ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.194
Committed: Fri May 27 00:44:49 2011 UTC (12 years, 11 months ago) by root
Branch: MAIN
CVS Tags: rel-3_9
Changes since 1.193: +10 -1 lines
Log Message:
3.9

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.194 our $VERSION = '3.9';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.120 aio_scandir aio_symlink aio_readlink aio_sync aio_fsync
178 root 1.142 aio_fdatasync aio_sync_file_range aio_pathsync aio_readahead
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183     aio_statvfs);
184 root 1.120
185 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
186 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
187 root 1.188 min_parallel max_parallel max_idle idle_timeout
188 root 1.86 nreqs nready npending nthreads
189 root 1.157 max_poll_time max_poll_reqs
190 root 1.182 sendfile fadvise madvise
191     mmap munmap munlock munlockall);
192 root 1.1
193 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
194    
195 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
196    
197 root 1.1 require XSLoader;
198 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
199 root 1.1 }
200    
201 root 1.5 =head1 FUNCTIONS
202 root 1.1
203 root 1.175 =head2 QUICK OVERVIEW
204    
205     This section simply lists the prototypes of the most important functions
206     for quick reference. See the following sections for function-by-function
207     documentation.
208    
209     aio_open $pathname, $flags, $mode, $callback->($fh)
210     aio_close $fh, $callback->($status)
211     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
212     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
214     aio_readahead $fh,$offset,$length, $callback->($retval)
215     aio_stat $fh_or_path, $callback->($status)
216     aio_lstat $fh, $callback->($status)
217     aio_statvfs $fh_or_path, $callback->($statvfs)
218     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
219     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
220     aio_truncate $fh_or_path, $offset, $callback->($status)
221     aio_chmod $fh_or_path, $mode, $callback->($status)
222     aio_unlink $pathname, $callback->($status)
223     aio_mknod $path, $mode, $dev, $callback->($status)
224     aio_link $srcpath, $dstpath, $callback->($status)
225     aio_symlink $srcpath, $dstpath, $callback->($status)
226     aio_readlink $path, $callback->($link)
227     aio_rename $srcpath, $dstpath, $callback->($status)
228     aio_mkdir $pathname, $mode, $callback->($status)
229     aio_rmdir $pathname, $callback->($status)
230     aio_readdir $pathname, $callback->($entries)
231     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
232     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
233     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
234     aio_load $path, $data, $callback->($status)
235     aio_copy $srcpath, $dstpath, $callback->($status)
236     aio_move $srcpath, $dstpath, $callback->($status)
237     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
238     aio_rmtree $path, $callback->($status)
239     aio_sync $callback->($status)
240     aio_fsync $fh, $callback->($status)
241     aio_fdatasync $fh, $callback->($status)
242     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
243     aio_pathsync $path, $callback->($status)
244     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
245     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
246 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
247     aio_mlockall $flags, $callback->($status)
248 root 1.175 aio_group $callback->(...)
249     aio_nop $callback->()
250    
251     $prev_pri = aioreq_pri [$pri]
252     aioreq_nice $pri_adjust
253    
254     IO::AIO::poll_wait
255     IO::AIO::poll_cb
256     IO::AIO::poll
257     IO::AIO::flush
258     IO::AIO::max_poll_reqs $nreqs
259     IO::AIO::max_poll_time $seconds
260     IO::AIO::min_parallel $nthreads
261     IO::AIO::max_parallel $nthreads
262     IO::AIO::max_idle $nthreads
263 root 1.188 IO::AIO::idle_timeout $seconds
264 root 1.175 IO::AIO::max_outstanding $maxreqs
265     IO::AIO::nreqs
266     IO::AIO::nready
267     IO::AIO::npending
268    
269     IO::AIO::sendfile $ofh, $ifh, $offset, $count
270     IO::AIO::fadvise $fh, $offset, $len, $advice
271 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
272     IO::AIO::mprotect $scalar, $offset, $length, $protect
273 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
274 root 1.175 IO::AIO::munlockall
275    
276 root 1.87 =head2 AIO REQUEST FUNCTIONS
277 root 1.1
278 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
279     with the same name (sans C<aio_>). The arguments are similar or identical,
280 root 1.14 and they all accept an additional (and optional) C<$callback> argument
281     which must be a code reference. This code reference will get called with
282     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
283 root 1.136 perl, which usually delivers "false") as its sole argument after the given
284 root 1.14 syscall has been executed asynchronously.
285 root 1.1
286 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
287     internally until the request has finished.
288 root 1.1
289 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
290     further manipulation of those requests while they are in-flight.
291 root 1.52
292 root 1.28 The pathnames you pass to these routines I<must> be absolute and
293 root 1.87 encoded as octets. The reason for the former is that at the time the
294 root 1.28 request is being executed, the current working directory could have
295     changed. Alternatively, you can make sure that you never change the
296 root 1.87 current working directory anywhere in the program and then use relative
297     paths.
298 root 1.28
299 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
300     in filenames you got from outside (command line, readdir etc.) without
301     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
302 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
303     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
304 root 1.87 use something else to ensure your scalar has the correct contents.
305    
306     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
307 root 1.136 handles correctly whether it is set or not.
308 root 1.1
309 root 1.5 =over 4
310 root 1.1
311 root 1.80 =item $prev_pri = aioreq_pri [$pri]
312 root 1.68
313 root 1.80 Returns the priority value that would be used for the next request and, if
314     C<$pri> is given, sets the priority for the next aio request.
315 root 1.68
316 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
317     and C<4>, respectively. Requests with higher priority will be serviced
318     first.
319    
320     The priority will be reset to C<0> after each call to one of the C<aio_*>
321 root 1.68 functions.
322    
323 root 1.69 Example: open a file with low priority, then read something from it with
324     higher priority so the read request is serviced before other low priority
325     open requests (potentially spamming the cache):
326    
327     aioreq_pri -3;
328     aio_open ..., sub {
329     return unless $_[0];
330    
331     aioreq_pri -2;
332     aio_read $_[0], ..., sub {
333     ...
334     };
335     };
336    
337 root 1.106
338 root 1.69 =item aioreq_nice $pri_adjust
339    
340     Similar to C<aioreq_pri>, but subtracts the given value from the current
341 root 1.87 priority, so the effect is cumulative.
342 root 1.69
343 root 1.106
344 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
345 root 1.1
346 root 1.2 Asynchronously open or create a file and call the callback with a newly
347     created filehandle for the file.
348 root 1.1
349     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
350     for an explanation.
351    
352 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
353     list. They are the same as used by C<sysopen>.
