ber
452     type".
453    
454     The default profile supports the standard ASN.1 types, but no
455     application-specific ones. This means that class/tag combinations not in
456     the base set of ASN.1 are decoded into their raw octet strings.
457    
458 root 1.15 C<Convert::BER::XS> defines two profile variables you can use out of the box:
459 root 1.13
460     =over
461    
462     =item C<$Convert::BER::XS::DEFAULT_PROFILE>
463    
464     This is the default profile, i.e. the profile that is used when no
465     profile is specified for de-/encoding.
466    
467 root 1.15 You can modify it, but remember that this modifies the defaults for all
468     callers that rely on the default profile.
469 root 1.13
470     =item C<$Convert::BER::XS::SNMP_PROFILE>
471    
472     A profile with mappings for SNMP-specific application tags added. This is
473     useful when de-/encoding SNMP data.
474    
475     Example:
476 root 1.15
477 root 1.13 $ber = ber_decode $data, $Convert::BER::XS::SNMP_PROFILE;
478    
479     =back
480    
481     =head2 The Convert::BER::XS::Profile class
482    
483     =over
484    
485     =item $profile = new Convert::BER::XS::Profile
486    
487     Create a new profile. The profile will be identical to the default
488     profile.
489    
490     =item $profile->set ($class, $tag, $type)
491    
492     Sets the mapping for the given C<$class>/C<$tag> combination to C<$type>,
493     which must be one of the C<BER_TYPE_*> constants.
494    
495     Note that currently, the mapping is stored in a flat array, so large
496     values of C<$tag> will consume large amounts of memory.
497    
498     Example:
499 root 1.15
500 root 1.13 $profile = new Convert::BER::XS::Profile;
501     $profile->set (ASN_APPLICATION, SNMP_COUNTER32, BER_TYPE_INT);
502     $ber = ber_decode $data, $profile;
503    
504     =item $type = $profile->get ($class, $tag)
505    
506     Returns the BER type mapped to the given C<$class>/C<$tag> combination.
507    
508     =back
509    
510     =head2 BER TYPES
511    
512     This lists the predefined BER types - you can map any C<CLASS>/C<TAG>
513     combination to any C<BER_TYPE_*>.
514    
515     =over
516    
517     =item C<BER_TYPE_BYTES>
518    
519     The raw octets of the value. This is the default type for unknown tags and
520     de-/encodes the value as if it were an octet string, i.e. by copying the
521     raw bytes.
522    
523     =item C<BER_TYPE_UTF8>
524    
525     Like C<BER_TYPE_BYTES>, but decodes the value as if it were a UTF-8 string
526     (without validation!) and encodes a perl unicode string into a UTF-8 BER
527     string.
528    
529     =item C<BER_TYPE_UCS2>
530    
531     Similar to C<BER_TYPE_UTF8>, but treats the BER value as UCS-2 encoded
532 root 1.14 string.
533 root 1.13
534     =item C<BER_TYPE_UCS4>
535    
536     Similar to C<BER_TYPE_UTF8>, but treats the BER value as UCS-4 encoded
537 root 1.14 string.
538 root 1.13
539     =item C<BER_TYPE_INT>
540    
541     Encodes and decodes a BER integer value to a perl integer scalar. This
542     should correctly handle 64 bit signed and unsigned values.
543    
544     =item C<BER_TYPE_OID>
545    
546     Encodes and decodes an OBJECT IDENTIFIER into dotted form without leading
547     dot, e.g. C<1.3.6.1.213>.
548    
549     =item C<BER_TYPE_RELOID>
550    
551 root 1.15 Same as C<BER_TYPE_OID> but uses relative object identifier
552     encoding: ASN.1 has this hack of encoding the first two OID components
553     into a single integer in a weird attempt to save an insignificant amount
554     of space in an otherwise wasteful encoding, and relative OIDs are
555     basically OIDs without this hack. The practical difference is that the
556     second component of an OID can only have the values 1..40, while relative
557     OIDs do not have this restriction.
558 root 1.13
559     =item C<BER_TYPE_NULL>
560    
561     Decodes an C<ASN_NULL> value into C<undef>, and always encodes a
562     C<ASN_NULL> type, regardless of the perl value.
563    
564     =item C<BER_TYPE_BOOL>
565    
566     Decodes an C<ASN_BOOLEAN> value into C<0> or C<1>, and encodes a perl
567     boolean value into an C<ASN_BOOLEAN>.
