ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.201
Committed: Tue Jul 5 09:24:11 2011 UTC (12 years, 10 months ago) by root
Branch: MAIN
Changes since 1.200: +11 -1 lines
Log Message:
realpath

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.200 our $VERSION = '3.93';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.201 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync aio_fsync
178 root 1.142 aio_fdatasync aio_sync_file_range aio_pathsync aio_readahead
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183     aio_statvfs);
184 root 1.120
185 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
186 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
187 root 1.188 min_parallel max_parallel max_idle idle_timeout
188 root 1.86 nreqs nready npending nthreads
189 root 1.157 max_poll_time max_poll_reqs
190 root 1.182 sendfile fadvise madvise
191     mmap munmap munlock munlockall);
192 root 1.1
193 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
194    
195 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
196    
197 root 1.1 require XSLoader;
198 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
199 root 1.1 }
200    
201 root 1.5 =head1 FUNCTIONS
202 root 1.1
203 root 1.175 =head2 QUICK OVERVIEW
204    
205     This section simply lists the prototypes of the most important functions
206     for quick reference. See the following sections for function-by-function
207     documentation.
208    
209     aio_open $pathname, $flags, $mode, $callback->($fh)
210     aio_close $fh, $callback->($status)
211     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
212     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
214     aio_readahead $fh,$offset,$length, $callback->($retval)
215     aio_stat $fh_or_path, $callback->($status)
216     aio_lstat $fh, $callback->($status)
217     aio_statvfs $fh_or_path, $callback->($statvfs)
218     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
219     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
220     aio_truncate $fh_or_path, $offset, $callback->($status)
221     aio_chmod $fh_or_path, $mode, $callback->($status)
222     aio_unlink $pathname, $callback->($status)
223     aio_mknod $path, $mode, $dev, $callback->($status)
224     aio_link $srcpath, $dstpath, $callback->($status)
225     aio_symlink $srcpath, $dstpath, $callback->($status)
226     aio_readlink $path, $callback->($link)
227 root 1.201 aio_realpath $path, $callback->($link)
228 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
229     aio_mkdir $pathname, $mode, $callback->($status)
230     aio_rmdir $pathname, $callback->($status)
231     aio_readdir $pathname, $callback->($entries)
232     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
233     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
234     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
235     aio_load $path, $data, $callback->($status)
236     aio_copy $srcpath, $dstpath, $callback->($status)
237     aio_move $srcpath, $dstpath, $callback->($status)
238     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
239     aio_rmtree $path, $callback->($status)
240     aio_sync $callback->($status)
241     aio_fsync $fh, $callback->($status)
242     aio_fdatasync $fh, $callback->($status)
243     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
244     aio_pathsync $path, $callback->($status)
245     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
246     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
247 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
248     aio_mlockall $flags, $callback->($status)
249 root 1.175 aio_group $callback->(...)
250     aio_nop $callback->()
251    
252     $prev_pri = aioreq_pri [$pri]
253     aioreq_nice $pri_adjust
254    
255     IO::AIO::poll_wait
256     IO::AIO::poll_cb
257     IO::AIO::poll
258     IO::AIO::flush
259     IO::AIO::max_poll_reqs $nreqs
260     IO::AIO::max_poll_time $seconds
261     IO::AIO::min_parallel $nthreads
262     IO::AIO::max_parallel $nthreads
263     IO::AIO::max_idle $nthreads
264 root 1.188 IO::AIO::idle_timeout $seconds
265 root 1.175 IO::AIO::max_outstanding $maxreqs
266     IO::AIO::nreqs
267     IO::AIO::nready
268     IO::AIO::npending
269    
270     IO::AIO::sendfile $ofh, $ifh, $offset, $count
271     IO::AIO::fadvise $fh, $offset, $len, $advice
272 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
273     IO::AIO::mprotect $scalar, $offset, $length, $protect
274 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
275 root 1.175 IO::AIO::munlockall
276    
277 root 1.87 =head2 AIO REQUEST FUNCTIONS
278 root 1.1
279 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
280     with the same name (sans C<aio_>). The arguments are similar or identical,
281 root 1.14 and they all accept an additional (and optional) C<$callback> argument
282     which must be a code reference. This code reference will get called with
283     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
284 root 1.136 perl, which usually delivers "false") as its sole argument after the given
285 root 1.14 syscall has been executed asynchronously.
