ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.193
Committed: Thu May 26 04:15:37 2011 UTC (12 years, 11 months ago) by root
Branch: MAIN
Changes since 1.192: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.189 our $VERSION = '3.8';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.120 aio_scandir aio_symlink aio_readlink aio_sync aio_fsync
178 root 1.142 aio_fdatasync aio_sync_file_range aio_pathsync aio_readahead
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183     aio_statvfs);
184 root 1.120
185 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
186 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
187 root 1.188 min_parallel max_parallel max_idle idle_timeout
188 root 1.86 nreqs nready npending nthreads
189 root 1.157 max_poll_time max_poll_reqs
190 root 1.182 sendfile fadvise madvise
191     mmap munmap munlock munlockall);
192 root 1.1
193 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
194    
195 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
196    
197 root 1.1 require XSLoader;
198 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
199 root 1.1 }
200    
201 root 1.5 =head1 FUNCTIONS
202 root 1.1
203 root 1.175 =head2 QUICK OVERVIEW
204    
205     This section simply lists the prototypes of the most important functions
206     for quick reference. See the following sections for function-by-function
207     documentation.
208    
209     aio_open $pathname, $flags, $mode, $callback->($fh)
210     aio_close $fh, $callback->($status)
211     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
212     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
214     aio_readahead $fh,$offset,$length, $callback->($retval)
215     aio_stat $fh_or_path, $callback->($status)
216     aio_lstat $fh, $callback->($status)
217     aio_statvfs $fh_or_path, $callback->($statvfs)
218     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
219     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
220     aio_truncate $fh_or_path, $offset, $callback->($status)
221     aio_chmod $fh_or_path, $mode, $callback->($status)
222     aio_unlink $pathname, $callback->($status)
223     aio_mknod $path, $mode, $dev, $callback->($status)
224     aio_link $srcpath, $dstpath, $callback->($status)
225     aio_symlink $srcpath, $dstpath, $callback->($status)
226     aio_readlink $path, $callback->($link)
227     aio_rename $srcpath, $dstpath, $callback->($status)
228     aio_mkdir $pathname, $mode, $callback->($status)
229     aio_rmdir $pathname, $callback->($status)
230     aio_readdir $pathname, $callback->($entries)
231     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
232     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
233     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
234     aio_load $path, $data, $callback->($status)
235     aio_copy $srcpath, $dstpath, $callback->($status)
236     aio_move $srcpath, $dstpath, $callback->($status)
237     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
238     aio_rmtree $path, $callback->($status)
239     aio_sync $callback->($status)
240     aio_fsync $fh, $callback->($status)
241     aio_fdatasync $fh, $callback->($status)
242     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
243     aio_pathsync $path, $callback->($status)
244     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
245     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
246 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
247     aio_mlockall $flags, $callback->($status)
248 root 1.175 aio_group $callback->(...)
249     aio_nop $callback->()
250    
251     $prev_pri = aioreq_pri [$pri]
252     aioreq_nice $pri_adjust
253    
254     IO::AIO::poll_wait
255     IO::AIO::poll_cb
256     IO::AIO::poll
257     IO::AIO::flush
258     IO::AIO::max_poll_reqs $nreqs
259     IO::AIO::max_poll_time $seconds
260     IO::AIO::min_parallel $nthreads
261     IO::AIO::max_parallel $nthreads
262     IO::AIO::max_idle $nthreads
263 root 1.188 IO::AIO::idle_timeout $seconds
264 root 1.175 IO::AIO::max_outstanding $maxreqs
265     IO::AIO::nreqs
266     IO::AIO::nready
267     IO::AIO::npending
268    
269     IO::AIO::sendfile $ofh, $ifh, $offset, $count
270     IO::AIO::fadvise $fh, $offset, $len, $advice
271 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
272     IO::AIO::mprotect $scalar, $offset, $length, $protect
273 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
274 root 1.175 IO::AIO::munlockall
275    
276 root 1.87 =head2 AIO REQUEST FUNCTIONS
277 root 1.1
278 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
279     with the same name (sans C<aio_>). The arguments are similar or identical,
280 root 1.14 and they all accept an additional (and optional) C<$callback> argument
281     which must be a code reference. This code reference will get called with
282     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
283 root 1.136 perl, which usually delivers "false") as its sole argument after the given
284 root 1.14 syscall has been executed asynchronously.
285 root 1.1
286 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
287     internally until the request has finished.
288 root 1.1
289 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
290     further manipulation of those requests while they are in-flight.
291 root 1.52
292 root 1.28 The pathnames you pass to these routines I<must> be absolute and
293 root 1.87 encoded as octets. The reason for the former is that at the time the
294 root 1.28 request is being executed, the current working directory could have
295     changed. Alternatively, you can make sure that you never change the
296 root 1.87 current working directory anywhere in the program and then use relative
297     paths.
298 root 1.28
299 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
300     in filenames you got from outside (command line, readdir etc.) without
301     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
302 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
303     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
304 root 1.87 use something else to ensure your scalar has the correct contents.
305    
306     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
307 root 1.136 handles correctly whether it is set or not.
308 root 1.1
309 root 1.5 =over 4
310 root 1.1
311 root 1.80 =item $prev_pri = aioreq_pri [$pri]
312 root 1.68
313 root 1.80 Returns the priority value that would be used for the next request and, if
314     C<$pri> is given, sets the priority for the next aio request.
315 root 1.68
316 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
317     and C<4>, respectively. Requests with higher priority will be serviced
318     first.
319    
320     The priority will be reset to C<0> after each call to one of the C<aio_*>
321 root 1.68 functions.
322    
323 root 1.69 Example: open a file with low priority, then read something from it with
324     higher priority so the read request is serviced before other low priority
325     open requests (potentially spamming the cache):
326    
327     aioreq_pri -3;
328     aio_open ..., sub {
329     return unless $_[0];
330    
331     aioreq_pri -2;
332     aio_read $_[0], ..., sub {
333     ...
334     };
335     };
336    
337 root 1.106
338 root 1.69 =item aioreq_nice $pri_adjust
339    
340     Similar to C<aioreq_pri>, but subtracts the given value from the current
341 root 1.87 priority, so the effect is cumulative.
342 root 1.69
343 root 1.106
344 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
345 root 1.1
346 root 1.2 Asynchronously open or create a file and call the callback with a newly
347     created filehandle for the file.
348 root 1.1
349     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
350     for an explanation.
351    
352 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
353     list. They are the same as used by C<sysopen>.
354    
355     Likewise, C<$mode> specifies the mode of the newly created file, if it
356     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
357     except that it is mandatory (i.e. use C<0> if you don't create new files,
358 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
359     by the umask in effect then the request is being executed, so better never
360     change the umask.
