ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.187
Committed: Fri Feb 11 00:05:17 2011 UTC (13 years, 3 months ago) by root
Branch: MAIN
Changes since 1.186: +12 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.187 our $VERSION = '3.72';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.120 aio_scandir aio_symlink aio_readlink aio_sync aio_fsync
178 root 1.142 aio_fdatasync aio_sync_file_range aio_pathsync aio_readahead
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183     aio_statvfs);
184 root 1.120
185 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
186 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
187 root 1.86 min_parallel max_parallel max_idle
188     nreqs nready npending nthreads
189 root 1.157 max_poll_time max_poll_reqs
190 root 1.182 sendfile fadvise madvise
191     mmap munmap munlock munlockall);
192 root 1.1
193 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
194    
195 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
196    
197 root 1.1 require XSLoader;
198 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
199 root 1.1 }
200    
201 root 1.5 =head1 FUNCTIONS
202 root 1.1
203 root 1.175 =head2 QUICK OVERVIEW
204    
205     This section simply lists the prototypes of the most important functions
206     for quick reference. See the following sections for function-by-function
207     documentation.
208    
209     aio_open $pathname, $flags, $mode, $callback->($fh)
210     aio_close $fh, $callback->($status)
211     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
212     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
214     aio_readahead $fh,$offset,$length, $callback->($retval)
215     aio_stat $fh_or_path, $callback->($status)
216     aio_lstat $fh, $callback->($status)
217     aio_statvfs $fh_or_path, $callback->($statvfs)
218     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
219     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
220     aio_truncate $fh_or_path, $offset, $callback->($status)
221     aio_chmod $fh_or_path, $mode, $callback->($status)
222     aio_unlink $pathname, $callback->($status)
223     aio_mknod $path, $mode, $dev, $callback->($status)
224     aio_link $srcpath, $dstpath, $callback->($status)
225     aio_symlink $srcpath, $dstpath, $callback->($status)
226     aio_readlink $path, $callback->($link)
227     aio_rename $srcpath, $dstpath, $callback->($status)
228     aio_mkdir $pathname, $mode, $callback->($status)
229     aio_rmdir $pathname, $callback->($status)
230     aio_readdir $pathname, $callback->($entries)
231     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
232     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
233     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
234     aio_load $path, $data, $callback->($status)
235     aio_copy $srcpath, $dstpath, $callback->($status)
236     aio_move $srcpath, $dstpath, $callback->($status)
237     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
238     aio_rmtree $path, $callback->($status)
239     aio_sync $callback->($status)
240     aio_fsync $fh, $callback->($status)
241     aio_fdatasync $fh, $callback->($status)
242     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
243     aio_pathsync $path, $callback->($status)
244     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
245     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
246 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
247     aio_mlockall $flags, $callback->($status)
248 root 1.175 aio_group $callback->(...)
249     aio_nop $callback->()
250    
251     $prev_pri = aioreq_pri [$pri]
252     aioreq_nice $pri_adjust
253    
254     IO::AIO::poll_wait
255     IO::AIO::poll_cb
256     IO::AIO::poll
257     IO::AIO::flush
258     IO::AIO::max_poll_reqs $nreqs
259     IO::AIO::max_poll_time $seconds
260     IO::AIO::min_parallel $nthreads
261     IO::AIO::max_parallel $nthreads
262     IO::AIO::max_idle $nthreads
263     IO::AIO::max_outstanding $maxreqs
264     IO::AIO::nreqs
265     IO::AIO::nready
266     IO::AIO::npending
267    
268     IO::AIO::sendfile $ofh, $ifh, $offset, $count
269     IO::AIO::fadvise $fh, $offset, $len, $advice
270 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
271     IO::AIO::mprotect $scalar, $offset, $length, $protect
272 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
273 root 1.175 IO::AIO::munlockall
274    
275 root 1.87 =head2 AIO REQUEST FUNCTIONS
276 root 1.1
277 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
278     with the same name (sans C<aio_>). The arguments are similar or identical,
279 root 1.14 and they all accept an additional (and optional) C<$callback> argument
280     which must be a code reference. This code reference will get called with
281     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
282 root 1.136 perl, which usually delivers "false") as its sole argument after the given
283 root 1.14 syscall has been executed asynchronously.
284 root 1.1
285 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
286     internally until the request has finished.
287 root 1.1
288 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
289     further manipulation of those requests while they are in-flight.
290 root 1.52
291 root 1.28 The pathnames you pass to these routines I<must> be absolute and
292 root 1.87 encoded as octets. The reason for the former is that at the time the
293 root 1.28 request is being executed, the current working directory could have
294     changed. Alternatively, you can make sure that you never change the
295 root 1.87 current working directory anywhere in the program and then use relative
296     paths.
297 root 1.28
298 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
299     in filenames you got from outside (command line, readdir etc.) without
300     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
301 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
302     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
303 root 1.87 use something else to ensure your scalar has the correct contents.
304    
305     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
306 root 1.136 handles correctly whether it is set or not.
307 root 1.1
308 root 1.5 =over 4
309 root 1.1
310 root 1.80 =item $prev_pri = aioreq_pri [$pri]
311 root 1.68
312 root 1.80 Returns the priority value that would be used for the next request and, if
313     C<$pri> is given, sets the priority for the next aio request.
314 root 1.68
315 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
316     and C<4>, respectively. Requests with higher priority will be serviced
317     first.
318    
319     The priority will be reset to C<0> after each call to one of the C<aio_*>
320 root 1.68 functions.
321    
322 root 1.69 Example: open a file with low priority, then read something from it with
323     higher priority so the read request is serviced before other low priority
324     open requests (potentially spamming the cache):
325    
326     aioreq_pri -3;
327     aio_open ..., sub {
328     return unless $_[0];
329    
330     aioreq_pri -2;
331     aio_read $_[0], ..., sub {
332     ...
333     };
334     };
335    
336 root 1.106
337 root 1.69 =item aioreq_nice $pri_adjust
338    
339     Similar to C<aioreq_pri>, but subtracts the given value from the current
340 root 1.87 priority, so the effect is cumulative.
341 root 1.69
342 root 1.106
343 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
344 root 1.1
345 root 1.2 Asynchronously open or create a file and call the callback with a newly
346     created filehandle for the file.
347 root 1.1
348     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
349     for an explanation.
350    
351 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
352     list. They are the same as used by C<sysopen>.
353    
354     Likewise, C<$mode> specifies the mode of the newly created file, if it
355     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
356     except that it is mandatory (i.e. use C<0> if you don't create new files,
357 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
358     by the umask in effect then the request is being executed, so better never
359     change the umask.