286 root 1.1
287 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
288     internally until the request has finished.
289 root 1.1
290 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
291     further manipulation of those requests while they are in-flight.
292 root 1.52
293 root 1.28 The pathnames you pass to these routines I<must> be absolute and
294 root 1.87 encoded as octets. The reason for the former is that at the time the
295 root 1.28 request is being executed, the current working directory could have
296     changed. Alternatively, you can make sure that you never change the
297 root 1.87 current working directory anywhere in the program and then use relative
298     paths.
299 root 1.28
300 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
301     in filenames you got from outside (command line, readdir etc.) without
302     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
303 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
304     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
305 root 1.87 use something else to ensure your scalar has the correct contents.
306    
307     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
308 root 1.136 handles correctly whether it is set or not.
309 root 1.1
310 root 1.5 =over 4
311 root 1.1
312 root 1.80 =item $prev_pri = aioreq_pri [$pri]
313 root 1.68
314 root 1.80 Returns the priority value that would be used for the next request and, if
315     C<$pri> is given, sets the priority for the next aio request.
316 root 1.68
317 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
318     and C<4>, respectively. Requests with higher priority will be serviced
319     first.
320    
321     The priority will be reset to C<0> after each call to one of the C<aio_*>
322 root 1.68 functions.
323    
324 root 1.69 Example: open a file with low priority, then read something from it with
325     higher priority so the read request is serviced before other low priority
326     open requests (potentially spamming the cache):
327    
328     aioreq_pri -3;
329     aio_open ..., sub {
330     return unless $_[0];
331    
332     aioreq_pri -2;
333     aio_read $_[0], ..., sub {
334     ...
335     };
336     };
337    
338 root 1.106
339 root 1.69 =item aioreq_nice $pri_adjust
340    
341     Similar to C<aioreq_pri>, but subtracts the given value from the current
342 root 1.87 priority, so the effect is cumulative.
343 root 1.69
344 root 1.106
345 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
346 root 1.1
347 root 1.2 Asynchronously open or create a file and call the callback with a newly
348     created filehandle for the file.
349 root 1.1
350     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
351     for an explanation.
352    
353 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
354     list. They are the same as used by C<sysopen>.
355    
356     Likewise, C<$mode> specifies the mode of the newly created file, if it
357     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
358     except that it is mandatory (i.e. use C<0> if you don't create new files,
359 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
360     by the umask in effect then the request is being executed, so better never
361     change the umask.
362 root 1.1
363     Example:
364    
365 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
366 root 1.2 if ($_[0]) {
367     print "open successful, fh is $_[0]\n";
368 root 1.1 ...
369     } else {
370     die "open failed: $!\n";
371     }
372     };
373    
374 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
375     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
376     following POSIX and non-POSIX constants are available (missing ones on
377     your system are, as usual, C<0>):
378    
379     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
380     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
381     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
382    
383 root 1.106
384 root 1.40 =item aio_close $fh, $callback->($status)
385 root 1.1
386 root 1.2 Asynchronously close a file and call the callback with the result
387 root 1.116 code.
388    
389 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
390 root 1.121 closing the file descriptor associated with the filehandle itself.
391 root 1.117
392 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
393     use dup2 to overwrite the file descriptor with the write-end of a pipe
394     (the pipe fd will be created on demand and will be cached).
395 root 1.117
396 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
397     free for reuse until the perl filehandle is closed.
398 root 1.117
399     =cut
400    
401 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
402 root 1.1
403 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
404 root 1.1
405 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
406     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
407     and calls the callback without the actual number of bytes read (or -1 on
408     error, just like the syscall).
409 root 1.109
410 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
411     offset plus the actual number of bytes read.
412    
413 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
414     be used (and updated), otherwise the file descriptor offset will not be
415     changed by these calls.
416 root 1.109
417 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
418     C<$data>.
419 root 1.109
420     If C<$dataoffset> is less than zero, it will be counted from the end of
421     C<$data>.
422 root 1.1
423 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
424 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
425     the necessary/optional hardware is installed).
426 root 1.31
427 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
428 root 1.1 offset C<0> within the scalar:
429    
430     aio_read $fh, 7, 15, $buffer, 0, sub {
431 root 1.9 $_[0] > 0 or die "read error: $!";
432     print "read $_[0] bytes: <$buffer>\n";
433 root 1.1 };
434    
435 root 1.106
436 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
437 root 1.35
438     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
439     reading at byte offset C<$in_offset>, and starts writing at the current
440     file offset of C<$out_fh>. Because of that, it is not safe to issue more
441     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
442 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
443     move or use the file offset of C<$in_fh>.