361 root 1.1
362     Example:
363    
364 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
365 root 1.2 if ($_[0]) {
366     print "open successful, fh is $_[0]\n";
367 root 1.1 ...
368     } else {
369     die "open failed: $!\n";
370     }
371     };
372    
373 root 1.106
374 root 1.40 =item aio_close $fh, $callback->($status)
375 root 1.1
376 root 1.2 Asynchronously close a file and call the callback with the result
377 root 1.116 code.
378    
379 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
380 root 1.121 closing the file descriptor associated with the filehandle itself.
381 root 1.117
382 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
383     use dup2 to overwrite the file descriptor with the write-end of a pipe
384     (the pipe fd will be created on demand and will be cached).
385 root 1.117
386 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
387     free for reuse until the perl filehandle is closed.
388 root 1.117
389     =cut
390    
391 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
392 root 1.1
393 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
394 root 1.1
395 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
396     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
397     and calls the callback without the actual number of bytes read (or -1 on
398     error, just like the syscall).
399 root 1.109
400 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
401     offset plus the actual number of bytes read.
402    
403 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
404     be used (and updated), otherwise the file descriptor offset will not be
405     changed by these calls.
406 root 1.109
407 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
408     C<$data>.
409 root 1.109
410     If C<$dataoffset> is less than zero, it will be counted from the end of
411     C<$data>.
412 root 1.1
413 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
414 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
415     the necessary/optional hardware is installed).
416 root 1.31
417 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
418 root 1.1 offset C<0> within the scalar:
419    
420     aio_read $fh, 7, 15, $buffer, 0, sub {
421 root 1.9 $_[0] > 0 or die "read error: $!";
422     print "read $_[0] bytes: <$buffer>\n";
423 root 1.1 };
424    
425 root 1.106
426 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
427 root 1.35
428     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
429     reading at byte offset C<$in_offset>, and starts writing at the current
430     file offset of C<$out_fh>. Because of that, it is not safe to issue more
431     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
432     other.
433    
434 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
435     are written, and there is no way to find out how many bytes have been read
436     from C<aio_sendfile> alone, as C<aio_sendfile> only provides the number of
437     bytes written to C<$out_fh>. Only if the result value equals C<$length>
438     one can assume that C<$length> bytes have been read.
439    
440     Unlike with other C<aio_> functions, it makes a lot of sense to use
441     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
442     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
443     the socket I/O will be non-blocking. Note, however, that you can run into
444     a trap where C<aio_sendfile> reads some data with readahead, then fails
445     to write all data, and when the socket is ready the next time, the data
446     in the cache is already lost, forcing C<aio_sendfile> to again hit the
447     disk. Explicit C<aio_read> + C<aio_write> let's you control resource usage
448     much better.
449    
450 root 1.35 This call tries to make use of a native C<sendfile> syscall to provide
451     zero-copy operation. For this to work, C<$out_fh> should refer to a
452 root 1.176 socket, and C<$in_fh> should refer to an mmap'able file.
453 root 1.35
454 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
455     C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or C<ENOTSOCK>,
456     it will be emulated, so you can call C<aio_sendfile> on any type of
457     filehandle regardless of the limitations of the operating system.
458 root 1.35
459 root 1.106
460 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
461 root 1.1
462 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
463 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
464     argument specifies the starting point from which data is to be read and
465     C<$length> specifies the number of bytes to be read. I/O is performed in
466     whole pages, so that offset is effectively rounded down to a page boundary
467     and bytes are read up to the next page boundary greater than or equal to
468 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
469 root 1.1 file. The current file offset of the file is left unchanged.
470    
471 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
472     emulated by simply reading the data, which would have a similar effect.
473    
474 root 1.106
475 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
476 root 1.1
477 root 1.40 =item aio_lstat $fh, $callback->($status)
478 root 1.1
479     Works like perl's C<stat> or C<lstat> in void context. The callback will
480     be called after the stat and the results will be available using C<stat _>
481     or C<-s _> etc...
482    
483     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
484     for an explanation.
485    
486     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
487     error when stat'ing a large file, the results will be silently truncated
488     unless perl itself is compiled with large file support.
489    
490 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
491     following constants and functions (if not implemented, the constants will
492     be C<0> and the functions will either C<croak> or fall back on traditional
493     behaviour).
494    
495     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
496     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
497     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
498    
499 root 1.1 Example: Print the length of F</etc/passwd>:
500    
501     aio_stat "/etc/passwd", sub {
502     $_[0] and die "stat failed: $!";
503     print "size is ", -s _, "\n";
504     };
505    
506 root 1.106
507 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
508 root 1.172
509     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
510     whether a file handle or path was passed.
511    
512     On success, the callback is passed a hash reference with the following
513     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
514     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
515     is passed.
516    
517     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
518     C<ST_NOSUID>.
519    
520     The following non-POSIX IO::AIO::ST_* flag masks are defined to
521     their correct value when available, or to C<0> on systems that do
522     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
523     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
524     C<ST_NODIRATIME> and C<ST_RELATIME>.
525    
526     Example: stat C</wd> and dump out the data if successful.
527    
528     aio_statvfs "/wd", sub {
529     my $f = $_[0]
530     or die "statvfs: $!";
531    
532     use Data::Dumper;
533     say Dumper $f;
534     };
535    
536     # result:
537     {
538     bsize => 1024,
539     bfree => 4333064312,
540     blocks => 10253828096,
541     files => 2050765568,
542     flag => 4096,
543     favail => 2042092649,
544     bavail => 4333064312,
545     ffree => 2042092649,
546     namemax => 255,
547     frsize => 1024,
548     fsid => 1810
549     }
550    
551    
552 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
553    
554     Works like perl's C<utime> function (including the special case of $atime
555     and $mtime being undef). Fractional times are supported if the underlying
556     syscalls support them.
557    
558     When called with a pathname, uses utimes(2) if available, otherwise
559     utime(2). If called on a file descriptor, uses futimes(2) if available,
560     otherwise returns ENOSYS, so this is not portable.
561    
562     Examples:
563    
564 root 1.107 # set atime and mtime to current time (basically touch(1)):
565 root 1.106 aio_utime "path", undef, undef;
566     # set atime to current time and mtime to beginning of the epoch:
567     aio_utime "path", time, undef; # undef==0
568    
569    
570     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
571    
572     Works like perl's C<chown> function, except that C<undef> for either $uid
573     or $gid is being interpreted as "do not change" (but -1 can also be used).
