ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
Revision: 1.140
Committed: Thu Sep 27 16:25:10 2007 UTC (16 years, 7 months ago) by root
Branch: MAIN
Changes since 1.139: +0 -8 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.8 Coro - coroutine process abstraction
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use Coro;
8    
9 root 1.8 async {
10     # some asynchronous thread of execution
11 root 1.2 };
12    
13 root 1.92 # alternatively create an async coroutine like this:
14 root 1.6
15 root 1.8 sub some_func : Coro {
16     # some more async code
17     }
18    
19 root 1.22 cede;
20 root 1.2
21 root 1.1 =head1 DESCRIPTION
22    
23 root 1.98 This module collection manages coroutines. Coroutines are similar
24     to threads but don't run in parallel at the same time even on SMP
25 root 1.124 machines. The specific flavor of coroutine used in this module also
26     guarantees you that it will not switch between coroutines unless
27 root 1.98 necessary, at easily-identified points in your program, so locking and
28     parallel access are rarely an issue, making coroutine programming much
29     safer than threads programming.
30    
31     (Perl, however, does not natively support real threads but instead does a
32     very slow and memory-intensive emulation of processes using threads. This
33     is a performance win on Windows machines, and a loss everywhere else).
34    
35     In this module, coroutines are defined as "callchain + lexical variables +
36     @_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37     its own set of lexicals and its own set of perls most important global
38     variables.
39 root 1.22
40 root 1.8 =cut
41    
42     package Coro;
43    
44 root 1.71 use strict;
45     no warnings "uninitialized";
46 root 1.36
47 root 1.8 use Coro::State;
48    
49 root 1.83 use base qw(Coro::State Exporter);
50 pcg 1.55
51 root 1.83 our $idle; # idle handler
52 root 1.71 our $main; # main coroutine
53     our $current; # current coroutine
54 root 1.8
55 root 1.138 our $VERSION = '3.8';
56 root 1.8
57 root 1.105 our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58 root 1.71 our %EXPORT_TAGS = (
59 root 1.31 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60     );
61 root 1.97 our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62 root 1.8
63     {
64     my @async;
65 root 1.26 my $init;
66 root 1.8
67     # this way of handling attributes simply is NOT scalable ;()
68     sub import {
69 root 1.71 no strict 'refs';
70    
71 root 1.93 Coro->export_to_level (1, @_);
72 root 1.71
73 root 1.8 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74     *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75     my ($package, $ref) = (shift, shift);
76     my @attrs;
77     for (@_) {
78     if ($_ eq "Coro") {
79     push @async, $ref;
80 root 1.26 unless ($init++) {
81     eval q{
82     sub INIT {
83     &async(pop @async) while @async;
84     }
85     };
86     }
87 root 1.8 } else {
88 root 1.17 push @attrs, $_;
89 root 1.8 }
90     }
91 root 1.17 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 root 1.8 };
93     }
94    
95     }
96    
97 root 1.43 =over 4
98    
99 root 1.8 =item $main
100 root 1.2
101 root 1.8 This coroutine represents the main program.
102 root 1.1
103     =cut
104    
105 pcg 1.55 $main = new Coro;
106 root 1.8
107 root 1.19 =item $current (or as function: current)
108 root 1.1
109 root 1.83 The current coroutine (the last coroutine switched to). The initial value
110     is C<$main> (of course).
111    
112     This variable is B<strictly> I<read-only>. It is provided for performance
113 root 1.124 reasons. If performance is not essential you are encouraged to use the
114 root 1.83 C<Coro::current> function instead.
115 root 1.1
116 root 1.8 =cut
117    
118 root 1.131 $main->{desc} = "[main::]";
119    
120 root 1.8 # maybe some other module used Coro::Specific before...
121 root 1.93 $main->{specific} = $current->{specific}
122     if $current;
123 root 1.1
124 root 1.93 _set_current $main;
125 root 1.19
126     sub current() { $current }
127 root 1.9
128     =item $idle
129    
130 root 1.83 A callback that is called whenever the scheduler finds no ready coroutines
131     to run. The default implementation prints "FATAL: deadlock detected" and
132 root 1.91 exits, because the program has no other way to continue.