444 root 1.35
445 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
446 root 1.196 are written, and there is no way to find out how many more bytes have been
447     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
448     number of bytes written to C<$out_fh>. Only if the result value equals
449     C<$length> one can assume that C<$length> bytes have been read.
450 root 1.185
451     Unlike with other C<aio_> functions, it makes a lot of sense to use
452     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
453     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
454 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
455     into a trap where C<aio_sendfile> reads some data with readahead, then
456     fails to write all data, and when the socket is ready the next time, the
457     data in the cache is already lost, forcing C<aio_sendfile> to again hit
458     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
459     resource usage.
460    
461     This call tries to make use of a native C<sendfile>-like syscall to
462     provide zero-copy operation. For this to work, C<$out_fh> should refer to
463     a socket, and C<$in_fh> should refer to an mmap'able file.
464 root 1.35
465 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
466 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
467     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
468     type of filehandle regardless of the limitations of the operating system.
469    
470     As native sendfile syscalls (as practically any non-POSIX interface hacked
471     together in a hurry to improve benchmark numbers) tend to be rather buggy
472     on many systems, this implementation tries to work around some known bugs
473     in Linux and FreeBSD kernels (probably others, too), but that might fail,
474     so you really really should check the return value of C<aio_sendfile> -
475     fewre bytes than expected might have been transferred.
476 root 1.35
477 root 1.106
478 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
479 root 1.1
480 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
481 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
482     argument specifies the starting point from which data is to be read and
483     C<$length> specifies the number of bytes to be read. I/O is performed in
484     whole pages, so that offset is effectively rounded down to a page boundary
485     and bytes are read up to the next page boundary greater than or equal to
486 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
487 root 1.1 file. The current file offset of the file is left unchanged.
488    
489 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
490     emulated by simply reading the data, which would have a similar effect.
491    
492 root 1.106
493 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
494 root 1.1
495 root 1.40 =item aio_lstat $fh, $callback->($status)
496 root 1.1
497     Works like perl's C<stat> or C<lstat> in void context. The callback will
498     be called after the stat and the results will be available using C<stat _>
499     or C<-s _> etc...
500    
501     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
502     for an explanation.
503    
504     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
505     error when stat'ing a large file, the results will be silently truncated
506     unless perl itself is compiled with large file support.
507    
508 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
509     following constants and functions (if not implemented, the constants will
510     be C<0> and the functions will either C<croak> or fall back on traditional
511     behaviour).
512    
513     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
514     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
515     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
516    
517 root 1.1 Example: Print the length of F</etc/passwd>:
518    
519     aio_stat "/etc/passwd", sub {
520     $_[0] and die "stat failed: $!";
521     print "size is ", -s _, "\n";
522     };
523    
524 root 1.106
525 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
526 root 1.172
527     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
528     whether a file handle or path was passed.
529    
530     On success, the callback is passed a hash reference with the following
531     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
532     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
533     is passed.
534    
535     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
536     C<ST_NOSUID>.
537    
538     The following non-POSIX IO::AIO::ST_* flag masks are defined to
539     their correct value when available, or to C<0> on systems that do
540     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
541     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
542     C<ST_NODIRATIME> and C<ST_RELATIME>.
543    
544     Example: stat C</wd> and dump out the data if successful.
545    
546     aio_statvfs "/wd", sub {
547     my $f = $_[0]
548     or die "statvfs: $!";
549    
550     use Data::Dumper;
551     say Dumper $f;
552     };
553    
554     # result:
555     {
556     bsize => 1024,
557     bfree => 4333064312,
558     blocks => 10253828096,
559     files => 2050765568,
560     flag => 4096,
561     favail => 2042092649,
562     bavail => 4333064312,
563     ffree => 2042092649,
564     namemax => 255,
565     frsize => 1024,
566     fsid => 1810
567     }
568    
569    
570 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
571    
572     Works like perl's C<utime> function (including the special case of $atime
573     and $mtime being undef). Fractional times are supported if the underlying
574     syscalls support them.
575    
576     When called with a pathname, uses utimes(2) if available, otherwise
577     utime(2). If called on a file descriptor, uses futimes(2) if available,
578     otherwise returns ENOSYS, so this is not portable.