360 root 1.1
361     Example:
362    
363 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
364 root 1.2 if ($_[0]) {
365     print "open successful, fh is $_[0]\n";
366 root 1.1 ...
367     } else {
368     die "open failed: $!\n";
369     }
370     };
371    
372 root 1.106
373 root 1.40 =item aio_close $fh, $callback->($status)
374 root 1.1
375 root 1.2 Asynchronously close a file and call the callback with the result
376 root 1.116 code.
377    
378 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
379 root 1.121 closing the file descriptor associated with the filehandle itself.
380 root 1.117
381 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
382     use dup2 to overwrite the file descriptor with the write-end of a pipe
383     (the pipe fd will be created on demand and will be cached).
384 root 1.117
385 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
386     free for reuse until the perl filehandle is closed.
387 root 1.117
388     =cut
389    
390 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
391 root 1.1
392 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
393 root 1.1
394 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
395     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
396     and calls the callback without the actual number of bytes read (or -1 on
397     error, just like the syscall).
398 root 1.109
399 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
400     offset plus the actual number of bytes read.
401    
402 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
403     be used (and updated), otherwise the file descriptor offset will not be
404     changed by these calls.
405 root 1.109
406 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
407     C<$data>.
408 root 1.109
409     If C<$dataoffset> is less than zero, it will be counted from the end of
410     C<$data>.
411 root 1.1
412 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
413 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
414     the necessary/optional hardware is installed).
415 root 1.31
416 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
417 root 1.1 offset C<0> within the scalar:
418    
419     aio_read $fh, 7, 15, $buffer, 0, sub {
420 root 1.9 $_[0] > 0 or die "read error: $!";
421     print "read $_[0] bytes: <$buffer>\n";
422 root 1.1 };
423    
424 root 1.106
425 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
426 root 1.35
427     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
428     reading at byte offset C<$in_offset>, and starts writing at the current
429     file offset of C<$out_fh>. Because of that, it is not safe to issue more
430     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
431     other.
432    
433 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
434     are written, and there is no way to find out how many bytes have been read
435     from C<aio_sendfile> alone, as C<aio_sendfile> only provides the number of
436     bytes written to C<$out_fh>. Only if the result value equals C<$length>
437     one can assume that C<$length> bytes have been read.
438    
439     Unlike with other C<aio_> functions, it makes a lot of sense to use
440     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
441     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
442     the socket I/O will be non-blocking. Note, however, that you can run into
443     a trap where C<aio_sendfile> reads some data with readahead, then fails
444     to write all data, and when the socket is ready the next time, the data
445     in the cache is already lost, forcing C<aio_sendfile> to again hit the
446     disk. Explicit C<aio_read> + C<aio_write> let's you control resource usage
447     much better.
448    
449 root 1.35 This call tries to make use of a native C<sendfile> syscall to provide
450     zero-copy operation. For this to work, C<$out_fh> should refer to a
451 root 1.176 socket, and C<$in_fh> should refer to an mmap'able file.
452 root 1.35
453 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
454     C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or C<ENOTSOCK>,
455     it will be emulated, so you can call C<aio_sendfile> on any type of
456     filehandle regardless of the limitations of the operating system.
457 root 1.35
458 root 1.106
459 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
460 root 1.1
461 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
462 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
463     argument specifies the starting point from which data is to be read and
464     C<$length> specifies the number of bytes to be read. I/O is performed in
465     whole pages, so that offset is effectively rounded down to a page boundary
466     and bytes are read up to the next page boundary greater than or equal to
467 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
468 root 1.1 file. The current file offset of the file is left unchanged.
469    
470 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
471     emulated by simply reading the data, which would have a similar effect.
472    
473 root 1.106
474 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
475 root 1.1
476 root 1.40 =item aio_lstat $fh, $callback->($status)
477 root 1.1
478     Works like perl's C<stat> or C<lstat> in void context. The callback will
479     be called after the stat and the results will be available using C<stat _>
480     or C<-s _> etc...
481    
482     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
483     for an explanation.
484    
485     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
486     error when stat'ing a large file, the results will be silently truncated
487     unless perl itself is compiled with large file support.
488    
489 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
490     following constants and functions (if not implemented, the constants will
491     be C<0> and the functions will either C<croak> or fall back on traditional
492     behaviour).
493    
494     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
495     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
496     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
497    
498 root 1.1 Example: Print the length of F</etc/passwd>:
499    
500     aio_stat "/etc/passwd", sub {
501     $_[0] and die "stat failed: $!";
502     print "size is ", -s _, "\n";
503     };
504    
505 root 1.106
506 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
507 root 1.172
508     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
509     whether a file handle or path was passed.
510    
511     On success, the callback is passed a hash reference with the following
512     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
513     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
514     is passed.
515    
516     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
517     C<ST_NOSUID>.
518    
519     The following non-POSIX IO::AIO::ST_* flag masks are defined to
520     their correct value when available, or to C<0> on systems that do
521     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
522     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
523     C<ST_NODIRATIME> and C<ST_RELATIME>.
524    
525     Example: stat C</wd> and dump out the data if successful.
526    
527     aio_statvfs "/wd", sub {
528     my $f = $_[0]
529     or die "statvfs: $!";
530    
531     use Data::Dumper;
532     say Dumper $f;
533     };
534    
535     # result:
536     {
537     bsize => 1024,
538     bfree => 4333064312,
539     blocks => 10253828096,
540     files => 2050765568,
541     flag => 4096,
542     favail => 2042092649,
543     bavail => 4333064312,
544     ffree => 2042092649,
545     namemax => 255,
546     frsize => 1024,
547     fsid => 1810
548     }
549    
550    
551 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
552    
553     Works like perl's C<utime> function (including the special case of $atime
554     and $mtime being undef). Fractional times are supported if the underlying
555     syscalls support them.
556    
557     When called with a pathname, uses utimes(2) if available, otherwise
558     utime(2). If called on a file descriptor, uses futimes(2) if available,
559     otherwise returns ENOSYS, so this is not portable.
560    
561     Examples:
562    
563 root 1.107 # set atime and mtime to current time (basically touch(1)):
564 root 1.106 aio_utime "path", undef, undef;
565     # set atime to current time and mtime to beginning of the epoch:
566     aio_utime "path", time, undef; # undef==0
567    
568    
569     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
570    
571     Works like perl's C<chown> function, except that C<undef> for either $uid
572     or $gid is being interpreted as "do not change" (but -1 can also be used).