354    
355     Likewise, C<$mode> specifies the mode of the newly created file, if it
356     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
357     except that it is mandatory (i.e. use C<0> if you don't create new files,
358 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
359     by the umask in effect then the request is being executed, so better never
360     change the umask.
361 root 1.1
362     Example:
363    
364 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
365 root 1.2 if ($_[0]) {
366     print "open successful, fh is $_[0]\n";
367 root 1.1 ...
368     } else {
369     die "open failed: $!\n";
370     }
371     };
372    
373 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
374     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
375     following POSIX and non-POSIX constants are available (missing ones on
376     your system are, as usual, C<0>):
377    
378     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
379     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
380     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
381    
382 root 1.106
383 root 1.40 =item aio_close $fh, $callback->($status)
384 root 1.1
385 root 1.2 Asynchronously close a file and call the callback with the result
386 root 1.116 code.
387    
388 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
389 root 1.121 closing the file descriptor associated with the filehandle itself.
390 root 1.117
391 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
392     use dup2 to overwrite the file descriptor with the write-end of a pipe
393     (the pipe fd will be created on demand and will be cached).
394 root 1.117
395 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
396     free for reuse until the perl filehandle is closed.
397 root 1.117
398     =cut
399    
400 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
401 root 1.1
402 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
403 root 1.1
404 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
405     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
406     and calls the callback without the actual number of bytes read (or -1 on
407     error, just like the syscall).
408 root 1.109
409 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
410     offset plus the actual number of bytes read.
411    
412 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
413     be used (and updated), otherwise the file descriptor offset will not be
414     changed by these calls.
415 root 1.109
416 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
417     C<$data>.
418 root 1.109
419     If C<$dataoffset> is less than zero, it will be counted from the end of
420     C<$data>.
421 root 1.1
422 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
423 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
424     the necessary/optional hardware is installed).
425 root 1.31
426 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
427 root 1.1 offset C<0> within the scalar:
428    
429     aio_read $fh, 7, 15, $buffer, 0, sub {
430 root 1.9 $_[0] > 0 or die "read error: $!";
431     print "read $_[0] bytes: <$buffer>\n";
432 root 1.1 };
433    
434 root 1.106
435 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
436 root 1.35
437     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
438     reading at byte offset C<$in_offset>, and starts writing at the current
439     file offset of C<$out_fh>. Because of that, it is not safe to issue more
440     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
441     other.
442    
443 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
444     are written, and there is no way to find out how many bytes have been read
445     from C<aio_sendfile> alone, as C<aio_sendfile> only provides the number of
446     bytes written to C<$out_fh>. Only if the result value equals C<$length>
447     one can assume that C<$length> bytes have been read.
448    
449     Unlike with other C<aio_> functions, it makes a lot of sense to use
450     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
451     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
452     the socket I/O will be non-blocking. Note, however, that you can run into
453     a trap where C<aio_sendfile> reads some data with readahead, then fails
454     to write all data, and when the socket is ready the next time, the data
455     in the cache is already lost, forcing C<aio_sendfile> to again hit the
456     disk. Explicit C<aio_read> + C<aio_write> let's you control resource usage
457     much better.
458    
459 root 1.35 This call tries to make use of a native C<sendfile> syscall to provide
460     zero-copy operation. For this to work, C<$out_fh> should refer to a
461 root 1.176 socket, and C<$in_fh> should refer to an mmap'able file.
462 root 1.35
463 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
464     C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or C<ENOTSOCK>,
465     it will be emulated, so you can call C<aio_sendfile> on any type of
466     filehandle regardless of the limitations of the operating system.
467 root 1.35
468 root 1.106
469 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
470 root 1.1
471 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
472 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
473     argument specifies the starting point from which data is to be read and
474     C<$length> specifies the number of bytes to be read. I/O is performed in
475     whole pages, so that offset is effectively rounded down to a page boundary
476     and bytes are read up to the next page boundary greater than or equal to
477 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
478 root 1.1 file. The current file offset of the file is left unchanged.
479    
480 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
481     emulated by simply reading the data, which would have a similar effect.
482    
483 root 1.106
484 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
485 root 1.1
486 root 1.40 =item aio_lstat $fh, $callback->($status)
487 root 1.1
488     Works like perl's C<stat> or C<lstat> in void context. The callback will
489     be called after the stat and the results will be available using C<stat _>
490     or C<-s _> etc...
491    
492     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
493     for an explanation.
494    
495     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
496     error when stat'ing a large file, the results will be silently truncated
497     unless perl itself is compiled with large file support.
498    
499 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
500     following constants and functions (if not implemented, the constants will
501     be C<0> and the functions will either C<croak> or fall back on traditional
502     behaviour).
503    
504     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
505     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
506     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
507    
508 root 1.1 Example: Print the length of F</etc/passwd>:
509    
510     aio_stat "/etc/passwd", sub {
511     $_[0] and die "stat failed: $!";
512     print "size is ", -s _, "\n";
513     };
514    
515 root 1.106
516 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
517 root 1.172
518     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
519     whether a file handle or path was passed.
520    
521     On success, the callback is passed a hash reference with the following
522     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
523     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
524     is passed.
525    
526     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
527     C<ST_NOSUID>.
528    
529     The following non-POSIX IO::AIO::ST_* flag masks are defined to
530     their correct value when available, or to C<0> on systems that do
531     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
532     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
533     C<ST_NODIRATIME> and C<ST_RELATIME>.
534    
535     Example: stat C</wd> and dump out the data if successful.
536    
537     aio_statvfs "/wd", sub {
538     my $f = $_[0]
539     or die "statvfs: $!";
540    
541     use Data::Dumper;
542     say Dumper $f;
543     };
544    
545     # result:
546     {
547     bsize => 1024,
548     bfree => 4333064312,
549     blocks => 10253828096,
550     files => 2050765568,
551     flag => 4096,
552     favail => 2042092649,
553     bavail => 4333064312,
554     ffree => 2042092649,
555     namemax => 255,
556     frsize => 1024,
557     fsid => 1810
558     }
559    
560    
561 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
562    
563     Works like perl's C<utime> function (including the special case of $atime
564     and $mtime being undef). Fractional times are supported if the underlying
565     syscalls support them.
566    
567     When called with a pathname, uses utimes(2) if available, otherwise
568     utime(2). If called on a file descriptor, uses futimes(2) if available,
569     otherwise returns ENOSYS, so this is not portable.
570    
571     Examples:
572    
573 root 1.107 # set atime and mtime to current time (basically touch(1)):
574 root 1.106 aio_utime "path", undef, undef;
575     # set atime to current time and mtime to beginning of the epoch:
576     aio_utime "path", time, undef; # undef==0
577    
578    
579     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
580    
581     Works like perl's C<chown> function, except that C<undef> for either $uid
582     or $gid is being interpreted as "do not change" (but -1 can also be used).