579    
580     Examples:
581    
582 root 1.107 # set atime and mtime to current time (basically touch(1)):
583 root 1.106 aio_utime "path", undef, undef;
584     # set atime to current time and mtime to beginning of the epoch:
585     aio_utime "path", time, undef; # undef==0
586    
587    
588     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
589    
590     Works like perl's C<chown> function, except that C<undef> for either $uid
591     or $gid is being interpreted as "do not change" (but -1 can also be used).
592    
593     Examples:
594    
595     # same as "chown root path" in the shell:
596     aio_chown "path", 0, -1;
597     # same as above:
598     aio_chown "path", 0, undef;
599    
600    
601 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
602    
603     Works like truncate(2) or ftruncate(2).
604    
605    
606 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
607    
608     Works like perl's C<chmod> function.
609    
610    
611 root 1.40 =item aio_unlink $pathname, $callback->($status)
612 root 1.1
613     Asynchronously unlink (delete) a file and call the callback with the
614     result code.
615    
616 root 1.106
617 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
618    
619 root 1.86 [EXPERIMENTAL]
620    
621 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
622    
623 root 1.86 The only (POSIX-) portable way of calling this function is:
624 root 1.83
625     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
626 root 1.82
627 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
628     and functions.
629 root 1.106
630 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
631    
632     Asynchronously create a new link to the existing object at C<$srcpath> at
633     the path C<$dstpath> and call the callback with the result code.
634    
635 root 1.106
636 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
637    
638     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
639     the path C<$dstpath> and call the callback with the result code.
640    
641 root 1.106
642 root 1.90 =item aio_readlink $path, $callback->($link)
643    
644     Asynchronously read the symlink specified by C<$path> and pass it to
645     the callback. If an error occurs, nothing or undef gets passed to the
646     callback.
647    
648 root 1.106
649 root 1.201 =item aio_realpath $path, $callback->($path)
650    
651     Asynchronously make the path absolute and resolve any symlinks in
652     C<$path>. The resulting path only consists of directories.
653    
654     This request can be used to get the absolute path of the current working
655     directory by passing it a path of F<.> (a single dot).
656    
657    
658 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
659    
660     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
661     rename(2) and call the callback with the result code.
662    
663 root 1.106
664 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
665    
666     Asynchronously mkdir (create) a directory and call the callback with
667     the result code. C<$mode> will be modified by the umask at the time the
668     request is executed, so do not change your umask.
669    
670 root 1.106
671 root 1.40 =item aio_rmdir $pathname, $callback->($status)
672 root 1.27
673     Asynchronously rmdir (delete) a directory and call the callback with the
674     result code.
675    
676 root 1.106
677 root 1.46 =item aio_readdir $pathname, $callback->($entries)
678 root 1.37
679     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
680     directory (i.e. opendir + readdir + closedir). The entries will not be
681     sorted, and will B<NOT> include the C<.> and C<..> entries.
682    
683 root 1.148 The callback is passed a single argument which is either C<undef> or an
684     array-ref with the filenames.
685    
686    
687     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
688    
689     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
690     behaviour and output format. In case of an error, C<$entries> will be
691     C<undef>.
692    
693     The flags are a combination of the following constants, ORed together (the
694     flags will also be passed to the callback, possibly modified):
695    
696     =over 4
697    
698 root 1.150 =item IO::AIO::READDIR_DENTS
699 root 1.148
700 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
701     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
702 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
703 root 1.148 entry in more detail.
704    
705     C<$name> is the name of the entry.
706    
707 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
708 root 1.148
709 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
710     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
711     C<IO::AIO::DT_WHT>.
712 root 1.148
713 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
714 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
715     scalars are read-only: you can not modify them.
716    
717 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
718 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
719     systems that do not deliver the inode information.
720 root 1.150
721     =item IO::AIO::READDIR_DIRS_FIRST
722 root 1.148
723     When this flag is set, then the names will be returned in an order where
724 root 1.193 likely directories come first, in optimal stat order. This is useful when
725     you need to quickly find directories, or you want to find all directories
726     while avoiding to stat() each entry.
727 root 1.148
728 root 1.149 If the system returns type information in readdir, then this is used
729 root 1.193 to find directories directly. Otherwise, likely directories are names
730     beginning with ".", or otherwise names with no dots, of which names with
731 root 1.149 short names are tried first.