573    
574     Examples:
575    
576     # same as "chown root path" in the shell:
577     aio_chown "path", 0, -1;
578     # same as above:
579     aio_chown "path", 0, undef;
580    
581    
582 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
583    
584     Works like truncate(2) or ftruncate(2).
585    
586    
587 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
588    
589     Works like perl's C<chmod> function.
590    
591    
592 root 1.40 =item aio_unlink $pathname, $callback->($status)
593 root 1.1
594     Asynchronously unlink (delete) a file and call the callback with the
595     result code.
596    
597 root 1.106
598 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
599    
600 root 1.86 [EXPERIMENTAL]
601    
602 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
603    
604 root 1.86 The only (POSIX-) portable way of calling this function is:
605 root 1.83
606     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
607 root 1.82
608 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
609     and functions.
610 root 1.106
611 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
612    
613     Asynchronously create a new link to the existing object at C<$srcpath> at
614     the path C<$dstpath> and call the callback with the result code.
615    
616 root 1.106
617 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
618    
619     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
620     the path C<$dstpath> and call the callback with the result code.
621    
622 root 1.106
623 root 1.90 =item aio_readlink $path, $callback->($link)
624    
625     Asynchronously read the symlink specified by C<$path> and pass it to
626     the callback. If an error occurs, nothing or undef gets passed to the
627     callback.
628    
629 root 1.106
630 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
631    
632     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
633     rename(2) and call the callback with the result code.
634    
635 root 1.106
636 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
637    
638     Asynchronously mkdir (create) a directory and call the callback with
639     the result code. C<$mode> will be modified by the umask at the time the
640     request is executed, so do not change your umask.
641    
642 root 1.106
643 root 1.40 =item aio_rmdir $pathname, $callback->($status)
644 root 1.27
645     Asynchronously rmdir (delete) a directory and call the callback with the
646     result code.
647    
648 root 1.106
649 root 1.46 =item aio_readdir $pathname, $callback->($entries)
650 root 1.37
651     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
652     directory (i.e. opendir + readdir + closedir). The entries will not be
653     sorted, and will B<NOT> include the C<.> and C<..> entries.
654    
655 root 1.148 The callback is passed a single argument which is either C<undef> or an
656     array-ref with the filenames.
657    
658    
659     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
660    
661     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
662     behaviour and output format. In case of an error, C<$entries> will be
663     C<undef>.
664    
665     The flags are a combination of the following constants, ORed together (the
666     flags will also be passed to the callback, possibly modified):
667    
668     =over 4
669    
670 root 1.150 =item IO::AIO::READDIR_DENTS
671 root 1.148
672     When this flag is off, then the callback gets an arrayref with of names
673     only (as with C<aio_readdir>), otherwise it gets an arrayref with
674 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
675 root 1.148 entry in more detail.
676    
677     C<$name> is the name of the entry.
678    
679 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
680 root 1.148
681 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
682     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
683     C<IO::AIO::DT_WHT>.
684 root 1.148
685 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
686 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
687     scalars are read-only: you can not modify them.
688    
689 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
690 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
691     systems that do not deliver the inode information.
692 root 1.150
693     =item IO::AIO::READDIR_DIRS_FIRST
694 root 1.148
695     When this flag is set, then the names will be returned in an order where
696     likely directories come first. This is useful when you need to quickly
697     find directories, or you want to find all directories while avoiding to
698     stat() each entry.
699    
700 root 1.149 If the system returns type information in readdir, then this is used
701     to find directories directly. Otherwise, likely directories are files
702     beginning with ".", or otherwise files with no dots, of which files with
703     short names are tried first.
704    
705 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
706 root 1.148
707     When this flag is set, then the names will be returned in an order
708     suitable for stat()'ing each one. That is, when you plan to stat()
709     all files in the given directory, then the returned order will likely
710     be fastest.
711    
712 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
713     the likely dirs come first, resulting in a less optimal stat order.
714 root 1.148
715 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
716 root 1.148
717     This flag should not be set when calling C<aio_readdirx>. Instead, it
718     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
719 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
720 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
721    
722     =back
723 root 1.37
724 root 1.106
725 root 1.98 =item aio_load $path, $data, $callback->($status)
726    
727     This is a composite request that tries to fully load the given file into
728     memory. Status is the same as with aio_read.
729    
730     =cut
731    
732     sub aio_load($$;$) {
733 root 1.123 my ($path, undef, $cb) = @_;
734     my $data = \$_[1];
735 root 1.98
736 root 1.123 my $pri = aioreq_pri;
737     my $grp = aio_group $cb;
738    
739     aioreq_pri $pri;
740     add $grp aio_open $path, O_RDONLY, 0, sub {
741     my $fh = shift
742     or return $grp->result (-1);
743 root 1.98
744     aioreq_pri $pri;
745 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
746     $grp->result ($_[0]);
747 root 1.98 };
748 root 1.123 };
749 root 1.98
750 root 1.123 $grp
751 root 1.98 }
752    
753 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
754    
755     Try to copy the I<file> (directories not supported as either source or
756     destination) from C<$srcpath> to C<$dstpath> and call the callback with
757 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
758 root 1.82
759 root 1.134 This is a composite request that creates the destination file with
760 root 1.82 mode 0200 and copies the contents of the source file into it using
761     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
762     uid/gid, in that order.
763    
764     If an error occurs, the partial destination file will be unlinked, if
765     possible, except when setting atime, mtime, access mode and uid/gid, where
766     errors are being ignored.
767    
768     =cut
769    
770     sub aio_copy($$;$) {
771 root 1.123 my ($src, $dst, $cb) = @_;
772 root 1.82
773 root 1.123 my $pri = aioreq_pri;
774     my $grp = aio_group $cb;
775 root 1.82
776 root 1.123 aioreq_pri $pri;
777     add $grp aio_open $src, O_RDONLY, 0, sub {
778     if (my $src_fh = $_[0]) {
779 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
780 root 1.95
781 root 1.123 aioreq_pri $pri;
782     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
783     if (my $dst_fh = $_[0]) {
784     aioreq_pri $pri;
785     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
786     if ($_[0] == $stat[7]) {
787     $grp->result (0);
788     close $src_fh;
789    
790 root 1.147 my $ch = sub {
791     aioreq_pri $pri;
792     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
793     aioreq_pri $pri;
794     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
795     aioreq_pri $pri;
796     add $grp aio_close $dst_fh;
797     }
798     };
799     };
800 root 1.123
801     aioreq_pri $pri;
802 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
803     if ($_[0] < 0 && $! == ENOSYS) {
804     aioreq_pri $pri;
805     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
806     } else {
807     $ch->();
808     }
809     };
810 root 1.123 } else {
811     $grp->result (-1);
812     close $src_fh;
813     close $dst_fh;
814    
815     aioreq $pri;
816     add $grp aio_unlink $dst;
817     }
818     };
819     } else {
820     $grp->result (-1);
821     }
822     },
823 root 1.82
824 root 1.123 } else {
825     $grp->result (-1);
826     }
827     };
828 root 1.82
829 root 1.123 $grp
830 root 1.82 }
831    
832     =item aio_move $srcpath, $dstpath, $callback->($status)
833    
834     Try to move the I<file> (directories not supported as either source or
835     destination) from C<$srcpath> to C<$dstpath> and call the callback with
836 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
837 root 1.82
838 root 1.137 This is a composite request that tries to rename(2) the file first; if
839     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
840     that is successful, unlinks the C<$srcpath>.