133 root 1.83
134     This hook is overwritten by modules such as C<Coro::Timer> and
135 root 1.91 C<Coro::Event> to wait on an external event that hopefully wake up a
136     coroutine so the scheduler can run it.
137    
138     Please note that if your callback recursively invokes perl (e.g. for event
139     handlers), then it must be prepared to be called recursively.
140 root 1.9
141     =cut
142    
143 root 1.83 $idle = sub {
144 root 1.96 require Carp;
145     Carp::croak ("FATAL: deadlock detected");
146 root 1.9 };
147 root 1.8
148 root 1.103 sub _cancel {
149     my ($self) = @_;
150    
151     # free coroutine data and mark as destructed
152     $self->_destroy
153     or return;
154    
155     # call all destruction callbacks
156     $_->(@{$self->{status}})
157     for @{(delete $self->{destroy_cb}) || []};
158     }
159    
160 root 1.24 # this coroutine is necessary because a coroutine
161     # cannot destroy itself.
162     my @destroy;
163 root 1.103 my $manager;
164    
165     $manager = new Coro sub {
166 pcg 1.57 while () {
167 root 1.103 (shift @destroy)->_cancel
168     while @destroy;
169    
170 root 1.24 &schedule;
171     }
172     };
173 root 1.132 $manager->desc ("[coro manager]");
174 root 1.103 $manager->prio (PRIO_MAX);
175    
176 root 1.8 # static methods. not really.
177 root 1.43
178     =back
179 root 1.8
180     =head2 STATIC METHODS
181    
182 root 1.92 Static methods are actually functions that operate on the current coroutine only.
183 root 1.8
184     =over 4
185    
186 root 1.13 =item async { ... } [@args...]
187 root 1.8
188 root 1.92 Create a new asynchronous coroutine and return it's coroutine object
189     (usually unused). When the sub returns the new coroutine is automatically
190 root 1.8 terminated.
191    
192 root 1.122 Calling C<exit> in a coroutine will do the same as calling exit outside
193     the coroutine. Likewise, when the coroutine dies, the program will exit,
194     just as it would in the main program.
195 root 1.79
196 root 1.13 # create a new coroutine that just prints its arguments
197     async {
198     print "@_\n";
199     } 1,2,3,4;
200    
201 root 1.8 =cut
202    
203 root 1.13 sub async(&@) {
204 root 1.104 my $coro = new Coro @_;
205     $coro->ready;
206     $coro
207 root 1.8 }
208 root 1.1
209 root 1.105 =item async_pool { ... } [@args...]
210    
211     Similar to C<async>, but uses a coroutine pool, so you should not call
212     terminate or join (although you are allowed to), and you get a coroutine
213     that might have executed other code already (which can be good or bad :).
214    
215     Also, the block is executed in an C<eval> context and a warning will be
216 root 1.108 issued in case of an exception instead of terminating the program, as
217     C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
218     will not work in the expected way, unless you call terminate or cancel,
219     which somehow defeats the purpose of pooling.
220 root 1.105
221     The priority will be reset to C<0> after each job, otherwise the coroutine
222     will be re-used "as-is".
223    
224     The pool size is limited to 8 idle coroutines (this can be adjusted by
225     changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
226     required.
227    
228     If you are concerned about pooled coroutines growing a lot because a
229 root 1.133 single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
230     { terminate }> once per second or so to slowly replenish the pool. In
231     addition to that, when the stacks used by a handler grows larger than 16kb
232 root 1.134 (adjustable with $Coro::POOL_RSS) it will also exit.