732    
733 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
734 root 1.148
735     When this flag is set, then the names will be returned in an order
736     suitable for stat()'ing each one. That is, when you plan to stat()
737     all files in the given directory, then the returned order will likely
738     be fastest.
739    
740 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
741     the likely dirs come first, resulting in a less optimal stat order.
742 root 1.148
743 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
744 root 1.148
745     This flag should not be set when calling C<aio_readdirx>. Instead, it
746     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
747 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
748 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
749    
750     =back
751 root 1.37
752 root 1.106
753 root 1.98 =item aio_load $path, $data, $callback->($status)
754    
755     This is a composite request that tries to fully load the given file into
756     memory. Status is the same as with aio_read.
757    
758     =cut
759    
760     sub aio_load($$;$) {
761 root 1.123 my ($path, undef, $cb) = @_;
762     my $data = \$_[1];
763 root 1.98
764 root 1.123 my $pri = aioreq_pri;
765     my $grp = aio_group $cb;
766    
767     aioreq_pri $pri;
768     add $grp aio_open $path, O_RDONLY, 0, sub {
769     my $fh = shift
770     or return $grp->result (-1);
771 root 1.98
772     aioreq_pri $pri;
773 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
774     $grp->result ($_[0]);
775 root 1.98 };
776 root 1.123 };
777 root 1.98
778 root 1.123 $grp
779 root 1.98 }
780    
781 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
782    
783     Try to copy the I<file> (directories not supported as either source or
784     destination) from C<$srcpath> to C<$dstpath> and call the callback with
785 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
786 root 1.82
787 root 1.134 This is a composite request that creates the destination file with
788 root 1.82 mode 0200 and copies the contents of the source file into it using
789     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
790     uid/gid, in that order.
791    
792     If an error occurs, the partial destination file will be unlinked, if
793     possible, except when setting atime, mtime, access mode and uid/gid, where
794     errors are being ignored.
795    
796     =cut
797    
798     sub aio_copy($$;$) {
799 root 1.123 my ($src, $dst, $cb) = @_;
800 root 1.82
801 root 1.123 my $pri = aioreq_pri;
802     my $grp = aio_group $cb;
803 root 1.82
804 root 1.123 aioreq_pri $pri;
805     add $grp aio_open $src, O_RDONLY, 0, sub {
806     if (my $src_fh = $_[0]) {
807 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
808 root 1.95
809 root 1.123 aioreq_pri $pri;
810     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
811     if (my $dst_fh = $_[0]) {
812     aioreq_pri $pri;
813     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
814     if ($_[0] == $stat[7]) {
815     $grp->result (0);
816     close $src_fh;
817    
818 root 1.147 my $ch = sub {
819     aioreq_pri $pri;
820     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
821     aioreq_pri $pri;
822     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
823     aioreq_pri $pri;
824     add $grp aio_close $dst_fh;
825     }
826     };
827     };
828 root 1.123
829     aioreq_pri $pri;
830 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
831     if ($_[0] < 0 && $! == ENOSYS) {
832     aioreq_pri $pri;
833     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
834     } else {
835     $ch->();
836     }
837     };
838 root 1.123 } else {
839     $grp->result (-1);
840     close $src_fh;
841     close $dst_fh;
842    
843     aioreq $pri;
844     add $grp aio_unlink $dst;
845     }
846     };
847     } else {
848     $grp->result (-1);
849     }
850     },
851 root 1.82
852 root 1.123 } else {
853     $grp->result (-1);
854     }
855     };
856 root 1.82
857 root 1.123 $grp
858 root 1.82 }
859    
860     =item aio_move $srcpath, $dstpath, $callback->($status)
861    
862     Try to move the I<file> (directories not supported as either source or
863     destination) from C<$srcpath> to C<$dstpath> and call the callback with
864 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
865 root 1.82
866 root 1.137 This is a composite request that tries to rename(2) the file first; if
867     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
868     that is successful, unlinks the C<$srcpath>.