841 root 1.82
842     =cut
843    
844     sub aio_move($$;$) {
845 root 1.123 my ($src, $dst, $cb) = @_;
846 root 1.82
847 root 1.123 my $pri = aioreq_pri;
848     my $grp = aio_group $cb;
849 root 1.82
850 root 1.123 aioreq_pri $pri;
851     add $grp aio_rename $src, $dst, sub {
852     if ($_[0] && $! == EXDEV) {
853     aioreq_pri $pri;
854     add $grp aio_copy $src, $dst, sub {
855     $grp->result ($_[0]);
856 root 1.95
857 root 1.123 if (!$_[0]) {
858     aioreq_pri $pri;
859     add $grp aio_unlink $src;
860     }
861     };
862     } else {
863     $grp->result ($_[0]);
864     }
865     };
866 root 1.82
867 root 1.123 $grp
868 root 1.82 }
869    
870 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
871    
872 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
873 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
874     names, directories you can recurse into (directories), and ones you cannot
875     recurse into (everything else, including symlinks to directories).
876 root 1.52
877 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
878     C<$maxreq> specifies the maximum number of outstanding aio requests that
879     this function generates. If it is C<< <= 0 >>, then a suitable default
880 root 1.81 will be chosen (currently 4).
881 root 1.40
882     On error, the callback is called without arguments, otherwise it receives
883     two array-refs with path-relative entry names.
884    
885     Example:
886    
887     aio_scandir $dir, 0, sub {
888     my ($dirs, $nondirs) = @_;
889     print "real directories: @$dirs\n";
890     print "everything else: @$nondirs\n";
891     };
892    
893     Implementation notes.
894    
895     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
896    
897 root 1.149 If readdir returns file type information, then this is used directly to
898     find directories.
899    
900     Otherwise, after reading the directory, the modification time, size etc.
901     of the directory before and after the readdir is checked, and if they
902     match (and isn't the current time), the link count will be used to decide
903     how many entries are directories (if >= 2). Otherwise, no knowledge of the
904     number of subdirectories will be assumed.
905    
906     Then entries will be sorted into likely directories a non-initial dot
907     currently) and likely non-directories (see C<aio_readdirx>). Then every
908     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
909     in order of their inode numbers. If that succeeds, it assumes that the
910     entry is a directory or a symlink to directory (which will be checked
911 root 1.52 seperately). This is often faster than stat'ing the entry itself because
912     filesystems might detect the type of the entry without reading the inode
913 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
914     the filetype information on readdir.
915 root 1.52
916     If the known number of directories (link count - 2) has been reached, the
917     rest of the entries is assumed to be non-directories.
918    
919     This only works with certainty on POSIX (= UNIX) filesystems, which
920     fortunately are the vast majority of filesystems around.
921    
922     It will also likely work on non-POSIX filesystems with reduced efficiency
923     as those tend to return 0 or 1 as link counts, which disables the
924     directory counting heuristic.
925 root 1.40
926     =cut
927    
928 root 1.100 sub aio_scandir($$;$) {
929 root 1.123 my ($path, $maxreq, $cb) = @_;
930    
931     my $pri = aioreq_pri;
932 root 1.40
933 root 1.123 my $grp = aio_group $cb;
934 root 1.80
935 root 1.123 $maxreq = 4 if $maxreq <= 0;
936 root 1.55
937 root 1.123 # stat once
938     aioreq_pri $pri;
939     add $grp aio_stat $path, sub {
940     return $grp->result () if $_[0];
941     my $now = time;
942     my $hash1 = join ":", (stat _)[0,1,3,7,9];
943 root 1.40
944 root 1.123 # read the directory entries
945 root 1.80 aioreq_pri $pri;
946 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
947 root 1.123 my $entries = shift
948     or return $grp->result ();
949 root 1.40
950 root 1.123 # stat the dir another time
951 root 1.80 aioreq_pri $pri;
952 root 1.123 add $grp aio_stat $path, sub {
953     my $hash2 = join ":", (stat _)[0,1,3,7,9];
954 root 1.95
955 root 1.123 my $ndirs;
956 root 1.95
957 root 1.123 # take the slow route if anything looks fishy
958     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
959     $ndirs = -1;
960     } else {
961     # if nlink == 2, we are finished
962 root 1.150 # for non-posix-fs's, we rely on nlink < 2
963 root 1.123 $ndirs = (stat _)[3] - 2
964     or return $grp->result ([], $entries);
965     }
966    
967     my (@dirs, @nondirs);
968 root 1.40
969 root 1.123 my $statgrp = add $grp aio_group sub {
970     $grp->result (\@dirs, \@nondirs);
971     };
972 root 1.40
973 root 1.123 limit $statgrp $maxreq;
974     feed $statgrp sub {
975     return unless @$entries;
976 root 1.150 my $entry = shift @$entries;
977 root 1.40
978 root 1.123 aioreq_pri $pri;
979     add $statgrp aio_stat "$path/$entry/.", sub {
980     if ($_[0] < 0) {
981     push @nondirs, $entry;
982     } else {
983     # need to check for real directory
984     aioreq_pri $pri;
985     add $statgrp aio_lstat "$path/$entry", sub {
986     if (-d _) {
987     push @dirs, $entry;
988    
989     unless (--$ndirs) {
990     push @nondirs, @$entries;
991     feed $statgrp;
992 root 1.74 }
993 root 1.123 } else {
994     push @nondirs, $entry;
995 root 1.40 }
996     }
997 root 1.123 }
998 root 1.74 };
999 root 1.40 };
1000     };
1001     };
1002 root 1.123 };
1003 root 1.55
1004 root 1.123 $grp
1005 root 1.40 }
1006    
1007 root 1.99 =item aio_rmtree $path, $callback->($status)
1008    
1009 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1010     status of the final C<rmdir> only. This is a composite request that
1011     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1012     everything else.