574    
575     Examples:
576    
577     # same as "chown root path" in the shell:
578     aio_chown "path", 0, -1;
579     # same as above:
580     aio_chown "path", 0, undef;
581    
582    
583 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
584    
585     Works like truncate(2) or ftruncate(2).
586    
587    
588 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
589    
590     Works like perl's C<chmod> function.
591    
592    
593 root 1.40 =item aio_unlink $pathname, $callback->($status)
594 root 1.1
595     Asynchronously unlink (delete) a file and call the callback with the
596     result code.
597    
598 root 1.106
599 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
600    
601 root 1.86 [EXPERIMENTAL]
602    
603 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
604    
605 root 1.86 The only (POSIX-) portable way of calling this function is:
606 root 1.83
607     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
608 root 1.82
609 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
610     and functions.
611 root 1.106
612 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
613    
614     Asynchronously create a new link to the existing object at C<$srcpath> at
615     the path C<$dstpath> and call the callback with the result code.
616    
617 root 1.106
618 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
619    
620     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
621     the path C<$dstpath> and call the callback with the result code.
622    
623 root 1.106
624 root 1.90 =item aio_readlink $path, $callback->($link)
625    
626     Asynchronously read the symlink specified by C<$path> and pass it to
627     the callback. If an error occurs, nothing or undef gets passed to the
628     callback.
629    
630 root 1.106
631 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
632    
633     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
634     rename(2) and call the callback with the result code.
635    
636 root 1.106
637 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
638    
639     Asynchronously mkdir (create) a directory and call the callback with
640     the result code. C<$mode> will be modified by the umask at the time the
641     request is executed, so do not change your umask.
642    
643 root 1.106
644 root 1.40 =item aio_rmdir $pathname, $callback->($status)
645 root 1.27
646     Asynchronously rmdir (delete) a directory and call the callback with the
647     result code.
648    
649 root 1.106
650 root 1.46 =item aio_readdir $pathname, $callback->($entries)
651 root 1.37
652     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
653     directory (i.e. opendir + readdir + closedir). The entries will not be
654     sorted, and will B<NOT> include the C<.> and C<..> entries.
655    
656 root 1.148 The callback is passed a single argument which is either C<undef> or an
657     array-ref with the filenames.
658    
659    
660     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
661    
662     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
663     behaviour and output format. In case of an error, C<$entries> will be
664     C<undef>.
665    
666     The flags are a combination of the following constants, ORed together (the
667     flags will also be passed to the callback, possibly modified):
668    
669     =over 4
670    
671 root 1.150 =item IO::AIO::READDIR_DENTS
672 root 1.148
673 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
674     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
675 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
676 root 1.148 entry in more detail.
677    
678     C<$name> is the name of the entry.
679    
680 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
681 root 1.148
682 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
683     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
684     C<IO::AIO::DT_WHT>.
685 root 1.148
686 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
687 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
688     scalars are read-only: you can not modify them.
689    
690 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
691 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
692     systems that do not deliver the inode information.
693 root 1.150
694     =item IO::AIO::READDIR_DIRS_FIRST
695 root 1.148
696     When this flag is set, then the names will be returned in an order where
697 root 1.193 likely directories come first, in optimal stat order. This is useful when
698     you need to quickly find directories, or you want to find all directories
699     while avoiding to stat() each entry.
700 root 1.148
701 root 1.149 If the system returns type information in readdir, then this is used
702 root 1.193 to find directories directly. Otherwise, likely directories are names
703     beginning with ".", or otherwise names with no dots, of which names with
704 root 1.149 short names are tried first.
705    
706 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
707 root 1.148
708     When this flag is set, then the names will be returned in an order
709     suitable for stat()'ing each one. That is, when you plan to stat()
710     all files in the given directory, then the returned order will likely
711     be fastest.
712    
713 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
714     the likely dirs come first, resulting in a less optimal stat order.
715 root 1.148
716 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
717 root 1.148
718     This flag should not be set when calling C<aio_readdirx>. Instead, it
719     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
720 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
721 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
722    
723     =back
724 root 1.37
725 root 1.106
726 root 1.98 =item aio_load $path, $data, $callback->($status)
727    
728     This is a composite request that tries to fully load the given file into
729     memory. Status is the same as with aio_read.
730    
731     =cut
732    
733     sub aio_load($$;$) {
734 root 1.123 my ($path, undef, $cb) = @_;
735     my $data = \$_[1];
736 root 1.98
737 root 1.123 my $pri = aioreq_pri;
738     my $grp = aio_group $cb;
739    
740     aioreq_pri $pri;
741     add $grp aio_open $path, O_RDONLY, 0, sub {
742     my $fh = shift
743     or return $grp->result (-1);
744 root 1.98
745     aioreq_pri $pri;
746 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
747     $grp->result ($_[0]);
748 root 1.98 };
749 root 1.123 };
750 root 1.98
751 root 1.123 $grp
752 root 1.98 }
753    
754 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
755    
756     Try to copy the I<file> (directories not supported as either source or
757     destination) from C<$srcpath> to C<$dstpath> and call the callback with
758 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
759 root 1.82
760 root 1.134 This is a composite request that creates the destination file with
761 root 1.82 mode 0200 and copies the contents of the source file into it using
762     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
763     uid/gid, in that order.
764    
765     If an error occurs, the partial destination file will be unlinked, if
766     possible, except when setting atime, mtime, access mode and uid/gid, where
767     errors are being ignored.
768    
769     =cut
770    
771     sub aio_copy($$;$) {
772 root 1.123 my ($src, $dst, $cb) = @_;
773 root 1.82
774 root 1.123 my $pri = aioreq_pri;
775     my $grp = aio_group $cb;
776 root 1.82
777 root 1.123 aioreq_pri $pri;
778     add $grp aio_open $src, O_RDONLY, 0, sub {
779     if (my $src_fh = $_[0]) {
780 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
781 root 1.95
782 root 1.123 aioreq_pri $pri;
783     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
784     if (my $dst_fh = $_[0]) {
785     aioreq_pri $pri;
786     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
787     if ($_[0] == $stat[7]) {
788     $grp->result (0);
789     close $src_fh;
790    
791 root 1.147 my $ch = sub {
792     aioreq_pri $pri;
793     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
794     aioreq_pri $pri;
795     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
796     aioreq_pri $pri;
797     add $grp aio_close $dst_fh;
798     }
799     };
800     };
801 root 1.123
802     aioreq_pri $pri;
803 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
804     if ($_[0] < 0 && $! == ENOSYS) {
805     aioreq_pri $pri;
806     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
807     } else {
808     $ch->();
809     }
810     };
811 root 1.123 } else {
812     $grp->result (-1);
813     close $src_fh;
814     close $dst_fh;
815    
816     aioreq $pri;
817     add $grp aio_unlink $dst;
818     }
819     };
820     } else {
821     $grp->result (-1);
822     }
823     },
824 root 1.82
825 root 1.123 } else {
826     $grp->result (-1);
827     }
828     };
829 root 1.82
830 root 1.123 $grp
831 root 1.82 }
832    
833     =item aio_move $srcpath, $dstpath, $callback->($status)
834    
835     Try to move the I<file> (directories not supported as either source or
836     destination) from C<$srcpath> to C<$dstpath> and call the callback with
837 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
838 root 1.82
839 root 1.137 This is a composite request that tries to rename(2) the file first; if
840     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
841     that is successful, unlinks the C<$srcpath>.