233 root 1.105
234     =cut
235    
236     our $POOL_SIZE = 8;
237 root 1.134 our $POOL_RSS = 16 * 1024;
238     our @async_pool;
239 root 1.105
240     sub pool_handler {
241 root 1.134 my $cb;
242    
243 root 1.105 while () {
244 root 1.134 eval {
245     while () {
246 root 1.136 _pool_1 $cb;
247 root 1.134 &$cb;
248 root 1.136 _pool_2 $cb;
249 root 1.135 &schedule;
250 root 1.134 }
251 root 1.105 };
252 root 1.134
253 root 1.136 last if $@ eq "\3terminate\2\n";
254 root 1.105 warn $@ if $@;
255 root 1.106 }
256     }
257 root 1.105
258     sub async_pool(&@) {
259     # this is also inlined into the unlock_scheduler
260 root 1.135 my $coro = (pop @async_pool) || new Coro \&pool_handler;
261 root 1.105
262     $coro->{_invoke} = [@_];
263     $coro->ready;
264    
265     $coro
266     }
267    
268 root 1.8 =item schedule
269 root 1.6
270 root 1.92 Calls the scheduler. Please note that the current coroutine will not be put
271 root 1.8 into the ready queue, so calling this function usually means you will
272 root 1.91 never be called again unless something else (e.g. an event handler) calls
273     ready.
274    
275     The canonical way to wait on external events is this:
276    
277     {
278 root 1.92 # remember current coroutine
279 root 1.91 my $current = $Coro::current;
280    
281     # register a hypothetical event handler
282     on_event_invoke sub {
283     # wake up sleeping coroutine
284     $current->ready;
285     undef $current;
286     };
287    
288 root 1.124 # call schedule until event occurred.
289 root 1.91 # in case we are woken up for other reasons
290     # (current still defined), loop.
291     Coro::schedule while $current;
292     }
293 root 1.1
294 root 1.22 =item cede
295 root 1.1
296 root 1.92 "Cede" to other coroutines. This function puts the current coroutine into the
297 root 1.22 ready queue and calls C<schedule>, which has the effect of giving up the
298     current "timeslice" to other coroutines of the same or higher priority.
299 root 1.7
300 root 1.107 Returns true if at least one coroutine switch has happened.
301    
302 root 1.102 =item Coro::cede_notself
303    
304     Works like cede, but is not exported by default and will cede to any
305     coroutine, regardless of priority, once.
306    
307 root 1.107 Returns true if at least one coroutine switch has happened.
308    
309 root 1.40 =item terminate [arg...]
310 root 1.7
311 root 1.92 Terminates the current coroutine with the given status values (see L<cancel>).
312 root 1.13
313 root 1.1 =cut
314    
315 root 1.8 sub terminate {
316 pcg 1.59 $current->cancel (@_);
317 root 1.1 }
318 root 1.6
319 root 1.8 =back
320    
321     # dynamic methods
322    
323 root 1.92 =head2 COROUTINE METHODS
324 root 1.8
325 root 1.92 These are the methods you can call on coroutine objects.
326 root 1.6
327 root 1.8 =over 4
328    
329 root 1.13 =item new Coro \&sub [, @args...]
330 root 1.8
331 root 1.92 Create a new coroutine and return it. When the sub returns the coroutine
332 root 1.40 automatically terminates as if C<terminate> with the returned values were
333 root 1.92 called. To make the coroutine run you must first put it into the ready queue
334 root 1.41 by calling the ready method.
335 root 1.13
336 root 1.121 See C<async> for additional discussion.
337 root 1.89
338 root 1.6 =cut
339    
340 root 1.94 sub _run_coro {
341 root 1.13 terminate &{+shift};
342     }
343    
344 root 1.8 sub new {
345     my $class = shift;
346 root 1.83
347 root 1.94 $class->SUPER::new (\&_run_coro, @_)
348 root 1.8 }
349 root 1.6
350 root 1.92 =item $success = $coroutine->ready
351 root 1.1
352 root 1.92 Put the given coroutine into the ready queue (according to it's priority)
353     and return true. If the coroutine is already in the ready queue, do nothing
354 root 1.90 and return false.
355 root 1.1
356 root 1.92 =item $is_ready = $coroutine->is_ready
357 root 1.90
358 root 1.92 Return wether the coroutine is currently the ready queue or not,
359 root 1.28
360 root 1.92 =item $coroutine->cancel (arg...)