1013 root 1.99
1014     =cut
1015    
1016     sub aio_rmtree;
1017 root 1.100 sub aio_rmtree($;$) {
1018 root 1.123 my ($path, $cb) = @_;
1019 root 1.99
1020 root 1.123 my $pri = aioreq_pri;
1021     my $grp = aio_group $cb;
1022 root 1.99
1023 root 1.123 aioreq_pri $pri;
1024     add $grp aio_scandir $path, 0, sub {
1025     my ($dirs, $nondirs) = @_;
1026 root 1.99
1027 root 1.123 my $dirgrp = aio_group sub {
1028     add $grp aio_rmdir $path, sub {
1029     $grp->result ($_[0]);
1030 root 1.99 };
1031 root 1.123 };
1032 root 1.99
1033 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1034     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1035 root 1.99
1036 root 1.123 add $grp $dirgrp;
1037     };
1038 root 1.99
1039 root 1.123 $grp
1040 root 1.99 }
1041    
1042 root 1.119 =item aio_sync $callback->($status)
1043    
1044     Asynchronously call sync and call the callback when finished.
1045    
1046 root 1.40 =item aio_fsync $fh, $callback->($status)
1047 root 1.1
1048     Asynchronously call fsync on the given filehandle and call the callback
1049     with the fsync result code.
1050    
1051 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1052 root 1.1
1053     Asynchronously call fdatasync on the given filehandle and call the
1054 root 1.26 callback with the fdatasync result code.
1055    
1056     If this call isn't available because your OS lacks it or it couldn't be
1057     detected, it will be emulated by calling C<fsync> instead.
1058 root 1.1
1059 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1060    
1061     Sync the data portion of the file specified by C<$offset> and C<$length>
1062     to disk (but NOT the metadata), by calling the Linux-specific
1063     sync_file_range call. If sync_file_range is not available or it returns
1064     ENOSYS, then fdatasync or fsync is being substituted.
1065    
1066     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1067     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1068     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1069     manpage for details.
1070    
1071 root 1.120 =item aio_pathsync $path, $callback->($status)
1072    
1073     This request tries to open, fsync and close the given path. This is a
1074 root 1.135 composite request intended to sync directories after directory operations
1075 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1076     specific effect, but usually it makes sure that directory changes get
1077     written to disc. It works for anything that can be opened for read-only,
1078     not just directories.
1079    
1080 root 1.162 Future versions of this function might fall back to other methods when
1081     C<fsync> on the directory fails (such as calling C<sync>).
1082    
1083 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1084    
1085     =cut
1086    
1087     sub aio_pathsync($;$) {
1088 root 1.123 my ($path, $cb) = @_;
1089    
1090     my $pri = aioreq_pri;
1091     my $grp = aio_group $cb;
1092 root 1.120
1093 root 1.123 aioreq_pri $pri;
1094     add $grp aio_open $path, O_RDONLY, 0, sub {
1095     my ($fh) = @_;
1096     if ($fh) {
1097     aioreq_pri $pri;
1098     add $grp aio_fsync $fh, sub {
1099     $grp->result ($_[0]);
1100 root 1.120
1101     aioreq_pri $pri;
1102 root 1.123 add $grp aio_close $fh;
1103     };
1104     } else {
1105     $grp->result (-1);
1106     }
1107     };
1108 root 1.120
1109 root 1.123 $grp
1110 root 1.120 }
1111    
1112 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1113    
1114     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1115 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1116     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1117     scalar must only be modified in-place while an aio operation is pending on
1118     it).
1119 root 1.170
1120     It calls the C<msync> function of your OS, if available, with the memory
1121     area starting at C<$offset> in the string and ending C<$length> bytes
1122     later. If C<$length> is negative, counts from the end, and if C<$length>
1123     is C<undef>, then it goes till the end of the string. The flags can be
1124     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1125     C<IO::AIO::MS_SYNC>.
1126    
1127     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1128    
1129     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1130     scalars.
1131    
1132     It touches (reads or writes) all memory pages in the specified
1133     range inside the scalar. All caveats and parameters are the same
1134     as for C<aio_msync>, above, except for flags, which must be either
1135     C<0> (which reads all pages and ensures they are instantiated) or
1136     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1137     writing an octet from it, which dirties the page).
1138    
1139 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1140    
1141     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1142     scalars.
1143    
1144     It reads in all the pages of the underlying storage into memory (if any)
1145     and locks them, so they are not getting swapped/paged out or removed.
1146    
1147     If C<$length> is undefined, then the scalar will be locked till the end.
1148    
1149     On systems that do not implement C<mlock>, this function returns C<-1>
1150     and sets errno to C<ENOSYS>.
1151    
1152     Note that the corresponding C<munlock> is synchronous and is
1153     documented under L<MISCELLANEOUS FUNCTIONS>.
1154    
1155 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1156     C<$data> gets destroyed.
1157    
1158     open my $fh, "<", $path or die "$path: $!";
1159     my $data;
1160     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1161     aio_mlock $data; # mlock in background
1162    
1163 root 1.182 =item aio_mlockall $flags, $callback->($status)
1164    
1165     Calls the C<mlockall> function with the given C<$flags> (a combination of
1166     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1167    
1168     On systems that do not implement C<mlockall>, this function returns C<-1>
1169     and sets errno to C<ENOSYS>.
1170    
1171     Note that the corresponding C<munlockall> is synchronous and is
1172     documented under L<MISCELLANEOUS FUNCTIONS>.
1173    
1174 root 1.183 Example: asynchronously lock all current and future pages into memory.
1175    
1176     aio_mlockall IO::AIO::MCL_FUTURE;
1177    
1178 root 1.58 =item aio_group $callback->(...)
1179 root 1.54
1180 root 1.55 This is a very special aio request: Instead of doing something, it is a
1181     container for other aio requests, which is useful if you want to bundle
1182 root 1.71 many requests into a single, composite, request with a definite callback
1183     and the ability to cancel the whole request with its subrequests.
1184 root 1.55
1185     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1186     for more info.
1187    
1188     Example:
1189    
1190     my $grp = aio_group sub {
1191     print "all stats done\n";
1192     };
1193    
1194     add $grp
1195     (aio_stat ...),
1196     (aio_stat ...),
1197     ...;
1198    
1199 root 1.63 =item aio_nop $callback->()
1200    
1201     This is a special request - it does nothing in itself and is only used for
1202     side effects, such as when you want to add a dummy request to a group so
1203     that finishing the requests in the group depends on executing the given
1204     code.