842 root 1.82
843     =cut
844    
845     sub aio_move($$;$) {
846 root 1.123 my ($src, $dst, $cb) = @_;
847 root 1.82
848 root 1.123 my $pri = aioreq_pri;
849     my $grp = aio_group $cb;
850 root 1.82
851 root 1.123 aioreq_pri $pri;
852     add $grp aio_rename $src, $dst, sub {
853     if ($_[0] && $! == EXDEV) {
854     aioreq_pri $pri;
855     add $grp aio_copy $src, $dst, sub {
856     $grp->result ($_[0]);
857 root 1.95
858 root 1.123 if (!$_[0]) {
859     aioreq_pri $pri;
860     add $grp aio_unlink $src;
861     }
862     };
863     } else {
864     $grp->result ($_[0]);
865     }
866     };
867 root 1.82
868 root 1.123 $grp
869 root 1.82 }
870    
871 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
872    
873 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
874 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
875     names, directories you can recurse into (directories), and ones you cannot
876     recurse into (everything else, including symlinks to directories).
877 root 1.52
878 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
879     C<$maxreq> specifies the maximum number of outstanding aio requests that
880     this function generates. If it is C<< <= 0 >>, then a suitable default
881 root 1.81 will be chosen (currently 4).
882 root 1.40
883     On error, the callback is called without arguments, otherwise it receives
884     two array-refs with path-relative entry names.
885    
886     Example:
887    
888     aio_scandir $dir, 0, sub {
889     my ($dirs, $nondirs) = @_;
890     print "real directories: @$dirs\n";
891     print "everything else: @$nondirs\n";
892     };
893    
894     Implementation notes.
895    
896     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
897    
898 root 1.149 If readdir returns file type information, then this is used directly to
899     find directories.
900    
901     Otherwise, after reading the directory, the modification time, size etc.
902     of the directory before and after the readdir is checked, and if they
903     match (and isn't the current time), the link count will be used to decide
904     how many entries are directories (if >= 2). Otherwise, no knowledge of the
905     number of subdirectories will be assumed.
906    
907     Then entries will be sorted into likely directories a non-initial dot
908     currently) and likely non-directories (see C<aio_readdirx>). Then every
909     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
910     in order of their inode numbers. If that succeeds, it assumes that the
911     entry is a directory or a symlink to directory (which will be checked
912 root 1.52 seperately). This is often faster than stat'ing the entry itself because
913     filesystems might detect the type of the entry without reading the inode
914 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
915     the filetype information on readdir.
916 root 1.52
917     If the known number of directories (link count - 2) has been reached, the
918     rest of the entries is assumed to be non-directories.
919    
920     This only works with certainty on POSIX (= UNIX) filesystems, which
921     fortunately are the vast majority of filesystems around.
922    
923     It will also likely work on non-POSIX filesystems with reduced efficiency
924     as those tend to return 0 or 1 as link counts, which disables the
925     directory counting heuristic.
926 root 1.40
927     =cut
928    
929 root 1.100 sub aio_scandir($$;$) {
930 root 1.123 my ($path, $maxreq, $cb) = @_;
931    
932     my $pri = aioreq_pri;
933 root 1.40
934 root 1.123 my $grp = aio_group $cb;
935 root 1.80
936 root 1.123 $maxreq = 4 if $maxreq <= 0;
937 root 1.55
938 root 1.123 # stat once
939     aioreq_pri $pri;
940     add $grp aio_stat $path, sub {
941     return $grp->result () if $_[0];
942     my $now = time;
943     my $hash1 = join ":", (stat _)[0,1,3,7,9];
944 root 1.40
945 root 1.123 # read the directory entries
946 root 1.80 aioreq_pri $pri;
947 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
948 root 1.123 my $entries = shift
949     or return $grp->result ();
950 root 1.40
951 root 1.123 # stat the dir another time
952 root 1.80 aioreq_pri $pri;
953 root 1.123 add $grp aio_stat $path, sub {
954     my $hash2 = join ":", (stat _)[0,1,3,7,9];
955 root 1.95
956 root 1.123 my $ndirs;
957 root 1.95
958 root 1.123 # take the slow route if anything looks fishy
959     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
960     $ndirs = -1;
961     } else {
962     # if nlink == 2, we are finished
963 root 1.150 # for non-posix-fs's, we rely on nlink < 2
964 root 1.123 $ndirs = (stat _)[3] - 2
965     or return $grp->result ([], $entries);
966     }
967    
968     my (@dirs, @nondirs);
969 root 1.40
970 root 1.123 my $statgrp = add $grp aio_group sub {
971     $grp->result (\@dirs, \@nondirs);
972     };
973 root 1.40
974 root 1.123 limit $statgrp $maxreq;
975     feed $statgrp sub {
976     return unless @$entries;
977 root 1.150 my $entry = shift @$entries;
978 root 1.40
979 root 1.123 aioreq_pri $pri;
980     add $statgrp aio_stat "$path/$entry/.", sub {
981     if ($_[0] < 0) {
982     push @nondirs, $entry;
983     } else {
984     # need to check for real directory
985     aioreq_pri $pri;
986     add $statgrp aio_lstat "$path/$entry", sub {
987     if (-d _) {
988     push @dirs, $entry;
989    
990     unless (--$ndirs) {
991     push @nondirs, @$entries;
992     feed $statgrp;
993 root 1.74 }
994 root 1.123 } else {
995     push @nondirs, $entry;
996 root 1.40 }
997     }
998 root 1.123 }
999 root 1.74 };
1000 root 1.40 };
1001     };
1002     };
1003 root 1.123 };
1004 root 1.55
1005 root 1.123 $grp
1006 root 1.40 }
1007    
1008 root 1.99 =item aio_rmtree $path, $callback->($status)
1009    
1010 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1011     status of the final C<rmdir> only. This is a composite request that
1012     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1013     everything else.