869 root 1.82
870     =cut
871    
872     sub aio_move($$;$) {
873 root 1.123 my ($src, $dst, $cb) = @_;
874 root 1.82
875 root 1.123 my $pri = aioreq_pri;
876     my $grp = aio_group $cb;
877 root 1.82
878 root 1.123 aioreq_pri $pri;
879     add $grp aio_rename $src, $dst, sub {
880     if ($_[0] && $! == EXDEV) {
881     aioreq_pri $pri;
882     add $grp aio_copy $src, $dst, sub {
883     $grp->result ($_[0]);
884 root 1.95
885 root 1.196 unless ($_[0]) {
886 root 1.123 aioreq_pri $pri;
887     add $grp aio_unlink $src;
888     }
889     };
890     } else {
891     $grp->result ($_[0]);
892     }
893     };
894 root 1.82
895 root 1.123 $grp
896 root 1.82 }
897    
898 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
899    
900 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
901 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
902     names, directories you can recurse into (directories), and ones you cannot
903     recurse into (everything else, including symlinks to directories).
904 root 1.52
905 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
906     C<$maxreq> specifies the maximum number of outstanding aio requests that
907     this function generates. If it is C<< <= 0 >>, then a suitable default
908 root 1.81 will be chosen (currently 4).
909 root 1.40
910     On error, the callback is called without arguments, otherwise it receives
911     two array-refs with path-relative entry names.
912    
913     Example:
914    
915     aio_scandir $dir, 0, sub {
916     my ($dirs, $nondirs) = @_;
917     print "real directories: @$dirs\n";
918     print "everything else: @$nondirs\n";
919     };
920    
921     Implementation notes.
922    
923     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
924    
925 root 1.149 If readdir returns file type information, then this is used directly to
926     find directories.
927    
928     Otherwise, after reading the directory, the modification time, size etc.
929     of the directory before and after the readdir is checked, and if they
930     match (and isn't the current time), the link count will be used to decide
931     how many entries are directories (if >= 2). Otherwise, no knowledge of the
932     number of subdirectories will be assumed.
933    
934     Then entries will be sorted into likely directories a non-initial dot
935     currently) and likely non-directories (see C<aio_readdirx>). Then every
936     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
937     in order of their inode numbers. If that succeeds, it assumes that the
938     entry is a directory or a symlink to directory (which will be checked
939 root 1.52 seperately). This is often faster than stat'ing the entry itself because
940     filesystems might detect the type of the entry without reading the inode
941 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
942     the filetype information on readdir.
943 root 1.52
944     If the known number of directories (link count - 2) has been reached, the
945     rest of the entries is assumed to be non-directories.
946    
947     This only works with certainty on POSIX (= UNIX) filesystems, which
948     fortunately are the vast majority of filesystems around.
949    
950     It will also likely work on non-POSIX filesystems with reduced efficiency
951     as those tend to return 0 or 1 as link counts, which disables the
952     directory counting heuristic.
953 root 1.40
954     =cut
955    
956 root 1.100 sub aio_scandir($$;$) {
957 root 1.123 my ($path, $maxreq, $cb) = @_;
958    
959     my $pri = aioreq_pri;
960 root 1.40
961 root 1.123 my $grp = aio_group $cb;
962 root 1.80
963 root 1.123 $maxreq = 4 if $maxreq <= 0;
964 root 1.55
965 root 1.123 # stat once
966     aioreq_pri $pri;
967     add $grp aio_stat $path, sub {
968     return $grp->result () if $_[0];
969     my $now = time;
970     my $hash1 = join ":", (stat _)[0,1,3,7,9];
971 root 1.40
972 root 1.123 # read the directory entries
973 root 1.80 aioreq_pri $pri;
974 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
975 root 1.123 my $entries = shift
976     or return $grp->result ();
977 root 1.40
978 root 1.123 # stat the dir another time
979 root 1.80 aioreq_pri $pri;
980 root 1.123 add $grp aio_stat $path, sub {
981     my $hash2 = join ":", (stat _)[0,1,3,7,9];
982 root 1.95
983 root 1.123 my $ndirs;
984 root 1.95
985 root 1.123 # take the slow route if anything looks fishy
986     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
987     $ndirs = -1;
988     } else {
989     # if nlink == 2, we are finished
990 root 1.150 # for non-posix-fs's, we rely on nlink < 2
991 root 1.123 $ndirs = (stat _)[3] - 2
992     or return $grp->result ([], $entries);
993     }
994    
995     my (@dirs, @nondirs);
996 root 1.40
997 root 1.123 my $statgrp = add $grp aio_group sub {
998     $grp->result (\@dirs, \@nondirs);
999     };
1000 root 1.40
1001 root 1.123 limit $statgrp $maxreq;
1002     feed $statgrp sub {
1003     return unless @$entries;
1004 root 1.150 my $entry = shift @$entries;
1005 root 1.40
1006 root 1.123 aioreq_pri $pri;
1007     add $statgrp aio_stat "$path/$entry/.", sub {
1008     if ($_[0] < 0) {
1009     push @nondirs, $entry;
1010     } else {
1011     # need to check for real directory
1012     aioreq_pri $pri;
1013     add $statgrp aio_lstat "$path/$entry", sub {
1014     if (-d _) {
1015     push @dirs, $entry;
1016    
1017     unless (--$ndirs) {
1018     push @nondirs, @$entries;
1019     feed $statgrp;
1020 root 1.74 }
1021 root 1.123 } else {
1022     push @nondirs, $entry;
1023 root 1.40 }
1024     }
1025 root 1.123 }
1026 root 1.74 };
1027 root 1.40 };
1028     };
1029     };
1030 root 1.123 };
1031 root 1.55
1032 root 1.123 $grp
1033 root 1.40 }
1034    
1035 root 1.99 =item aio_rmtree $path, $callback->($status)
1036    
1037 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1038     status of the final C<rmdir> only. This is a composite request that
1039     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1040     everything else.