568    
569     =item C<BER_TYPE_REAL>
570    
571     Decodes/encodes a BER real value. NOT IMPLEMENTED.
572    
573     =item C<BER_TYPE_IPADDRESS>
574    
575 root 1.15 Decodes/encodes a four byte string into an IPv4 dotted-quad address string
576     in Perl. Given the obsolete nature of this type, this is a low-effort
577 root 1.13 implementation that simply uses C<sprintf> and C<sscanf>-style conversion,
578 root 1.15 so it won't handle all string forms supported by C<inet_aton> for example.
579 root 1.13
580     =item C<BER_TYPE_CROAK>
581    
582     Always croaks when encountered during encoding or decoding - the
583     default behaviour when encountering an unknown type is to treat it as
584     C<BER_TYPE_BYTES>. When you don't want that but instead prefer a hard
585 root 1.16 error for some types, then C<BER_TYPE_CROAK> is for you.
586 root 1.13
587     =back
588    
589 root 1.30 =head2 Example Profile
590    
591     The following creates a profile suitable for SNMP - it's exactly identical
592     to the C<$Convert::BER::XS::SNMP_PROFILE> profile.
593    
594     our $SNMP_PROFILE = new Convert::BER::XS::Profile;
595    
596     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_IPADDRESS , BER_TYPE_IPADDRESS);
597     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_COUNTER32 , BER_TYPE_INT);
598     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_UNSIGNED32, BER_TYPE_INT);
599     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_TIMETICKS , BER_TYPE_INT);
600     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_OPAQUE , BER_TYPE_IPADDRESS);
601     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_COUNTER64 , BER_TYPE_INT);
602    
603 root 1.13 =cut
604    
605     our $DEFAULT_PROFILE = new Convert::BER::XS::Profile;
606 root 1.30
607     $DEFAULT_PROFILE->_set_default;
608 root 1.13
609 root 1.19 # additional SNMP application types
610 root 1.30 our $SNMP_PROFILE = new Convert::BER::XS::Profile;
611 root 1.31
612 root 1.13 $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_IPADDRESS , BER_TYPE_IPADDRESS);
613     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_COUNTER32 , BER_TYPE_INT);
614     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_UNSIGNED32, BER_TYPE_INT);
615     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_TIMETICKS , BER_TYPE_INT);
616     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_OPAQUE , BER_TYPE_IPADDRESS);
617     $SNMP_PROFILE->set (ASN_APPLICATION, SNMP_COUNTER64 , BER_TYPE_INT);
618    
619 root 1.1 1;
620    
621 root 1.19 =head2 LIMITATIONS/NOTES
622 root 1.13
623     This module can only en-/decode 64 bit signed and unsigned integers, and
624     only when your perl supports those.
625 root 1.4
626 root 1.19 This module does not generally care about ranges, i.e. it will happily
627 root 1.25 de-/encode 64 bit integers into an C<ASN_INTEGER> value, or a negative
628 root 1.19 number into an C<SNMP_COUNTER64>.
629    
630 root 1.16 OBJECT IDENTIFIEERs cannot have unlimited length, although the limit is
631 root 1.19 much larger than e.g. the one imposed by SNMP or other protocols,a nd is
632     about 4kB.
633 root 1.4
634 root 1.28 Indefinite length encoding is not supported.
635    
636     Constructed strings are decoded just fine, but there should be a way to
637     join them for convenience.
638    
639 root 1.19 REAL values are not supported and will currently croak.
640 root 1.14
641 root 1.32 The encoder and decoder tend to accept more formats than should be
642     strictly supported.
643    
644 root 1.14 This module has undergone little to no testing so far.
645    
646 root 1.17 =head2 ITHREADS SUPPORT
647    
648     This module is unlikely to work when the (officially discouraged) ithreads
649     are in use.
650    
651 root 1.1 =head1 AUTHOR
652    
653     Marc Lehmann <schmorp@schmorp.de>
654     http://software.schmorp.de/pkg/Convert-BER-XS
655    
656     =cut
657