583    
584     Examples:
585    
586     # same as "chown root path" in the shell:
587     aio_chown "path", 0, -1;
588     # same as above:
589     aio_chown "path", 0, undef;
590    
591    
592 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
593    
594     Works like truncate(2) or ftruncate(2).
595    
596    
597 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
598    
599     Works like perl's C<chmod> function.
600    
601    
602 root 1.40 =item aio_unlink $pathname, $callback->($status)
603 root 1.1
604     Asynchronously unlink (delete) a file and call the callback with the
605     result code.
606    
607 root 1.106
608 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
609    
610 root 1.86 [EXPERIMENTAL]
611    
612 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
613    
614 root 1.86 The only (POSIX-) portable way of calling this function is:
615 root 1.83
616     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
617 root 1.82
618 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
619     and functions.
620 root 1.106
621 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
622    
623     Asynchronously create a new link to the existing object at C<$srcpath> at
624     the path C<$dstpath> and call the callback with the result code.
625    
626 root 1.106
627 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
628    
629     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
630     the path C<$dstpath> and call the callback with the result code.
631    
632 root 1.106
633 root 1.90 =item aio_readlink $path, $callback->($link)
634    
635     Asynchronously read the symlink specified by C<$path> and pass it to
636     the callback. If an error occurs, nothing or undef gets passed to the
637     callback.
638    
639 root 1.106
640 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
641    
642     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
643     rename(2) and call the callback with the result code.
644    
645 root 1.106
646 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
647    
648     Asynchronously mkdir (create) a directory and call the callback with
649     the result code. C<$mode> will be modified by the umask at the time the
650     request is executed, so do not change your umask.
651    
652 root 1.106
653 root 1.40 =item aio_rmdir $pathname, $callback->($status)
654 root 1.27
655     Asynchronously rmdir (delete) a directory and call the callback with the
656     result code.
657    
658 root 1.106
659 root 1.46 =item aio_readdir $pathname, $callback->($entries)
660 root 1.37
661     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
662     directory (i.e. opendir + readdir + closedir). The entries will not be
663     sorted, and will B<NOT> include the C<.> and C<..> entries.
664    
665 root 1.148 The callback is passed a single argument which is either C<undef> or an
666     array-ref with the filenames.
667    
668    
669     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
670    
671     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
672     behaviour and output format. In case of an error, C<$entries> will be
673     C<undef>.
674    
675     The flags are a combination of the following constants, ORed together (the
676     flags will also be passed to the callback, possibly modified):
677    
678     =over 4
679    
680 root 1.150 =item IO::AIO::READDIR_DENTS
681 root 1.148
682 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
683     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
684 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
685 root 1.148 entry in more detail.
686    
687     C<$name> is the name of the entry.
688    
689 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
690 root 1.148
691 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
692     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
693     C<IO::AIO::DT_WHT>.
694 root 1.148
695 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
696 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
697     scalars are read-only: you can not modify them.
698    
699 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
700 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
701     systems that do not deliver the inode information.
702 root 1.150
703     =item IO::AIO::READDIR_DIRS_FIRST
704 root 1.148
705     When this flag is set, then the names will be returned in an order where
706 root 1.193 likely directories come first, in optimal stat order. This is useful when
707     you need to quickly find directories, or you want to find all directories
708     while avoiding to stat() each entry.
709 root 1.148
710 root 1.149 If the system returns type information in readdir, then this is used
711 root 1.193 to find directories directly. Otherwise, likely directories are names
712     beginning with ".", or otherwise names with no dots, of which names with
713 root 1.149 short names are tried first.
714    
715 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
716 root 1.148
717     When this flag is set, then the names will be returned in an order
718     suitable for stat()'ing each one. That is, when you plan to stat()
719     all files in the given directory, then the returned order will likely
720     be fastest.
721    
722 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
723     the likely dirs come first, resulting in a less optimal stat order.
724 root 1.148
725 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
726 root 1.148
727     This flag should not be set when calling C<aio_readdirx>. Instead, it
728     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
729 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
730 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
731    
732     =back
733 root 1.37
734 root 1.106
735 root 1.98 =item aio_load $path, $data, $callback->($status)
736    
737     This is a composite request that tries to fully load the given file into
738     memory. Status is the same as with aio_read.
739    
740     =cut
741    
742     sub aio_load($$;$) {
743 root 1.123 my ($path, undef, $cb) = @_;
744     my $data = \$_[1];
745 root 1.98
746 root 1.123 my $pri = aioreq_pri;
747     my $grp = aio_group $cb;
748    
749     aioreq_pri $pri;
750     add $grp aio_open $path, O_RDONLY, 0, sub {
751     my $fh = shift
752     or return $grp->result (-1);
753 root 1.98
754     aioreq_pri $pri;
755 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
756     $grp->result ($_[0]);
757 root 1.98 };
758 root 1.123 };
759 root 1.98
760 root 1.123 $grp
761 root 1.98 }
762    
763 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
764    
765     Try to copy the I<file> (directories not supported as either source or
766     destination) from C<$srcpath> to C<$dstpath> and call the callback with
767 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
768 root 1.82
769 root 1.134 This is a composite request that creates the destination file with
770 root 1.82 mode 0200 and copies the contents of the source file into it using
771     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
772     uid/gid, in that order.
773    
774     If an error occurs, the partial destination file will be unlinked, if
775     possible, except when setting atime, mtime, access mode and uid/gid, where
776     errors are being ignored.
777    
778     =cut
779    
780     sub aio_copy($$;$) {
781 root 1.123 my ($src, $dst, $cb) = @_;
782 root 1.82
783 root 1.123 my $pri = aioreq_pri;
784     my $grp = aio_group $cb;
785 root 1.82
786 root 1.123 aioreq_pri $pri;
787     add $grp aio_open $src, O_RDONLY, 0, sub {
788     if (my $src_fh = $_[0]) {
789 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
790 root 1.95
791 root 1.123 aioreq_pri $pri;
792     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
793     if (my $dst_fh = $_[0]) {
794     aioreq_pri $pri;
795     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
796     if ($_[0] == $stat[7]) {
797     $grp->result (0);
798     close $src_fh;
799    
800 root 1.147 my $ch = sub {
801     aioreq_pri $pri;
802     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
803     aioreq_pri $pri;
804     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
805     aioreq_pri $pri;
806     add $grp aio_close $dst_fh;
807     }
808     };
809     };
810 root 1.123
811     aioreq_pri $pri;
812 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
813     if ($_[0] < 0 && $! == ENOSYS) {
814     aioreq_pri $pri;
815     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
816     } else {
817     $ch->();
818     }
819     };
820 root 1.123 } else {
821     $grp->result (-1);
822     close $src_fh;
823     close $dst_fh;
824    
825     aioreq $pri;
826     add $grp aio_unlink $dst;
827     }
828     };
829     } else {
830     $grp->result (-1);
831     }
832     },
833 root 1.82
834 root 1.123 } else {
835     $grp->result (-1);
836     }
837     };
838 root 1.82
839 root 1.123 $grp
840 root 1.82 }
841    
842     =item aio_move $srcpath, $dstpath, $callback->($status)
843    
844     Try to move the I<file> (directories not supported as either source or
845     destination) from C<$srcpath> to C<$dstpath> and call the callback with
846 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
847 root 1.82
848 root 1.137 This is a composite request that tries to rename(2) the file first; if
849     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
850     that is successful, unlinks the C<$srcpath>.