1041 root 1.99
1042     =cut
1043    
1044     sub aio_rmtree;
1045 root 1.100 sub aio_rmtree($;$) {
1046 root 1.123 my ($path, $cb) = @_;
1047 root 1.99
1048 root 1.123 my $pri = aioreq_pri;
1049     my $grp = aio_group $cb;
1050 root 1.99
1051 root 1.123 aioreq_pri $pri;
1052     add $grp aio_scandir $path, 0, sub {
1053     my ($dirs, $nondirs) = @_;
1054 root 1.99
1055 root 1.123 my $dirgrp = aio_group sub {
1056     add $grp aio_rmdir $path, sub {
1057     $grp->result ($_[0]);
1058 root 1.99 };
1059 root 1.123 };
1060 root 1.99
1061 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1062     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1063 root 1.99
1064 root 1.123 add $grp $dirgrp;
1065     };
1066 root 1.99
1067 root 1.123 $grp
1068 root 1.99 }
1069    
1070 root 1.119 =item aio_sync $callback->($status)
1071    
1072     Asynchronously call sync and call the callback when finished.
1073    
1074 root 1.40 =item aio_fsync $fh, $callback->($status)
1075 root 1.1
1076     Asynchronously call fsync on the given filehandle and call the callback
1077     with the fsync result code.
1078    
1079 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1080 root 1.1
1081     Asynchronously call fdatasync on the given filehandle and call the
1082 root 1.26 callback with the fdatasync result code.
1083    
1084     If this call isn't available because your OS lacks it or it couldn't be
1085     detected, it will be emulated by calling C<fsync> instead.
1086 root 1.1
1087 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1088    
1089     Sync the data portion of the file specified by C<$offset> and C<$length>
1090     to disk (but NOT the metadata), by calling the Linux-specific
1091     sync_file_range call. If sync_file_range is not available or it returns
1092     ENOSYS, then fdatasync or fsync is being substituted.
1093    
1094     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1095     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1096     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1097     manpage for details.
1098    
1099 root 1.120 =item aio_pathsync $path, $callback->($status)
1100    
1101     This request tries to open, fsync and close the given path. This is a
1102 root 1.135 composite request intended to sync directories after directory operations
1103 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1104     specific effect, but usually it makes sure that directory changes get
1105     written to disc. It works for anything that can be opened for read-only,
1106     not just directories.
1107    
1108 root 1.162 Future versions of this function might fall back to other methods when
1109     C<fsync> on the directory fails (such as calling C<sync>).
1110    
1111 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1112    
1113     =cut
1114    
1115     sub aio_pathsync($;$) {
1116 root 1.123 my ($path, $cb) = @_;
1117    
1118     my $pri = aioreq_pri;
1119     my $grp = aio_group $cb;
1120 root 1.120
1121 root 1.123 aioreq_pri $pri;
1122     add $grp aio_open $path, O_RDONLY, 0, sub {
1123     my ($fh) = @_;
1124     if ($fh) {
1125     aioreq_pri $pri;
1126     add $grp aio_fsync $fh, sub {
1127     $grp->result ($_[0]);
1128 root 1.120
1129     aioreq_pri $pri;
1130 root 1.123 add $grp aio_close $fh;
1131     };
1132     } else {
1133     $grp->result (-1);
1134     }
1135     };
1136 root 1.120
1137 root 1.123 $grp
1138 root 1.120 }
1139    
1140 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1141    
1142     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1143 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1144     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1145     scalar must only be modified in-place while an aio operation is pending on
1146     it).