1014 root 1.99
1015     =cut
1016    
1017     sub aio_rmtree;
1018 root 1.100 sub aio_rmtree($;$) {
1019 root 1.123 my ($path, $cb) = @_;
1020 root 1.99
1021 root 1.123 my $pri = aioreq_pri;
1022     my $grp = aio_group $cb;
1023 root 1.99
1024 root 1.123 aioreq_pri $pri;
1025     add $grp aio_scandir $path, 0, sub {
1026     my ($dirs, $nondirs) = @_;
1027 root 1.99
1028 root 1.123 my $dirgrp = aio_group sub {
1029     add $grp aio_rmdir $path, sub {
1030     $grp->result ($_[0]);
1031 root 1.99 };
1032 root 1.123 };
1033 root 1.99
1034 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1035     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1036 root 1.99
1037 root 1.123 add $grp $dirgrp;
1038     };
1039 root 1.99
1040 root 1.123 $grp
1041 root 1.99 }
1042    
1043 root 1.119 =item aio_sync $callback->($status)
1044    
1045     Asynchronously call sync and call the callback when finished.
1046    
1047 root 1.40 =item aio_fsync $fh, $callback->($status)
1048 root 1.1
1049     Asynchronously call fsync on the given filehandle and call the callback
1050     with the fsync result code.
1051    
1052 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1053 root 1.1
1054     Asynchronously call fdatasync on the given filehandle and call the
1055 root 1.26 callback with the fdatasync result code.
1056    
1057     If this call isn't available because your OS lacks it or it couldn't be
1058     detected, it will be emulated by calling C<fsync> instead.
1059 root 1.1
1060 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1061    
1062     Sync the data portion of the file specified by C<$offset> and C<$length>
1063     to disk (but NOT the metadata), by calling the Linux-specific
1064     sync_file_range call. If sync_file_range is not available or it returns
1065     ENOSYS, then fdatasync or fsync is being substituted.
1066    
1067     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1068     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1069     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1070     manpage for details.
1071    
1072 root 1.120 =item aio_pathsync $path, $callback->($status)
1073    
1074     This request tries to open, fsync and close the given path. This is a
1075 root 1.135 composite request intended to sync directories after directory operations
1076 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1077     specific effect, but usually it makes sure that directory changes get
1078     written to disc. It works for anything that can be opened for read-only,
1079     not just directories.
1080    
1081 root 1.162 Future versions of this function might fall back to other methods when
1082     C<fsync> on the directory fails (such as calling C<sync>).
1083    
1084 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1085    
1086     =cut
1087    
1088     sub aio_pathsync($;$) {
1089 root 1.123 my ($path, $cb) = @_;
1090    
1091     my $pri = aioreq_pri;
1092     my $grp = aio_group $cb;
1093 root 1.120
1094 root 1.123 aioreq_pri $pri;
1095     add $grp aio_open $path, O_RDONLY, 0, sub {
1096     my ($fh) = @_;
1097     if ($fh) {
1098     aioreq_pri $pri;
1099     add $grp aio_fsync $fh, sub {
1100     $grp->result ($_[0]);
1101 root 1.120
1102     aioreq_pri $pri;
1103 root 1.123 add $grp aio_close $fh;
1104     };
1105     } else {
1106     $grp->result (-1);
1107     }
1108     };
1109 root 1.120
1110 root 1.123 $grp
1111 root 1.120 }
1112    
1113 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1114    
1115     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1116 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1117     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1118     scalar must only be modified in-place while an aio operation is pending on
1119     it).
1120 root 1.170
1121     It calls the C<msync> function of your OS, if available, with the memory
1122     area starting at C<$offset> in the string and ending C<$length> bytes
1123     later. If C<$length> is negative, counts from the end, and if C<$length>
1124     is C<undef>, then it goes till the end of the string. The flags can be
1125     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1126     C<IO::AIO::MS_SYNC>.
1127    
1128     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1129    
1130     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1131     scalars.
1132    
1133     It touches (reads or writes) all memory pages in the specified
1134     range inside the scalar. All caveats and parameters are the same
1135     as for C<aio_msync>, above, except for flags, which must be either
1136     C<0> (which reads all pages and ensures they are instantiated) or
1137     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1138     writing an octet from it, which dirties the page).
1139    
1140 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1141    
1142     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1143     scalars.
1144    
1145     It reads in all the pages of the underlying storage into memory (if any)
1146     and locks them, so they are not getting swapped/paged out or removed.
1147    
1148     If C<$length> is undefined, then the scalar will be locked till the end.
1149    
1150     On systems that do not implement C<mlock>, this function returns C<-1>
1151     and sets errno to C<ENOSYS>.
1152    
1153     Note that the corresponding C<munlock> is synchronous and is
1154     documented under L<MISCELLANEOUS FUNCTIONS>.
1155    
1156 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1157     C<$data> gets destroyed.
1158    
1159     open my $fh, "<", $path or die "$path: $!";
1160     my $data;
1161     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1162     aio_mlock $data; # mlock in background
1163    
1164 root 1.182 =item aio_mlockall $flags, $callback->($status)
1165    
1166     Calls the C<mlockall> function with the given C<$flags> (a combination of
1167     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1168    
1169     On systems that do not implement C<mlockall>, this function returns C<-1>
1170     and sets errno to C<ENOSYS>.
1171    
1172     Note that the corresponding C<munlockall> is synchronous and is
1173     documented under L<MISCELLANEOUS FUNCTIONS>.
1174    
1175 root 1.183 Example: asynchronously lock all current and future pages into memory.
1176    
1177     aio_mlockall IO::AIO::MCL_FUTURE;
1178    
1179 root 1.58 =item aio_group $callback->(...)
1180 root 1.54
1181 root 1.55 This is a very special aio request: Instead of doing something, it is a
1182     container for other aio requests, which is useful if you want to bundle
1183 root 1.71 many requests into a single, composite, request with a definite callback
1184     and the ability to cancel the whole request with its subrequests.
1185 root 1.55
1186     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1187     for more info.
1188    
1189     Example:
1190    
1191     my $grp = aio_group sub {
1192     print "all stats done\n";
1193     };
1194    
1195     add $grp
1196     (aio_stat ...),
1197     (aio_stat ...),
1198     ...;
1199    
1200 root 1.63 =item aio_nop $callback->()
1201    
1202     This is a special request - it does nothing in itself and is only used for
1203     side effects, such as when you want to add a dummy request to a group so
1204     that finishing the requests in the group depends on executing the given
1205     code.
1206    
1207 root 1.64 While this request does nothing, it still goes through the execution
1208     phase and still requires a worker thread. Thus, the callback will not
1209     be executed immediately but only after other requests in the queue have
1210     entered their execution phase. This can be used to measure request
1211     latency.