851 root 1.82
852     =cut
853    
854     sub aio_move($$;$) {
855 root 1.123 my ($src, $dst, $cb) = @_;
856 root 1.82
857 root 1.123 my $pri = aioreq_pri;
858     my $grp = aio_group $cb;
859 root 1.82
860 root 1.123 aioreq_pri $pri;
861     add $grp aio_rename $src, $dst, sub {
862     if ($_[0] && $! == EXDEV) {
863     aioreq_pri $pri;
864     add $grp aio_copy $src, $dst, sub {
865     $grp->result ($_[0]);
866 root 1.95
867 root 1.123 if (!$_[0]) {
868     aioreq_pri $pri;
869     add $grp aio_unlink $src;
870     }
871     };
872     } else {
873     $grp->result ($_[0]);
874     }
875     };
876 root 1.82
877 root 1.123 $grp
878 root 1.82 }
879    
880 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
881    
882 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
883 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
884     names, directories you can recurse into (directories), and ones you cannot
885     recurse into (everything else, including symlinks to directories).
886 root 1.52
887 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
888     C<$maxreq> specifies the maximum number of outstanding aio requests that
889     this function generates. If it is C<< <= 0 >>, then a suitable default
890 root 1.81 will be chosen (currently 4).
891 root 1.40
892     On error, the callback is called without arguments, otherwise it receives
893     two array-refs with path-relative entry names.
894    
895     Example:
896    
897     aio_scandir $dir, 0, sub {
898     my ($dirs, $nondirs) = @_;
899     print "real directories: @$dirs\n";
900     print "everything else: @$nondirs\n";
901     };
902    
903     Implementation notes.
904    
905     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
906    
907 root 1.149 If readdir returns file type information, then this is used directly to
908     find directories.
909    
910     Otherwise, after reading the directory, the modification time, size etc.
911     of the directory before and after the readdir is checked, and if they
912     match (and isn't the current time), the link count will be used to decide
913     how many entries are directories (if >= 2). Otherwise, no knowledge of the
914     number of subdirectories will be assumed.
915    
916     Then entries will be sorted into likely directories a non-initial dot
917     currently) and likely non-directories (see C<aio_readdirx>). Then every
918     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
919     in order of their inode numbers. If that succeeds, it assumes that the
920     entry is a directory or a symlink to directory (which will be checked
921 root 1.52 seperately). This is often faster than stat'ing the entry itself because
922     filesystems might detect the type of the entry without reading the inode
923 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
924     the filetype information on readdir.
925 root 1.52
926     If the known number of directories (link count - 2) has been reached, the
927     rest of the entries is assumed to be non-directories.
928    
929     This only works with certainty on POSIX (= UNIX) filesystems, which
930     fortunately are the vast majority of filesystems around.
931    
932     It will also likely work on non-POSIX filesystems with reduced efficiency
933     as those tend to return 0 or 1 as link counts, which disables the
934     directory counting heuristic.
935 root 1.40
936     =cut
937    
938 root 1.100 sub aio_scandir($$;$) {
939 root 1.123 my ($path, $maxreq, $cb) = @_;
940    
941     my $pri = aioreq_pri;
942 root 1.40
943 root 1.123 my $grp = aio_group $cb;
944 root 1.80
945 root 1.123 $maxreq = 4 if $maxreq <= 0;
946 root 1.55
947 root 1.123 # stat once
948     aioreq_pri $pri;
949     add $grp aio_stat $path, sub {
950     return $grp->result () if $_[0];
951     my $now = time;
952     my $hash1 = join ":", (stat _)[0,1,3,7,9];
953 root 1.40
954 root 1.123 # read the directory entries
955 root 1.80 aioreq_pri $pri;
956 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
957 root 1.123 my $entries = shift
958     or return $grp->result ();
959 root 1.40
960 root 1.123 # stat the dir another time
961 root 1.80 aioreq_pri $pri;
962 root 1.123 add $grp aio_stat $path, sub {
963     my $hash2 = join ":", (stat _)[0,1,3,7,9];
964 root 1.95
965 root 1.123 my $ndirs;
966 root 1.95
967 root 1.123 # take the slow route if anything looks fishy
968     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
969     $ndirs = -1;
970     } else {
971     # if nlink == 2, we are finished
972 root 1.150 # for non-posix-fs's, we rely on nlink < 2
973 root 1.123 $ndirs = (stat _)[3] - 2
974     or return $grp->result ([], $entries);
975     }
976    
977     my (@dirs, @nondirs);
978 root 1.40
979 root 1.123 my $statgrp = add $grp aio_group sub {
980     $grp->result (\@dirs, \@nondirs);
981     };
982 root 1.40
983 root 1.123 limit $statgrp $maxreq;
984     feed $statgrp sub {
985     return unless @$entries;
986 root 1.150 my $entry = shift @$entries;
987 root 1.40
988 root 1.123 aioreq_pri $pri;
989     add $statgrp aio_stat "$path/$entry/.", sub {
990     if ($_[0] < 0) {
991     push @nondirs, $entry;
992     } else {
993     # need to check for real directory
994     aioreq_pri $pri;
995     add $statgrp aio_lstat "$path/$entry", sub {
996     if (-d _) {
997     push @dirs, $entry;
998    
999     unless (--$ndirs) {
1000     push @nondirs, @$entries;
1001     feed $statgrp;
1002 root 1.74 }
1003 root 1.123 } else {
1004     push @nondirs, $entry;
1005 root 1.40 }
1006     }
1007 root 1.123 }
1008 root 1.74 };
1009 root 1.40 };
1010     };
1011     };
1012 root 1.123 };
1013 root 1.55
1014 root 1.123 $grp
1015 root 1.40 }
1016    
1017 root 1.99 =item aio_rmtree $path, $callback->($status)
1018    
1019 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1020     status of the final C<rmdir> only. This is a composite request that
1021     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1022     everything else.