1205    
1206 root 1.64 While this request does nothing, it still goes through the execution
1207     phase and still requires a worker thread. Thus, the callback will not
1208     be executed immediately but only after other requests in the queue have
1209     entered their execution phase. This can be used to measure request
1210     latency.
1211    
1212 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1213 root 1.54
1214     Mainly used for debugging and benchmarking, this aio request puts one of
1215     the request workers to sleep for the given time.
1216    
1217 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1218 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1219     immense (it blocks a thread for a long time) so do not use this function
1220     except to put your application under artificial I/O pressure.
1221 root 1.56
1222 root 1.5 =back
1223    
1224 root 1.53 =head2 IO::AIO::REQ CLASS
1225 root 1.52
1226     All non-aggregate C<aio_*> functions return an object of this class when
1227     called in non-void context.
1228    
1229     =over 4
1230    
1231 root 1.65 =item cancel $req
1232 root 1.52
1233     Cancels the request, if possible. Has the effect of skipping execution
1234     when entering the B<execute> state and skipping calling the callback when
1235     entering the the B<result> state, but will leave the request otherwise
1236 root 1.151 untouched (with the exception of readdir). That means that requests that
1237     currently execute will not be stopped and resources held by the request
1238     will not be freed prematurely.
1239 root 1.52
1240 root 1.65 =item cb $req $callback->(...)
1241    
1242     Replace (or simply set) the callback registered to the request.
1243    
1244 root 1.52 =back
1245    
1246 root 1.55 =head2 IO::AIO::GRP CLASS
1247    
1248     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1249     objects of this class, too.
1250    
1251     A IO::AIO::GRP object is a special request that can contain multiple other
1252     aio requests.
1253    
1254     You create one by calling the C<aio_group> constructing function with a
1255     callback that will be called when all contained requests have entered the
1256     C<done> state:
1257    
1258     my $grp = aio_group sub {
1259     print "all requests are done\n";
1260     };
1261    
1262     You add requests by calling the C<add> method with one or more
1263     C<IO::AIO::REQ> objects:
1264    
1265     $grp->add (aio_unlink "...");
1266    
1267 root 1.58 add $grp aio_stat "...", sub {
1268     $_[0] or return $grp->result ("error");
1269    
1270     # add another request dynamically, if first succeeded
1271     add $grp aio_open "...", sub {
1272     $grp->result ("ok");
1273     };
1274     };
1275 root 1.55
1276     This makes it very easy to create composite requests (see the source of
1277     C<aio_move> for an application) that work and feel like simple requests.
1278    
1279 root 1.62 =over 4
1280    
1281     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1282 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1283    
1284 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1285 root 1.59 only the request itself, but also all requests it contains.
1286 root 1.55
1287 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1288 root 1.55
1289 root 1.62 =item * You must not add requests to a group from within the group callback (or
1290 root 1.60 any later time).
1291    
1292 root 1.62 =back
1293    
1294 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1295     will finish very quickly. If they contain only requests that are in the
1296     C<done> state, they will also finish. Otherwise they will continue to
1297     exist.
1298    
1299 root 1.133 That means after creating a group you have some time to add requests
1300     (precisely before the callback has been invoked, which is only done within
1301     the C<poll_cb>). And in the callbacks of those requests, you can add
1302     further requests to the group. And only when all those requests have
1303     finished will the the group itself finish.
1304 root 1.57
1305 root 1.55 =over 4
1306    
1307 root 1.65 =item add $grp ...
1308    
1309 root 1.55 =item $grp->add (...)
1310    
1311 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1312     be added, including other groups, as long as you do not create circular
1313     dependencies.
1314    
1315     Returns all its arguments.
1316 root 1.55
1317 root 1.74 =item $grp->cancel_subs
1318    
1319     Cancel all subrequests and clears any feeder, but not the group request
1320     itself. Useful when you queued a lot of events but got a result early.
1321    
1322 root 1.168 The group request will finish normally (you cannot add requests to the
1323     group).
1324    
1325 root 1.58 =item $grp->result (...)
1326    
1327     Set the result value(s) that will be passed to the group callback when all
1328 root 1.120 subrequests have finished and set the groups errno to the current value
1329 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1330     no argument will be passed and errno is zero.
1331    
1332     =item $grp->errno ([$errno])
1333    
1334     Sets the group errno value to C<$errno>, or the current value of errno
1335     when the argument is missing.
1336    
1337     Every aio request has an associated errno value that is restored when
1338     the callback is invoked. This method lets you change this value from its
1339     default (0).
1340    
1341     Calling C<result> will also set errno, so make sure you either set C<$!>
1342     before the call to C<result>, or call c<errno> after it.
1343 root 1.58
1344 root 1.65 =item feed $grp $callback->($grp)
1345 root 1.60
1346     Sets a feeder/generator on this group: every group can have an attached
1347     generator that generates requests if idle. The idea behind this is that,
1348     although you could just queue as many requests as you want in a group,
1349 root 1.139 this might starve other requests for a potentially long time. For example,
1350     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1351     delaying any later requests for a long time.
1352 root 1.60
1353     To avoid this, and allow incremental generation of requests, you can
1354     instead a group and set a feeder on it that generates those requests. The
1355 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1356 root 1.60 below) requests active in the group itself and is expected to queue more
1357     requests.
1358    
1359 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1360     not impose any limits).
1361 root 1.60
1362 root 1.65 If the feed does not queue more requests when called, it will be
1363 root 1.60 automatically removed from the group.
1364    
1365 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1366     C<2> automatically.
1367 root 1.60
1368     Example:
1369    
1370     # stat all files in @files, but only ever use four aio requests concurrently:
1371    
1372     my $grp = aio_group sub { print "finished\n" };
1373 root 1.68 limit $grp 4;
1374 root 1.65 feed $grp sub {
1375 root 1.60 my $file = pop @files
1376     or return;
1377    
1378     add $grp aio_stat $file, sub { ... };
1379 root 1.65 };
1380 root 1.60
1381 root 1.68 =item limit $grp $num
1382 root 1.60
1383     Sets the feeder limit for the group: The feeder will be called whenever
1384     the group contains less than this many requests.
1385    
1386     Setting the limit to C<0> will pause the feeding process.
1387    
1388 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1389     automatically bumps it up to C<2>.