1212    
1213 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1214 root 1.54
1215     Mainly used for debugging and benchmarking, this aio request puts one of
1216     the request workers to sleep for the given time.
1217    
1218 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1219 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1220     immense (it blocks a thread for a long time) so do not use this function
1221     except to put your application under artificial I/O pressure.
1222 root 1.56
1223 root 1.5 =back
1224    
1225 root 1.53 =head2 IO::AIO::REQ CLASS
1226 root 1.52
1227     All non-aggregate C<aio_*> functions return an object of this class when
1228     called in non-void context.
1229    
1230     =over 4
1231    
1232 root 1.65 =item cancel $req
1233 root 1.52
1234     Cancels the request, if possible. Has the effect of skipping execution
1235     when entering the B<execute> state and skipping calling the callback when
1236     entering the the B<result> state, but will leave the request otherwise
1237 root 1.151 untouched (with the exception of readdir). That means that requests that
1238     currently execute will not be stopped and resources held by the request
1239     will not be freed prematurely.
1240 root 1.52
1241 root 1.65 =item cb $req $callback->(...)
1242    
1243     Replace (or simply set) the callback registered to the request.
1244    
1245 root 1.52 =back
1246    
1247 root 1.55 =head2 IO::AIO::GRP CLASS
1248    
1249     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1250     objects of this class, too.
1251    
1252     A IO::AIO::GRP object is a special request that can contain multiple other
1253     aio requests.
1254    
1255     You create one by calling the C<aio_group> constructing function with a
1256     callback that will be called when all contained requests have entered the
1257     C<done> state:
1258    
1259     my $grp = aio_group sub {
1260     print "all requests are done\n";
1261     };
1262    
1263     You add requests by calling the C<add> method with one or more
1264     C<IO::AIO::REQ> objects:
1265    
1266     $grp->add (aio_unlink "...");
1267    
1268 root 1.58 add $grp aio_stat "...", sub {
1269     $_[0] or return $grp->result ("error");
1270    
1271     # add another request dynamically, if first succeeded
1272     add $grp aio_open "...", sub {
1273     $grp->result ("ok");
1274     };
1275     };
1276 root 1.55
1277     This makes it very easy to create composite requests (see the source of
1278     C<aio_move> for an application) that work and feel like simple requests.
1279    
1280 root 1.62 =over 4
1281    
1282     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1283 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1284    
1285 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1286 root 1.59 only the request itself, but also all requests it contains.
1287 root 1.55
1288 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1289 root 1.55
1290 root 1.62 =item * You must not add requests to a group from within the group callback (or
1291 root 1.60 any later time).
1292    
1293 root 1.62 =back
1294    
1295 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1296     will finish very quickly. If they contain only requests that are in the
1297     C<done> state, they will also finish. Otherwise they will continue to
1298     exist.
1299    
1300 root 1.133 That means after creating a group you have some time to add requests
1301     (precisely before the callback has been invoked, which is only done within
1302     the C<poll_cb>). And in the callbacks of those requests, you can add
1303     further requests to the group. And only when all those requests have
1304     finished will the the group itself finish.
1305 root 1.57
1306 root 1.55 =over 4
1307    
1308 root 1.65 =item add $grp ...
1309    
1310 root 1.55 =item $grp->add (...)
1311    
1312 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1313     be added, including other groups, as long as you do not create circular
1314     dependencies.
1315    
1316     Returns all its arguments.
1317 root 1.55
1318 root 1.74 =item $grp->cancel_subs
1319    
1320     Cancel all subrequests and clears any feeder, but not the group request
1321     itself. Useful when you queued a lot of events but got a result early.
1322    
1323 root 1.168 The group request will finish normally (you cannot add requests to the
1324     group).
1325    
1326 root 1.58 =item $grp->result (...)
1327    
1328     Set the result value(s) that will be passed to the group callback when all
1329 root 1.120 subrequests have finished and set the groups errno to the current value
1330 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1331     no argument will be passed and errno is zero.
1332    
1333     =item $grp->errno ([$errno])
1334    
1335     Sets the group errno value to C<$errno>, or the current value of errno
1336     when the argument is missing.
1337    
1338     Every aio request has an associated errno value that is restored when
1339     the callback is invoked. This method lets you change this value from its
1340     default (0).
1341    
1342     Calling C<result> will also set errno, so make sure you either set C<$!>
1343     before the call to C<result>, or call c<errno> after it.
1344 root 1.58
1345 root 1.65 =item feed $grp $callback->($grp)
1346 root 1.60
1347     Sets a feeder/generator on this group: every group can have an attached
1348     generator that generates requests if idle. The idea behind this is that,
1349     although you could just queue as many requests as you want in a group,
1350 root 1.139 this might starve other requests for a potentially long time. For example,
1351     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1352     delaying any later requests for a long time.
1353 root 1.60
1354     To avoid this, and allow incremental generation of requests, you can
1355     instead a group and set a feeder on it that generates those requests. The
1356 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1357 root 1.60 below) requests active in the group itself and is expected to queue more
1358     requests.
1359    
1360 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1361     not impose any limits).
1362 root 1.60
1363 root 1.65 If the feed does not queue more requests when called, it will be
1364 root 1.60 automatically removed from the group.
1365    
1366 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1367     C<2> automatically.
1368 root 1.60
1369     Example:
1370    
1371     # stat all files in @files, but only ever use four aio requests concurrently:
1372    
1373     my $grp = aio_group sub { print "finished\n" };
1374 root 1.68 limit $grp 4;
1375 root 1.65 feed $grp sub {
1376 root 1.60 my $file = pop @files
1377     or return;
1378    
1379     add $grp aio_stat $file, sub { ... };
1380 root 1.65 };
1381 root 1.60
1382 root 1.68 =item limit $grp $num
1383 root 1.60
1384     Sets the feeder limit for the group: The feeder will be called whenever
1385     the group contains less than this many requests.
1386    
1387     Setting the limit to C<0> will pause the feeding process.
1388    
1389 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1390     automatically bumps it up to C<2>.
1391    
1392 root 1.55 =back
1393    
1394 root 1.5 =head2 SUPPORT FUNCTIONS
1395    
1396 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1397    
1398 root 1.5 =over 4
1399    
1400     =item $fileno = IO::AIO::poll_fileno
1401    
1402 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1403 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1404     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1405     you have to call C<poll_cb> to check the results.