1023 root 1.99
1024     =cut
1025    
1026     sub aio_rmtree;
1027 root 1.100 sub aio_rmtree($;$) {
1028 root 1.123 my ($path, $cb) = @_;
1029 root 1.99
1030 root 1.123 my $pri = aioreq_pri;
1031     my $grp = aio_group $cb;
1032 root 1.99
1033 root 1.123 aioreq_pri $pri;
1034     add $grp aio_scandir $path, 0, sub {
1035     my ($dirs, $nondirs) = @_;
1036 root 1.99
1037 root 1.123 my $dirgrp = aio_group sub {
1038     add $grp aio_rmdir $path, sub {
1039     $grp->result ($_[0]);
1040 root 1.99 };
1041 root 1.123 };
1042 root 1.99
1043 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1044     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1045 root 1.99
1046 root 1.123 add $grp $dirgrp;
1047     };
1048 root 1.99
1049 root 1.123 $grp
1050 root 1.99 }
1051    
1052 root 1.119 =item aio_sync $callback->($status)
1053    
1054     Asynchronously call sync and call the callback when finished.
1055    
1056 root 1.40 =item aio_fsync $fh, $callback->($status)
1057 root 1.1
1058     Asynchronously call fsync on the given filehandle and call the callback
1059     with the fsync result code.
1060    
1061 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1062 root 1.1
1063     Asynchronously call fdatasync on the given filehandle and call the
1064 root 1.26 callback with the fdatasync result code.
1065    
1066     If this call isn't available because your OS lacks it or it couldn't be
1067     detected, it will be emulated by calling C<fsync> instead.
1068 root 1.1
1069 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1070    
1071     Sync the data portion of the file specified by C<$offset> and C<$length>
1072     to disk (but NOT the metadata), by calling the Linux-specific
1073     sync_file_range call. If sync_file_range is not available or it returns
1074     ENOSYS, then fdatasync or fsync is being substituted.
1075    
1076     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1077     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1078     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1079     manpage for details.
1080    
1081 root 1.120 =item aio_pathsync $path, $callback->($status)
1082    
1083     This request tries to open, fsync and close the given path. This is a
1084 root 1.135 composite request intended to sync directories after directory operations
1085 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1086     specific effect, but usually it makes sure that directory changes get
1087     written to disc. It works for anything that can be opened for read-only,
1088     not just directories.
1089    
1090 root 1.162 Future versions of this function might fall back to other methods when
1091     C<fsync> on the directory fails (such as calling C<sync>).
1092    
1093 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1094    
1095     =cut
1096    
1097     sub aio_pathsync($;$) {
1098 root 1.123 my ($path, $cb) = @_;
1099    
1100     my $pri = aioreq_pri;
1101     my $grp = aio_group $cb;
1102 root 1.120
1103 root 1.123 aioreq_pri $pri;
1104     add $grp aio_open $path, O_RDONLY, 0, sub {
1105     my ($fh) = @_;
1106     if ($fh) {
1107     aioreq_pri $pri;
1108     add $grp aio_fsync $fh, sub {
1109     $grp->result ($_[0]);
1110 root 1.120
1111     aioreq_pri $pri;
1112 root 1.123 add $grp aio_close $fh;
1113     };
1114     } else {
1115     $grp->result (-1);
1116     }
1117     };
1118 root 1.120
1119 root 1.123 $grp
1120 root 1.120 }
1121    
1122 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1123    
1124     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1125 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1126     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1127     scalar must only be modified in-place while an aio operation is pending on
1128     it).
1129 root 1.170
1130     It calls the C<msync> function of your OS, if available, with the memory
1131     area starting at C<$offset> in the string and ending C<$length> bytes
1132     later. If C<$length> is negative, counts from the end, and if C<$length>
1133     is C<undef>, then it goes till the end of the string. The flags can be
1134     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1135     C<IO::AIO::MS_SYNC>.
1136    
1137     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1138    
1139     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1140     scalars.
1141    
1142     It touches (reads or writes) all memory pages in the specified
1143     range inside the scalar. All caveats and parameters are the same
1144     as for C<aio_msync>, above, except for flags, which must be either
1145     C<0> (which reads all pages and ensures they are instantiated) or
1146     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1147     writing an octet from it, which dirties the page).
1148    
1149 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1150    
1151     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1152     scalars.
1153    
1154     It reads in all the pages of the underlying storage into memory (if any)
1155     and locks them, so they are not getting swapped/paged out or removed.
1156    
1157     If C<$length> is undefined, then the scalar will be locked till the end.
1158    
1159     On systems that do not implement C<mlock>, this function returns C<-1>
1160     and sets errno to C<ENOSYS>.
1161    
1162     Note that the corresponding C<munlock> is synchronous and is
1163     documented under L<MISCELLANEOUS FUNCTIONS>.
1164    
1165 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1166     C<$data> gets destroyed.
1167    
1168     open my $fh, "<", $path or die "$path: $!";
1169     my $data;
1170     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1171     aio_mlock $data; # mlock in background
1172    
1173 root 1.182 =item aio_mlockall $flags, $callback->($status)
1174    
1175     Calls the C<mlockall> function with the given C<$flags> (a combination of
1176     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1177    
1178     On systems that do not implement C<mlockall>, this function returns C<-1>
1179     and sets errno to C<ENOSYS>.
1180    
1181     Note that the corresponding C<munlockall> is synchronous and is
1182     documented under L<MISCELLANEOUS FUNCTIONS>.
1183    
1184 root 1.183 Example: asynchronously lock all current and future pages into memory.
1185    
1186     aio_mlockall IO::AIO::MCL_FUTURE;
1187    
1188 root 1.58 =item aio_group $callback->(...)
1189 root 1.54
1190 root 1.55 This is a very special aio request: Instead of doing something, it is a
1191     container for other aio requests, which is useful if you want to bundle
1192 root 1.71 many requests into a single, composite, request with a definite callback
1193     and the ability to cancel the whole request with its subrequests.
1194 root 1.55
1195     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1196     for more info.
1197    
1198     Example:
1199    
1200     my $grp = aio_group sub {
1201     print "all stats done\n";
1202     };
1203    
1204     add $grp
1205     (aio_stat ...),
1206     (aio_stat ...),
1207     ...;
1208    
1209 root 1.63 =item aio_nop $callback->()
1210    
1211     This is a special request - it does nothing in itself and is only used for
1212     side effects, such as when you want to add a dummy request to a group so
1213     that finishing the requests in the group depends on executing the given
1214     code.