361 root 1.28
362 root 1.92 Terminates the given coroutine and makes it return the given arguments as
363 root 1.103 status (default: the empty list). Never returns if the coroutine is the
364     current coroutine.
365 root 1.28
366     =cut
367    
368     sub cancel {
369 pcg 1.59 my $self = shift;
370     $self->{status} = [@_];
371 root 1.103
372     if ($current == $self) {
373     push @destroy, $self;
374     $manager->ready;
375     &schedule while 1;
376     } else {
377     $self->_cancel;
378     }
379 root 1.40 }
380    
381 root 1.92 =item $coroutine->join
382 root 1.40
383     Wait until the coroutine terminates and return any values given to the
384 pcg 1.59 C<terminate> or C<cancel> functions. C<join> can be called multiple times
385 root 1.92 from multiple coroutine.
386 root 1.40
387     =cut
388    
389     sub join {
390     my $self = shift;
391 root 1.103
392 root 1.40 unless ($self->{status}) {
393 root 1.103 my $current = $current;
394    
395     push @{$self->{destroy_cb}}, sub {
396     $current->ready;
397     undef $current;
398     };
399    
400     &schedule while $current;
401 root 1.40 }
402 root 1.103
403 root 1.40 wantarray ? @{$self->{status}} : $self->{status}[0];
404 root 1.31 }
405    
406 root 1.101 =item $coroutine->on_destroy (\&cb)
407    
408     Registers a callback that is called when this coroutine gets destroyed,
409     but before it is joined. The callback gets passed the terminate arguments,
410     if any.
411    
412     =cut
413    
414     sub on_destroy {
415     my ($self, $cb) = @_;
416    
417     push @{ $self->{destroy_cb} }, $cb;
418     }
419    
420 root 1.92 =item $oldprio = $coroutine->prio ($newprio)
421 root 1.31
422 root 1.41 Sets (or gets, if the argument is missing) the priority of the
423 root 1.92 coroutine. Higher priority coroutines get run before lower priority
424     coroutines. Priorities are small signed integers (currently -4 .. +3),
425 root 1.41 that you can refer to using PRIO_xxx constants (use the import tag :prio
426     to get then):
427 root 1.31
428     PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
429     3 > 1 > 0 > -1 > -3 > -4
430    
431     # set priority to HIGH
432     current->prio(PRIO_HIGH);
433    
434     The idle coroutine ($Coro::idle) always has a lower priority than any
435     existing coroutine.
436    
437 root 1.92 Changing the priority of the current coroutine will take effect immediately,
438     but changing the priority of coroutines in the ready queue (but not
439 root 1.31 running) will only take effect after the next schedule (of that
440 root 1.92 coroutine). This is a bug that will be fixed in some future version.
441 root 1.31
442 root 1.92 =item $newprio = $coroutine->nice ($change)
443 root 1.31
444     Similar to C<prio>, but subtract the given value from the priority (i.e.
445     higher values mean lower priority, just as in unix).
446    
447 root 1.92 =item $olddesc = $coroutine->desc ($newdesc)
448 root 1.41
449     Sets (or gets in case the argument is missing) the description for this
450 root 1.92 coroutine. This is just a free-form string you can associate with a coroutine.
451 root 1.41
452     =cut
453    
454     sub desc {
455     my $old = $_[0]{desc};
456     $_[0]{desc} = $_[1] if @_ > 1;
457     $old;
458 root 1.8 }
459 root 1.1
460 root 1.8 =back
461 root 1.2
462 root 1.97 =head2 GLOBAL FUNCTIONS
463 root 1.92
464     =over 4
465    
466 root 1.97 =item Coro::nready
467    
468     Returns the number of coroutines that are currently in the ready state,
469 root 1.124 i.e. that can be switched to. The value C<0> means that the only runnable
470 root 1.97 coroutine is the currently running one, so C<cede> would have no effect,
471     and C<schedule> would cause a deadlock unless there is an idle handler
472     that wakes up some coroutines.