1406 root 1.5
1407     See C<poll_cb> for an example.
1408    
1409     =item IO::AIO::poll_cb
1410    
1411 root 1.191 Process some outstanding events on the result pipe. You have to call
1412     this regularly. Returns C<0> if all events could be processed (or there
1413     were no events to process), or C<-1> if it returned earlier for whatever
1414     reason. Returns immediately when no events are outstanding. The amount of
1415     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1416     C<IO::AIO::max_poll_time>.
1417 root 1.5
1418 root 1.78 If not all requests were processed for whatever reason, the filehandle
1419 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1420     do anything special to have it called later.
1421 root 1.78
1422 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1423     ready, it can be beneficial to call this function from loops which submit
1424     a lot of requests, to make sure the results get processed when they become
1425     available and not just when the loop is finished and the event loop takes
1426     over again. This function returns very fast when there are no outstanding
1427     requests.
1428    
1429 root 1.20 Example: Install an Event watcher that automatically calls
1430 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1431     SYNOPSIS section, at the top of this document):
1432 root 1.5
1433     Event->io (fd => IO::AIO::poll_fileno,
1434     poll => 'r', async => 1,
1435     cb => \&IO::AIO::poll_cb);
1436    
1437 root 1.175 =item IO::AIO::poll_wait
1438    
1439     If there are any outstanding requests and none of them in the result
1440     phase, wait till the result filehandle becomes ready for reading (simply
1441     does a C<select> on the filehandle. This is useful if you want to
1442     synchronously wait for some requests to finish).
1443    
1444     See C<nreqs> for an example.
1445    
1446     =item IO::AIO::poll
1447    
1448     Waits until some requests have been handled.
1449    
1450     Returns the number of requests processed, but is otherwise strictly
1451     equivalent to:
1452    
1453     IO::AIO::poll_wait, IO::AIO::poll_cb
1454    
1455     =item IO::AIO::flush
1456    
1457     Wait till all outstanding AIO requests have been handled.
1458    
1459     Strictly equivalent to:
1460    
1461     IO::AIO::poll_wait, IO::AIO::poll_cb
1462     while IO::AIO::nreqs;
1463    
1464 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1465    
1466     =item IO::AIO::max_poll_time $seconds
1467    
1468     These set the maximum number of requests (default C<0>, meaning infinity)
1469     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1470     the maximum amount of time (default C<0>, meaning infinity) spent in
1471     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1472     of time C<poll_cb> is allowed to use).
1473 root 1.78
1474 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1475     syscall per request processed, which is not normally a problem unless your
1476     callbacks are really really fast or your OS is really really slow (I am
1477     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1478    
1479 root 1.86 Setting these is useful if you want to ensure some level of
1480     interactiveness when perl is not fast enough to process all requests in
1481     time.
1482 root 1.78
1483 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1484 root 1.78
1485     Example: Install an Event watcher that automatically calls
1486 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1487 root 1.78 program get the CPU sometimes even under high AIO load.
1488    
1489 root 1.86 # try not to spend much more than 0.1s in poll_cb
1490     IO::AIO::max_poll_time 0.1;
1491    
1492     # use a low priority so other tasks have priority
1493 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1494     poll => 'r', nice => 1,
1495 root 1.86 cb => &IO::AIO::poll_cb);
1496 root 1.78
1497 root 1.104 =back
1498    
1499 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1500 root 1.13
1501 root 1.105 =over
1502    
1503 root 1.5 =item IO::AIO::min_parallel $nthreads
1504    
1505 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1506     default is C<8>, which means eight asynchronous operations can execute
1507     concurrently at any one time (the number of outstanding requests,
1508     however, is unlimited).
1509 root 1.5
1510 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1511 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1512     create demand for a hundred threads, even if it turns out that everything
1513     is in the cache and could have been processed faster by a single thread.
1514 root 1.34
1515 root 1.61 It is recommended to keep the number of threads relatively low, as some
1516     Linux kernel versions will scale negatively with the number of threads
1517     (higher parallelity => MUCH higher latency). With current Linux 2.6
1518     versions, 4-32 threads should be fine.
1519 root 1.5
1520 root 1.34 Under most circumstances you don't need to call this function, as the
1521     module selects a default that is suitable for low to moderate load.
1522 root 1.5
1523     =item IO::AIO::max_parallel $nthreads
1524    
1525 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1526     specified number of threads are currently running, this function kills
1527     them. This function blocks until the limit is reached.
1528    
1529     While C<$nthreads> are zero, aio requests get queued but not executed
1530     until the number of threads has been increased again.
1531 root 1.5
1532     This module automatically runs C<max_parallel 0> at program end, to ensure
1533     that all threads are killed and that there are no outstanding requests.
1534    
1535     Under normal circumstances you don't need to call this function.
1536    
1537 root 1.86 =item IO::AIO::max_idle $nthreads
1538    
1539 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1540     (i.e., threads that did not get a request to process within the idle
1541     timeout (default: 10 seconds). That means if a thread becomes idle while
1542     C<$nthreads> other threads are also idle, it will free its resources and
1543     exit.
1544 root 1.86
1545     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1546     to allow for extremely high load situations, but want to free resources
1547     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1548    
1549     The default is probably ok in most situations, especially if thread
1550     creation is fast. If thread creation is very slow on your system you might
1551     want to use larger values.
1552    
1553 root 1.188 =item IO::AIO::idle_timeout $seconds
1554    
1555     Sets the minimum idle timeout (default 10) after which worker threads are
1556     allowed to exit. SEe C<IO::AIO::max_idle>.
1557    
1558 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1559 root 1.5
1560 root 1.79 This is a very bad function to use in interactive programs because it
1561     blocks, and a bad way to reduce concurrency because it is inexact: Better
1562     use an C<aio_group> together with a feed callback.
1563    
1564     Sets the maximum number of outstanding requests to C<$nreqs>. If you
1565 root 1.113 do queue up more than this number of requests, the next call to the
1566 root 1.79 C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
1567     function will block until the limit is no longer exceeded.
1568    
1569     The default value is very large, so there is no practical limit on the
1570     number of outstanding requests.
1571    
1572     You can still queue as many requests as you want. Therefore,
1573 root 1.123 C<max_outstanding> is mainly useful in simple scripts (with low values) or
1574 root 1.79 as a stop gap to shield against fatal memory overflow (with large values).
1575 root 1.5
1576 root 1.104 =back
1577    
1578 root 1.86 =head3 STATISTICAL INFORMATION
1579    
1580 root 1.104 =over
1581    
1582 root 1.86 =item IO::AIO::nreqs
1583    
1584     Returns the number of requests currently in the ready, execute or pending
1585     states (i.e. for which their callback has not been invoked yet).