1215    
1216 root 1.64 While this request does nothing, it still goes through the execution
1217     phase and still requires a worker thread. Thus, the callback will not
1218     be executed immediately but only after other requests in the queue have
1219     entered their execution phase. This can be used to measure request
1220     latency.
1221    
1222 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1223 root 1.54
1224     Mainly used for debugging and benchmarking, this aio request puts one of
1225     the request workers to sleep for the given time.
1226    
1227 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1228 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1229     immense (it blocks a thread for a long time) so do not use this function
1230     except to put your application under artificial I/O pressure.
1231 root 1.56
1232 root 1.5 =back
1233    
1234 root 1.53 =head2 IO::AIO::REQ CLASS
1235 root 1.52
1236     All non-aggregate C<aio_*> functions return an object of this class when
1237     called in non-void context.
1238    
1239     =over 4
1240    
1241 root 1.65 =item cancel $req
1242 root 1.52
1243     Cancels the request, if possible. Has the effect of skipping execution
1244     when entering the B<execute> state and skipping calling the callback when
1245     entering the the B<result> state, but will leave the request otherwise
1246 root 1.151 untouched (with the exception of readdir). That means that requests that
1247     currently execute will not be stopped and resources held by the request
1248     will not be freed prematurely.
1249 root 1.52
1250 root 1.65 =item cb $req $callback->(...)
1251    
1252     Replace (or simply set) the callback registered to the request.
1253    
1254 root 1.52 =back
1255    
1256 root 1.55 =head2 IO::AIO::GRP CLASS
1257    
1258     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1259     objects of this class, too.
1260    
1261     A IO::AIO::GRP object is a special request that can contain multiple other
1262     aio requests.
1263    
1264     You create one by calling the C<aio_group> constructing function with a
1265     callback that will be called when all contained requests have entered the
1266     C<done> state:
1267    
1268     my $grp = aio_group sub {
1269     print "all requests are done\n";
1270     };
1271    
1272     You add requests by calling the C<add> method with one or more
1273     C<IO::AIO::REQ> objects:
1274    
1275     $grp->add (aio_unlink "...");
1276    
1277 root 1.58 add $grp aio_stat "...", sub {
1278     $_[0] or return $grp->result ("error");
1279    
1280     # add another request dynamically, if first succeeded
1281     add $grp aio_open "...", sub {
1282     $grp->result ("ok");
1283     };
1284     };
1285 root 1.55
1286     This makes it very easy to create composite requests (see the source of
1287     C<aio_move> for an application) that work and feel like simple requests.
1288    
1289 root 1.62 =over 4
1290    
1291     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1292 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1293    
1294 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1295 root 1.59 only the request itself, but also all requests it contains.
1296 root 1.55
1297 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1298 root 1.55
1299 root 1.62 =item * You must not add requests to a group from within the group callback (or
1300 root 1.60 any later time).
1301    
1302 root 1.62 =back
1303    
1304 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1305     will finish very quickly. If they contain only requests that are in the
1306     C<done> state, they will also finish. Otherwise they will continue to
1307     exist.
1308    
1309 root 1.133 That means after creating a group you have some time to add requests
1310     (precisely before the callback has been invoked, which is only done within
1311     the C<poll_cb>). And in the callbacks of those requests, you can add
1312     further requests to the group. And only when all those requests have
1313     finished will the the group itself finish.
1314 root 1.57
1315 root 1.55 =over 4
1316    
1317 root 1.65 =item add $grp ...
1318    
1319 root 1.55 =item $grp->add (...)
1320    
1321 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1322     be added, including other groups, as long as you do not create circular
1323     dependencies.
1324    
1325     Returns all its arguments.
1326 root 1.55
1327 root 1.74 =item $grp->cancel_subs
1328    
1329     Cancel all subrequests and clears any feeder, but not the group request
1330     itself. Useful when you queued a lot of events but got a result early.
1331    
1332 root 1.168 The group request will finish normally (you cannot add requests to the
1333     group).
1334    
1335 root 1.58 =item $grp->result (...)
1336    
1337     Set the result value(s) that will be passed to the group callback when all
1338 root 1.120 subrequests have finished and set the groups errno to the current value
1339 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1340     no argument will be passed and errno is zero.
1341    
1342     =item $grp->errno ([$errno])
1343    
1344     Sets the group errno value to C<$errno>, or the current value of errno
1345     when the argument is missing.
1346    
1347     Every aio request has an associated errno value that is restored when
1348     the callback is invoked. This method lets you change this value from its
1349     default (0).
1350    
1351     Calling C<result> will also set errno, so make sure you either set C<$!>
1352     before the call to C<result>, or call c<errno> after it.
1353 root 1.58
1354 root 1.65 =item feed $grp $callback->($grp)
1355 root 1.60
1356     Sets a feeder/generator on this group: every group can have an attached
1357     generator that generates requests if idle. The idea behind this is that,
1358     although you could just queue as many requests as you want in a group,
1359 root 1.139 this might starve other requests for a potentially long time. For example,
1360     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1361     delaying any later requests for a long time.
1362 root 1.60
1363     To avoid this, and allow incremental generation of requests, you can
1364     instead a group and set a feeder on it that generates those requests. The
1365 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1366 root 1.60 below) requests active in the group itself and is expected to queue more
1367     requests.
1368    
1369 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1370     not impose any limits).
1371 root 1.60
1372 root 1.65 If the feed does not queue more requests when called, it will be
1373 root 1.60 automatically removed from the group.
1374    
1375 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1376     C<2> automatically.
1377 root 1.60
1378     Example:
1379    
1380     # stat all files in @files, but only ever use four aio requests concurrently:
1381    
1382     my $grp = aio_group sub { print "finished\n" };
1383 root 1.68 limit $grp 4;
1384 root 1.65 feed $grp sub {
1385 root 1.60 my $file = pop @files
1386     or return;
1387    
1388     add $grp aio_stat $file, sub { ... };
1389 root 1.65 };
1390 root 1.60
1391 root 1.68 =item limit $grp $num
1392 root 1.60
1393     Sets the feeder limit for the group: The feeder will be called whenever
1394     the group contains less than this many requests.
1395    
1396     Setting the limit to C<0> will pause the feeding process.
1397    
1398 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1399     automatically bumps it up to C<2>.
1400    
1401 root 1.55 =back
1402    
1403 root 1.5 =head2 SUPPORT FUNCTIONS
1404    
1405 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1406    
1407 root 1.5 =over 4
1408    
1409     =item $fileno = IO::AIO::poll_fileno
1410    
1411 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1412 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1413     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1414     you have to call C<poll_cb> to check the results.