1390    
1391 root 1.55 =back
1392    
1393 root 1.5 =head2 SUPPORT FUNCTIONS
1394    
1395 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1396    
1397 root 1.5 =over 4
1398    
1399     =item $fileno = IO::AIO::poll_fileno
1400    
1401 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1402 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1403     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1404     you have to call C<poll_cb> to check the results.
1405 root 1.5
1406     See C<poll_cb> for an example.
1407    
1408     =item IO::AIO::poll_cb
1409    
1410 root 1.86 Process some outstanding events on the result pipe. You have to call this
1411 root 1.128 regularly. Returns C<0> if all events could be processed, or C<-1> if it
1412     returned earlier for whatever reason. Returns immediately when no events
1413     are outstanding. The amount of events processed depends on the settings of
1414     C<IO::AIO::max_poll_req> and C<IO::AIO::max_poll_time>.
1415 root 1.5
1416 root 1.78 If not all requests were processed for whatever reason, the filehandle
1417 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1418     do anything special to have it called later.
1419 root 1.78
1420 root 1.20 Example: Install an Event watcher that automatically calls
1421 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1422     SYNOPSIS section, at the top of this document):
1423 root 1.5
1424     Event->io (fd => IO::AIO::poll_fileno,
1425     poll => 'r', async => 1,
1426     cb => \&IO::AIO::poll_cb);
1427    
1428 root 1.175 =item IO::AIO::poll_wait
1429    
1430     If there are any outstanding requests and none of them in the result
1431     phase, wait till the result filehandle becomes ready for reading (simply
1432     does a C<select> on the filehandle. This is useful if you want to
1433     synchronously wait for some requests to finish).
1434    
1435     See C<nreqs> for an example.
1436    
1437     =item IO::AIO::poll
1438    
1439     Waits until some requests have been handled.
1440    
1441     Returns the number of requests processed, but is otherwise strictly
1442     equivalent to:
1443    
1444     IO::AIO::poll_wait, IO::AIO::poll_cb
1445    
1446     =item IO::AIO::flush
1447    
1448     Wait till all outstanding AIO requests have been handled.
1449    
1450     Strictly equivalent to:
1451    
1452     IO::AIO::poll_wait, IO::AIO::poll_cb
1453     while IO::AIO::nreqs;
1454    
1455 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1456    
1457     =item IO::AIO::max_poll_time $seconds
1458    
1459     These set the maximum number of requests (default C<0>, meaning infinity)
1460     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1461     the maximum amount of time (default C<0>, meaning infinity) spent in
1462     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1463     of time C<poll_cb> is allowed to use).
1464 root 1.78
1465 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1466     syscall per request processed, which is not normally a problem unless your
1467     callbacks are really really fast or your OS is really really slow (I am
1468     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1469    
1470 root 1.86 Setting these is useful if you want to ensure some level of
1471     interactiveness when perl is not fast enough to process all requests in
1472     time.
1473 root 1.78
1474 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1475 root 1.78
1476     Example: Install an Event watcher that automatically calls
1477 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1478 root 1.78 program get the CPU sometimes even under high AIO load.
1479    
1480 root 1.86 # try not to spend much more than 0.1s in poll_cb
1481     IO::AIO::max_poll_time 0.1;
1482    
1483     # use a low priority so other tasks have priority
1484 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1485     poll => 'r', nice => 1,
1486 root 1.86 cb => &IO::AIO::poll_cb);
1487 root 1.78
1488 root 1.104 =back
1489    
1490 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1491 root 1.13
1492 root 1.105 =over
1493    
1494 root 1.5 =item IO::AIO::min_parallel $nthreads
1495    
1496 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1497     default is C<8>, which means eight asynchronous operations can execute
1498     concurrently at any one time (the number of outstanding requests,
1499     however, is unlimited).
1500 root 1.5
1501 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1502 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1503     create demand for a hundred threads, even if it turns out that everything
1504     is in the cache and could have been processed faster by a single thread.
1505 root 1.34
1506 root 1.61 It is recommended to keep the number of threads relatively low, as some
1507     Linux kernel versions will scale negatively with the number of threads
1508     (higher parallelity => MUCH higher latency). With current Linux 2.6
1509     versions, 4-32 threads should be fine.
1510 root 1.5
1511 root 1.34 Under most circumstances you don't need to call this function, as the
1512     module selects a default that is suitable for low to moderate load.
1513 root 1.5
1514     =item IO::AIO::max_parallel $nthreads
1515    
1516 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1517     specified number of threads are currently running, this function kills
1518     them. This function blocks until the limit is reached.
1519    
1520     While C<$nthreads> are zero, aio requests get queued but not executed
1521     until the number of threads has been increased again.
1522 root 1.5
1523     This module automatically runs C<max_parallel 0> at program end, to ensure
1524     that all threads are killed and that there are no outstanding requests.
1525    
1526     Under normal circumstances you don't need to call this function.
1527    
1528 root 1.86 =item IO::AIO::max_idle $nthreads
1529    
1530     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
1531     threads that did not get a request to process within 10 seconds). That
1532     means if a thread becomes idle while C<$nthreads> other threads are also
1533     idle, it will free its resources and exit.
1534    
1535     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1536     to allow for extremely high load situations, but want to free resources
1537     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1538    
1539     The default is probably ok in most situations, especially if thread
1540     creation is fast. If thread creation is very slow on your system you might
1541     want to use larger values.
1542    
1543 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1544 root 1.5
1545 root 1.79 This is a very bad function to use in interactive programs because it
1546     blocks, and a bad way to reduce concurrency because it is inexact: Better
1547     use an C<aio_group> together with a feed callback.
1548    
1549     Sets the maximum number of outstanding requests to C<$nreqs>. If you
1550 root 1.113 do queue up more than this number of requests, the next call to the
1551 root 1.79 C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
1552     function will block until the limit is no longer exceeded.
1553    
1554     The default value is very large, so there is no practical limit on the
1555     number of outstanding requests.
1556    
1557     You can still queue as many requests as you want. Therefore,
1558 root 1.123 C<max_outstanding> is mainly useful in simple scripts (with low values) or
1559 root 1.79 as a stop gap to shield against fatal memory overflow (with large values).
1560 root 1.5
1561 root 1.104 =back
1562    
1563 root 1.86 =head3 STATISTICAL INFORMATION
1564    
1565 root 1.104 =over
1566    
1567 root 1.86 =item IO::AIO::nreqs
1568    
1569     Returns the number of requests currently in the ready, execute or pending
1570     states (i.e. for which their callback has not been invoked yet).