473    
474 root 1.103 =item my $guard = Coro::guard { ... }
475    
476 root 1.119 This creates and returns a guard object. Nothing happens until the object
477 root 1.103 gets destroyed, in which case the codeblock given as argument will be
478     executed. This is useful to free locks or other resources in case of a
479     runtime error or when the coroutine gets canceled, as in both cases the
480     guard block will be executed. The guard object supports only one method,
481     C<< ->cancel >>, which will keep the codeblock from being executed.
482    
483     Example: set some flag and clear it again when the coroutine gets canceled
484     or the function returns:
485    
486     sub do_something {
487     my $guard = Coro::guard { $busy = 0 };
488     $busy = 1;
489    
490     # do something that requires $busy to be true
491     }
492    
493     =cut
494    
495     sub guard(&) {
496     bless \(my $cb = $_[0]), "Coro::guard"
497     }
498    
499     sub Coro::guard::cancel {
500     ${$_[0]} = sub { };
501     }
502    
503     sub Coro::guard::DESTROY {
504     ${$_[0]}->();
505     }
506    
507    
508 root 1.92 =item unblock_sub { ... }
509    
510     This utility function takes a BLOCK or code reference and "unblocks" it,
511     returning the new coderef. This means that the new coderef will return
512     immediately without blocking, returning nothing, while the original code
513     ref will be called (with parameters) from within its own coroutine.
514    
515 root 1.124 The reason this function exists is that many event libraries (such as the
516 root 1.92 venerable L<Event|Event> module) are not coroutine-safe (a weaker form
517     of thread-safety). This means you must not block within event callbacks,
518     otherwise you might suffer from crashes or worse.
519    
520     This function allows your callbacks to block by executing them in another
521     coroutine where it is safe to block. One example where blocking is handy
522     is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
523     disk.
524    
525     In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
526     creating event callbacks that want to block.
527    
528     =cut
529    
530     our @unblock_queue;
531    
532 root 1.105 # we create a special coro because we want to cede,
533     # to reduce pressure on the coro pool (because most callbacks
534     # return immediately and can be reused) and because we cannot cede
535     # inside an event callback.
536 root 1.132 our $unblock_scheduler = new Coro sub {
537 root 1.92 while () {
538     while (my $cb = pop @unblock_queue) {
539 root 1.105 # this is an inlined copy of async_pool
540 root 1.134 my $coro = (pop @async_pool) || new Coro \&pool_handler;
541 root 1.105
542     $coro->{_invoke} = $cb;
543     $coro->ready;
544     cede; # for short-lived callbacks, this reduces pressure on the coro pool
545 root 1.92 }
546 root 1.105 schedule; # sleep well
547 root 1.92 }
548     };
549 root 1.132 $unblock_scheduler->desc ("[unblock_sub scheduler]");
550 root 1.92
551     sub unblock_sub(&) {
552     my $cb = shift;
553    
554     sub {
555 root 1.105 unshift @unblock_queue, [$cb, @_];
556 root 1.92 $unblock_scheduler->ready;
557     }
558     }
559    
560     =back
561    
562 root 1.8 =cut
563 root 1.2
564 root 1.8 1;
565 root 1.14
566 root 1.17 =head1 BUGS/LIMITATIONS
567 root 1.14
568 root 1.52 - you must make very sure that no coro is still active on global
569 root 1.53 destruction. very bad things might happen otherwise (usually segfaults).
570 root 1.52
571     - this module is not thread-safe. You should only ever use this module
572 root 1.124 from the same thread (this requirement might be loosened in the future
573 root 1.52 to allow per-thread schedulers, but Coro::State does not yet allow
574     this).
575 root 1.9
576     =head1 SEE ALSO
577    
578 root 1.67 Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
579    
580     Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
581    
582     Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
583    
584     Embedding: L<Coro:MakeMaker>
585 root 1.1
586     =head1 AUTHOR
587    
588 root 1.66 Marc Lehmann <schmorp@schmorp.de>
589 root 1.64 http://home.schmorp.de/
590 root 1.1
591     =cut
592