1415 root 1.5
1416     See C<poll_cb> for an example.
1417    
1418     =item IO::AIO::poll_cb
1419    
1420 root 1.191 Process some outstanding events on the result pipe. You have to call
1421     this regularly. Returns C<0> if all events could be processed (or there
1422     were no events to process), or C<-1> if it returned earlier for whatever
1423     reason. Returns immediately when no events are outstanding. The amount of
1424     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1425     C<IO::AIO::max_poll_time>.
1426 root 1.5
1427 root 1.78 If not all requests were processed for whatever reason, the filehandle
1428 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1429     do anything special to have it called later.
1430 root 1.78
1431 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1432     ready, it can be beneficial to call this function from loops which submit
1433     a lot of requests, to make sure the results get processed when they become
1434     available and not just when the loop is finished and the event loop takes
1435     over again. This function returns very fast when there are no outstanding
1436     requests.
1437    
1438 root 1.20 Example: Install an Event watcher that automatically calls
1439 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1440     SYNOPSIS section, at the top of this document):
1441 root 1.5
1442     Event->io (fd => IO::AIO::poll_fileno,
1443     poll => 'r', async => 1,
1444     cb => \&IO::AIO::poll_cb);
1445    
1446 root 1.175 =item IO::AIO::poll_wait
1447    
1448     If there are any outstanding requests and none of them in the result
1449     phase, wait till the result filehandle becomes ready for reading (simply
1450     does a C<select> on the filehandle. This is useful if you want to
1451     synchronously wait for some requests to finish).
1452    
1453     See C<nreqs> for an example.
1454    
1455     =item IO::AIO::poll
1456    
1457     Waits until some requests have been handled.
1458    
1459     Returns the number of requests processed, but is otherwise strictly
1460     equivalent to:
1461    
1462     IO::AIO::poll_wait, IO::AIO::poll_cb
1463    
1464     =item IO::AIO::flush
1465    
1466     Wait till all outstanding AIO requests have been handled.
1467    
1468     Strictly equivalent to:
1469    
1470     IO::AIO::poll_wait, IO::AIO::poll_cb
1471     while IO::AIO::nreqs;
1472    
1473 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1474    
1475     =item IO::AIO::max_poll_time $seconds
1476    
1477     These set the maximum number of requests (default C<0>, meaning infinity)
1478     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1479     the maximum amount of time (default C<0>, meaning infinity) spent in
1480     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1481     of time C<poll_cb> is allowed to use).
1482 root 1.78
1483 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1484     syscall per request processed, which is not normally a problem unless your
1485     callbacks are really really fast or your OS is really really slow (I am
1486     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1487    
1488 root 1.86 Setting these is useful if you want to ensure some level of
1489     interactiveness when perl is not fast enough to process all requests in
1490     time.
1491 root 1.78
1492 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1493 root 1.78
1494     Example: Install an Event watcher that automatically calls
1495 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1496 root 1.78 program get the CPU sometimes even under high AIO load.
1497    
1498 root 1.86 # try not to spend much more than 0.1s in poll_cb
1499     IO::AIO::max_poll_time 0.1;
1500    
1501     # use a low priority so other tasks have priority
1502 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1503     poll => 'r', nice => 1,
1504 root 1.86 cb => &IO::AIO::poll_cb);
1505 root 1.78
1506 root 1.104 =back
1507    
1508 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1509 root 1.13
1510 root 1.105 =over
1511    
1512 root 1.5 =item IO::AIO::min_parallel $nthreads
1513    
1514 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1515     default is C<8>, which means eight asynchronous operations can execute
1516     concurrently at any one time (the number of outstanding requests,
1517     however, is unlimited).
1518 root 1.5
1519 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1520 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1521     create demand for a hundred threads, even if it turns out that everything
1522     is in the cache and could have been processed faster by a single thread.
1523 root 1.34
1524 root 1.61 It is recommended to keep the number of threads relatively low, as some
1525     Linux kernel versions will scale negatively with the number of threads
1526     (higher parallelity => MUCH higher latency). With current Linux 2.6
1527     versions, 4-32 threads should be fine.
1528 root 1.5
1529 root 1.34 Under most circumstances you don't need to call this function, as the
1530     module selects a default that is suitable for low to moderate load.
1531 root 1.5
1532     =item IO::AIO::max_parallel $nthreads
1533    
1534 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1535     specified number of threads are currently running, this function kills
1536     them. This function blocks until the limit is reached.
1537    
1538     While C<$nthreads> are zero, aio requests get queued but not executed
1539     until the number of threads has been increased again.
1540 root 1.5
1541     This module automatically runs C<max_parallel 0> at program end, to ensure
1542     that all threads are killed and that there are no outstanding requests.
1543    
1544     Under normal circumstances you don't need to call this function.
1545    
1546 root 1.86 =item IO::AIO::max_idle $nthreads
1547    
1548 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1549     (i.e., threads that did not get a request to process within the idle
1550     timeout (default: 10 seconds). That means if a thread becomes idle while
1551     C<$nthreads> other threads are also idle, it will free its resources and
1552     exit.
1553 root 1.86
1554     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1555     to allow for extremely high load situations, but want to free resources
1556     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1557    
1558     The default is probably ok in most situations, especially if thread
1559     creation is fast. If thread creation is very slow on your system you might
1560     want to use larger values.
1561    
1562 root 1.188 =item IO::AIO::idle_timeout $seconds
1563    
1564     Sets the minimum idle timeout (default 10) after which worker threads are
1565     allowed to exit. SEe C<IO::AIO::max_idle>.
1566    
1567 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1568 root 1.5
1569 root 1.79 This is a very bad function to use in interactive programs because it
1570     blocks, and a bad way to reduce concurrency because it is inexact: Better
1571     use an C<aio_group> together with a feed callback.
1572    
1573     Sets the maximum number of outstanding requests to C<$nreqs>. If you
1574 root 1.113 do queue up more than this number of requests, the next call to the
1575 root 1.79 C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
1576     function will block until the limit is no longer exceeded.
1577    
1578     The default value is very large, so there is no practical limit on the
1579     number of outstanding requests.
1580    
1581     You can still queue as many requests as you want. Therefore,
1582 root 1.123 C<max_outstanding> is mainly useful in simple scripts (with low values) or
1583 root 1.79 as a stop gap to shield against fatal memory overflow (with large values).
1584 root 1.5
1585 root 1.104 =back
1586    
1587 root 1.86 =head3 STATISTICAL INFORMATION
1588    
1589 root 1.104 =over
1590    
1591 root 1.86 =item IO::AIO::nreqs
1592    
1593     Returns the number of requests currently in the ready, execute or pending
1594     states (i.e. for which their callback has not been invoked yet).