1586    
1587     Example: wait till there are no outstanding requests anymore:
1588    
1589     IO::AIO::poll_wait, IO::AIO::poll_cb
1590     while IO::AIO::nreqs;
1591    
1592     =item IO::AIO::nready
1593    
1594     Returns the number of requests currently in the ready state (not yet
1595     executed).
1596    
1597     =item IO::AIO::npending
1598    
1599     Returns the number of requests currently in the pending state (executed,
1600     but not yet processed by poll_cb).
1601    
1602 root 1.5 =back
1603    
1604 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1605    
1606     IO::AIO implements some functions that might be useful, but are not
1607     asynchronous.
1608    
1609     =over 4
1610    
1611     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1612    
1613     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1614     but is blocking (this makes most sense if you know the input data is
1615     likely cached already and the output filehandle is set to non-blocking
1616     operations).
1617    
1618     Returns the number of bytes copied, or C<-1> on error.
1619    
1620     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1621    
1622 root 1.184 Simply calls the C<posix_fadvise> function (see its
1623 root 1.157 manpage for details). The following advice constants are
1624     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1625     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1626     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1627    
1628     On systems that do not implement C<posix_fadvise>, this function returns
1629     ENOSYS, otherwise the return value of C<posix_fadvise>.
1630    
1631 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1632    
1633     Simply calls the C<posix_madvise> function (see its
1634     manpage for details). The following advice constants are
1635     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1636     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1637    
1638     On systems that do not implement C<posix_madvise>, this function returns
1639     ENOSYS, otherwise the return value of C<posix_madvise>.
1640    
1641     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1642    
1643     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1644     $scalar (see its manpage for details). The following protect
1645     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1646     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1647    
1648     On systems that do not implement C<mprotect>, this function returns
1649     ENOSYS, otherwise the return value of C<mprotect>.
1650    
1651 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1652    
1653     Memory-maps a file (or anonymous memory range) and attaches it to the
1654     given C<$scalar>, which will act like a string scalar.
1655    
1656     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1657     change the string length, and most read-only operations such as copying it
1658     or searching it with regexes and so on.
1659    
1660     Anything else is unsafe and will, at best, result in memory leaks.
1661    
1662     The memory map associated with the C<$scalar> is automatically removed
1663     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1664     C<IO::AIO::munmap> functions are called.
1665    
1666     This calls the C<mmap>(2) function internally. See your system's manual
1667     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1668    
1669     The C<$length> must be larger than zero and smaller than the actual
1670     filesize.
1671    
1672     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1673     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1674    
1675     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1676     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1677     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1678     (which is set to C<MAP_ANON> if your system only provides this
1679     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1680     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1681     C<IO::AIO::MAP_NONBLOCK>
1682    
1683     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1684    
1685 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1686     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1687    
1688 root 1.177 Example:
1689    
1690     use Digest::MD5;
1691     use IO::AIO;
1692    
1693     open my $fh, "<verybigfile"
1694     or die "$!";
1695    
1696     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1697     or die "verybigfile: $!";
1698    
1699     my $fast_md5 = md5 $data;
1700    
1701 root 1.176 =item IO::AIO::munmap $scalar
1702    
1703     Removes a previous mmap and undefines the C<$scalar>.
1704    
1705 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1706 root 1.174
1707 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1708     C<aio_mlock> call (see its description for details).
1709 root 1.174
1710     =item IO::AIO::munlockall
1711    
1712     Calls the C<munlockall> function.
1713    
1714     On systems that do not implement C<munlockall>, this function returns
1715     ENOSYS, otherwise the return value of C<munlockall>.
1716    
1717 root 1.157 =back
1718    
1719 root 1.1 =cut
1720    
1721 root 1.61 min_parallel 8;
1722 root 1.1
1723 root 1.95 END { flush }
1724 root 1.82
1725 root 1.1 1;
1726    
1727 root 1.175 =head1 EVENT LOOP INTEGRATION
1728    
1729     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1730     automatically into many event loops:
1731    
1732     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1733     use AnyEvent::AIO;
1734    
1735     You can also integrate IO::AIO manually into many event loops, here are
1736     some examples of how to do this:
1737    
1738     # EV integration
1739     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1740    
1741     # Event integration
1742     Event->io (fd => IO::AIO::poll_fileno,
1743     poll => 'r',
1744     cb => \&IO::AIO::poll_cb);
1745    
1746     # Glib/Gtk2 integration
1747     add_watch Glib::IO IO::AIO::poll_fileno,
1748     in => sub { IO::AIO::poll_cb; 1 };
1749    
1750     # Tk integration
1751     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1752     readable => \&IO::AIO::poll_cb);
1753    
1754     # Danga::Socket integration
1755     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1756     \&IO::AIO::poll_cb);
1757    
1758 root 1.27 =head2 FORK BEHAVIOUR
1759    
1760 root 1.52 This module should do "the right thing" when the process using it forks:
1761    
1762 root 1.34 Before the fork, IO::AIO enters a quiescent state where no requests
1763     can be added in other threads and no results will be processed. After
1764     the fork the parent simply leaves the quiescent state and continues
1765 root 1.72 request/result processing, while the child frees the request/result queue
1766     (so that the requests started before the fork will only be handled in the
1767     parent). Threads will be started on demand until the limit set in the
1768 root 1.34 parent process has been reached again.
1769 root 1.27
1770 root 1.52 In short: the parent will, after a short pause, continue as if fork had
1771     not been called, while the child will act as if IO::AIO has not been used
1772     yet.
1773    
1774 root 1.60 =head2 MEMORY USAGE
1775    
1776 root 1.72 Per-request usage:
1777    
1778     Each aio request uses - depending on your architecture - around 100-200
1779     bytes of memory. In addition, stat requests need a stat buffer (possibly
1780     a few hundred bytes), readdir requires a result buffer and so on. Perl
1781     scalars and other data passed into aio requests will also be locked and
1782     will consume memory till the request has entered the done state.
1783 root 1.60
1784 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1785 root 1.60 problem.
1786    
1787 root 1.72 Per-thread usage:
1788    
1789     In the execution phase, some aio requests require more memory for
1790     temporary buffers, and each thread requires a stack and other data
1791     structures (usually around 16k-128k, depending on the OS).
1792    
1793     =head1 KNOWN BUGS
1794    
1795 root 1.73 Known bugs will be fixed in the next release.
1796 root 1.60
1797 root 1.1 =head1 SEE ALSO
1798    
1799 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1800     more natural syntax.
1801 root 1.1
1802     =head1 AUTHOR
1803    
1804     Marc Lehmann <schmorp@schmorp.de>
1805     http://home.schmorp.de/
1806    
1807     =cut
1808