1571    
1572     Example: wait till there are no outstanding requests anymore:
1573    
1574     IO::AIO::poll_wait, IO::AIO::poll_cb
1575     while IO::AIO::nreqs;
1576    
1577     =item IO::AIO::nready
1578    
1579     Returns the number of requests currently in the ready state (not yet
1580     executed).
1581    
1582     =item IO::AIO::npending
1583    
1584     Returns the number of requests currently in the pending state (executed,
1585     but not yet processed by poll_cb).
1586    
1587 root 1.5 =back
1588    
1589 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1590    
1591     IO::AIO implements some functions that might be useful, but are not
1592     asynchronous.
1593    
1594     =over 4
1595    
1596     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1597    
1598     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1599     but is blocking (this makes most sense if you know the input data is
1600     likely cached already and the output filehandle is set to non-blocking
1601     operations).
1602    
1603     Returns the number of bytes copied, or C<-1> on error.
1604    
1605     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1606    
1607 root 1.184 Simply calls the C<posix_fadvise> function (see its
1608 root 1.157 manpage for details). The following advice constants are
1609     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1610     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1611     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1612    
1613     On systems that do not implement C<posix_fadvise>, this function returns
1614     ENOSYS, otherwise the return value of C<posix_fadvise>.
1615    
1616 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1617    
1618     Simply calls the C<posix_madvise> function (see its
1619     manpage for details). The following advice constants are
1620     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1621     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1622    
1623     On systems that do not implement C<posix_madvise>, this function returns
1624     ENOSYS, otherwise the return value of C<posix_madvise>.
1625    
1626     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1627    
1628     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1629     $scalar (see its manpage for details). The following protect
1630     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1631     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1632    
1633     On systems that do not implement C<mprotect>, this function returns
1634     ENOSYS, otherwise the return value of C<mprotect>.
1635    
1636 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1637    
1638     Memory-maps a file (or anonymous memory range) and attaches it to the
1639     given C<$scalar>, which will act like a string scalar.
1640    
1641     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1642     change the string length, and most read-only operations such as copying it
1643     or searching it with regexes and so on.
1644    
1645     Anything else is unsafe and will, at best, result in memory leaks.
1646    
1647     The memory map associated with the C<$scalar> is automatically removed
1648     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1649     C<IO::AIO::munmap> functions are called.
1650    
1651     This calls the C<mmap>(2) function internally. See your system's manual
1652     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1653    
1654     The C<$length> must be larger than zero and smaller than the actual
1655     filesize.
1656    
1657     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1658     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1659    
1660     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1661     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1662     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1663     (which is set to C<MAP_ANON> if your system only provides this
1664     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1665     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1666     C<IO::AIO::MAP_NONBLOCK>
1667    
1668     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1669    
1670 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1671     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1672    
1673 root 1.177 Example:
1674    
1675     use Digest::MD5;
1676     use IO::AIO;
1677    
1678     open my $fh, "<verybigfile"
1679     or die "$!";
1680    
1681     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1682     or die "verybigfile: $!";
1683    
1684     my $fast_md5 = md5 $data;
1685    
1686 root 1.176 =item IO::AIO::munmap $scalar
1687    
1688     Removes a previous mmap and undefines the C<$scalar>.
1689    
1690 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1691 root 1.174
1692 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1693     C<aio_mlock> call (see its description for details).
1694 root 1.174
1695     =item IO::AIO::munlockall
1696    
1697     Calls the C<munlockall> function.
1698    
1699     On systems that do not implement C<munlockall>, this function returns
1700     ENOSYS, otherwise the return value of C<munlockall>.
1701    
1702 root 1.157 =back
1703    
1704 root 1.1 =cut
1705    
1706 root 1.61 min_parallel 8;
1707 root 1.1
1708 root 1.95 END { flush }
1709 root 1.82
1710 root 1.1 1;
1711    
1712 root 1.175 =head1 EVENT LOOP INTEGRATION
1713    
1714     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1715     automatically into many event loops:
1716    
1717     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1718     use AnyEvent::AIO;
1719    
1720     You can also integrate IO::AIO manually into many event loops, here are
1721     some examples of how to do this:
1722    
1723     # EV integration
1724     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1725    
1726     # Event integration
1727     Event->io (fd => IO::AIO::poll_fileno,
1728     poll => 'r',
1729     cb => \&IO::AIO::poll_cb);
1730    
1731     # Glib/Gtk2 integration
1732     add_watch Glib::IO IO::AIO::poll_fileno,
1733     in => sub { IO::AIO::poll_cb; 1 };
1734    
1735     # Tk integration
1736     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1737     readable => \&IO::AIO::poll_cb);
1738    
1739     # Danga::Socket integration
1740     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1741     \&IO::AIO::poll_cb);
1742    
1743 root 1.27 =head2 FORK BEHAVIOUR
1744    
1745 root 1.52 This module should do "the right thing" when the process using it forks:
1746    
1747 root 1.34 Before the fork, IO::AIO enters a quiescent state where no requests
1748     can be added in other threads and no results will be processed. After
1749     the fork the parent simply leaves the quiescent state and continues
1750 root 1.72 request/result processing, while the child frees the request/result queue
1751     (so that the requests started before the fork will only be handled in the
1752     parent). Threads will be started on demand until the limit set in the
1753 root 1.34 parent process has been reached again.
1754 root 1.27
1755 root 1.52 In short: the parent will, after a short pause, continue as if fork had
1756     not been called, while the child will act as if IO::AIO has not been used
1757     yet.
1758    
1759 root 1.60 =head2 MEMORY USAGE
1760    
1761 root 1.72 Per-request usage:
1762    
1763     Each aio request uses - depending on your architecture - around 100-200
1764     bytes of memory. In addition, stat requests need a stat buffer (possibly
1765     a few hundred bytes), readdir requires a result buffer and so on. Perl
1766     scalars and other data passed into aio requests will also be locked and
1767     will consume memory till the request has entered the done state.
1768 root 1.60
1769 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1770 root 1.60 problem.
1771    
1772 root 1.72 Per-thread usage:
1773    
1774     In the execution phase, some aio requests require more memory for
1775     temporary buffers, and each thread requires a stack and other data
1776     structures (usually around 16k-128k, depending on the OS).
1777    
1778     =head1 KNOWN BUGS
1779    
1780 root 1.73 Known bugs will be fixed in the next release.
1781 root 1.60
1782 root 1.1 =head1 SEE ALSO
1783    
1784 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1785     more natural syntax.
1786 root 1.1
1787     =head1 AUTHOR
1788    
1789     Marc Lehmann <schmorp@schmorp.de>
1790     http://home.schmorp.de/
1791    
1792     =cut
1793