1595    
1596     Example: wait till there are no outstanding requests anymore:
1597    
1598     IO::AIO::poll_wait, IO::AIO::poll_cb
1599     while IO::AIO::nreqs;
1600    
1601     =item IO::AIO::nready
1602    
1603     Returns the number of requests currently in the ready state (not yet
1604     executed).
1605    
1606     =item IO::AIO::npending
1607    
1608     Returns the number of requests currently in the pending state (executed,
1609     but not yet processed by poll_cb).
1610    
1611 root 1.5 =back
1612    
1613 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1614    
1615     IO::AIO implements some functions that might be useful, but are not
1616     asynchronous.
1617    
1618     =over 4
1619    
1620     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1621    
1622     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1623     but is blocking (this makes most sense if you know the input data is
1624     likely cached already and the output filehandle is set to non-blocking
1625     operations).
1626    
1627     Returns the number of bytes copied, or C<-1> on error.
1628    
1629     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1630    
1631 root 1.184 Simply calls the C<posix_fadvise> function (see its
1632 root 1.157 manpage for details). The following advice constants are
1633     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1634     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1635     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1636    
1637     On systems that do not implement C<posix_fadvise>, this function returns
1638     ENOSYS, otherwise the return value of C<posix_fadvise>.
1639    
1640 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1641    
1642     Simply calls the C<posix_madvise> function (see its
1643     manpage for details). The following advice constants are
1644     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1645     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1646    
1647     On systems that do not implement C<posix_madvise>, this function returns
1648     ENOSYS, otherwise the return value of C<posix_madvise>.
1649    
1650     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1651    
1652     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1653     $scalar (see its manpage for details). The following protect
1654     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1655     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1656    
1657     On systems that do not implement C<mprotect>, this function returns
1658     ENOSYS, otherwise the return value of C<mprotect>.
1659    
1660 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1661    
1662     Memory-maps a file (or anonymous memory range) and attaches it to the
1663     given C<$scalar>, which will act like a string scalar.
1664    
1665     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1666     change the string length, and most read-only operations such as copying it
1667     or searching it with regexes and so on.
1668    
1669     Anything else is unsafe and will, at best, result in memory leaks.
1670    
1671     The memory map associated with the C<$scalar> is automatically removed
1672     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1673     C<IO::AIO::munmap> functions are called.
1674    
1675     This calls the C<mmap>(2) function internally. See your system's manual
1676     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1677    
1678     The C<$length> must be larger than zero and smaller than the actual
1679     filesize.
1680    
1681     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1682     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1683    
1684     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1685     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1686     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1687     (which is set to C<MAP_ANON> if your system only provides this
1688     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1689     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1690     C<IO::AIO::MAP_NONBLOCK>
1691    
1692     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1693    
1694 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1695     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1696    
1697 root 1.177 Example:
1698    
1699     use Digest::MD5;
1700     use IO::AIO;
1701    
1702     open my $fh, "<verybigfile"
1703     or die "$!";
1704    
1705     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1706     or die "verybigfile: $!";
1707    
1708     my $fast_md5 = md5 $data;
1709    
1710 root 1.176 =item IO::AIO::munmap $scalar
1711    
1712     Removes a previous mmap and undefines the C<$scalar>.
1713    
1714 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1715 root 1.174
1716 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1717     C<aio_mlock> call (see its description for details).
1718 root 1.174
1719     =item IO::AIO::munlockall
1720    
1721     Calls the C<munlockall> function.
1722    
1723     On systems that do not implement C<munlockall>, this function returns
1724     ENOSYS, otherwise the return value of C<munlockall>.
1725    
1726 root 1.157 =back
1727    
1728 root 1.1 =cut
1729    
1730 root 1.61 min_parallel 8;
1731 root 1.1
1732 root 1.95 END { flush }
1733 root 1.82
1734 root 1.1 1;
1735    
1736 root 1.175 =head1 EVENT LOOP INTEGRATION
1737    
1738     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1739     automatically into many event loops:
1740    
1741     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1742     use AnyEvent::AIO;
1743    
1744     You can also integrate IO::AIO manually into many event loops, here are
1745     some examples of how to do this:
1746    
1747     # EV integration
1748     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1749    
1750     # Event integration
1751     Event->io (fd => IO::AIO::poll_fileno,
1752     poll => 'r',
1753     cb => \&IO::AIO::poll_cb);
1754    
1755     # Glib/Gtk2 integration
1756     add_watch Glib::IO IO::AIO::poll_fileno,
1757     in => sub { IO::AIO::poll_cb; 1 };
1758    
1759     # Tk integration
1760     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1761     readable => \&IO::AIO::poll_cb);
1762    
1763     # Danga::Socket integration
1764     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1765     \&IO::AIO::poll_cb);
1766    
1767 root 1.27 =head2 FORK BEHAVIOUR
1768    
1769 root 1.52 This module should do "the right thing" when the process using it forks:
1770    
1771 root 1.34 Before the fork, IO::AIO enters a quiescent state where no requests
1772     can be added in other threads and no results will be processed. After
1773     the fork the parent simply leaves the quiescent state and continues
1774 root 1.72 request/result processing, while the child frees the request/result queue
1775     (so that the requests started before the fork will only be handled in the
1776     parent). Threads will be started on demand until the limit set in the
1777 root 1.34 parent process has been reached again.
1778 root 1.27
1779 root 1.52 In short: the parent will, after a short pause, continue as if fork had
1780     not been called, while the child will act as if IO::AIO has not been used
1781     yet.
1782    
1783 root 1.60 =head2 MEMORY USAGE
1784    
1785 root 1.72 Per-request usage:
1786    
1787     Each aio request uses - depending on your architecture - around 100-200
1788     bytes of memory. In addition, stat requests need a stat buffer (possibly
1789     a few hundred bytes), readdir requires a result buffer and so on. Perl
1790     scalars and other data passed into aio requests will also be locked and
1791     will consume memory till the request has entered the done state.
1792 root 1.60
1793 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1794 root 1.60 problem.
1795    
1796 root 1.72 Per-thread usage:
1797    
1798     In the execution phase, some aio requests require more memory for
1799     temporary buffers, and each thread requires a stack and other data
1800     structures (usually around 16k-128k, depending on the OS).
1801    
1802     =head1 KNOWN BUGS
1803    
1804 root 1.73 Known bugs will be fixed in the next release.
1805 root 1.60
1806 root 1.1 =head1 SEE ALSO
1807    
1808 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1809     more natural syntax.
1810 root 1.1
1811     =head1 AUTHOR
1812    
1813     Marc Lehmann <schmorp@schmorp.de>
1814     http://home.schmorp.de/
1815    
1816     =cut
1817