1147 root 1.170
1148     It calls the C<msync> function of your OS, if available, with the memory
1149     area starting at C<$offset> in the string and ending C<$length> bytes
1150     later. If C<$length> is negative, counts from the end, and if C<$length>
1151     is C<undef>, then it goes till the end of the string. The flags can be
1152     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1153     C<IO::AIO::MS_SYNC>.
1154    
1155     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1156    
1157     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1158     scalars.
1159    
1160     It touches (reads or writes) all memory pages in the specified
1161     range inside the scalar. All caveats and parameters are the same
1162     as for C<aio_msync>, above, except for flags, which must be either
1163     C<0> (which reads all pages and ensures they are instantiated) or
1164     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1165     writing an octet from it, which dirties the page).
1166    
1167 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1168    
1169     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1170     scalars.
1171    
1172     It reads in all the pages of the underlying storage into memory (if any)
1173     and locks them, so they are not getting swapped/paged out or removed.
1174    
1175     If C<$length> is undefined, then the scalar will be locked till the end.
1176    
1177     On systems that do not implement C<mlock>, this function returns C<-1>
1178     and sets errno to C<ENOSYS>.
1179    
1180     Note that the corresponding C<munlock> is synchronous and is
1181     documented under L<MISCELLANEOUS FUNCTIONS>.
1182    
1183 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1184     C<$data> gets destroyed.
1185    
1186     open my $fh, "<", $path or die "$path: $!";
1187     my $data;
1188     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1189     aio_mlock $data; # mlock in background
1190    
1191 root 1.182 =item aio_mlockall $flags, $callback->($status)
1192    
1193     Calls the C<mlockall> function with the given C<$flags> (a combination of
1194     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1195    
1196     On systems that do not implement C<mlockall>, this function returns C<-1>
1197     and sets errno to C<ENOSYS>.
1198    
1199     Note that the corresponding C<munlockall> is synchronous and is
1200     documented under L<MISCELLANEOUS FUNCTIONS>.
1201    
1202 root 1.183 Example: asynchronously lock all current and future pages into memory.
1203    
1204     aio_mlockall IO::AIO::MCL_FUTURE;
1205    
1206 root 1.58 =item aio_group $callback->(...)
1207 root 1.54
1208 root 1.55 This is a very special aio request: Instead of doing something, it is a
1209     container for other aio requests, which is useful if you want to bundle
1210 root 1.71 many requests into a single, composite, request with a definite callback
1211     and the ability to cancel the whole request with its subrequests.
1212 root 1.55
1213     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1214     for more info.
1215    
1216     Example:
1217    
1218     my $grp = aio_group sub {
1219     print "all stats done\n";
1220     };
1221    
1222     add $grp
1223     (aio_stat ...),
1224     (aio_stat ...),
1225     ...;
1226    
1227 root 1.63 =item aio_nop $callback->()
1228    
1229     This is a special request - it does nothing in itself and is only used for
1230     side effects, such as when you want to add a dummy request to a group so
1231     that finishing the requests in the group depends on executing the given
1232     code.
1233    
1234 root 1.64 While this request does nothing, it still goes through the execution
1235     phase and still requires a worker thread. Thus, the callback will not
1236     be executed immediately but only after other requests in the queue have
1237     entered their execution phase. This can be used to measure request
1238     latency.
1239    
1240 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1241 root 1.54
1242     Mainly used for debugging and benchmarking, this aio request puts one of
1243     the request workers to sleep for the given time.
1244    
1245 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1246 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1247     immense (it blocks a thread for a long time) so do not use this function
1248     except to put your application under artificial I/O pressure.
1249 root 1.56
1250 root 1.5 =back
1251    
1252 root 1.53 =head2 IO::AIO::REQ CLASS
1253 root 1.52
1254     All non-aggregate C<aio_*> functions return an object of this class when
1255     called in non-void context.
1256    
1257     =over 4
1258    
1259 root 1.65 =item cancel $req
1260 root 1.52
1261     Cancels the request, if possible. Has the effect of skipping execution
1262     when entering the B<execute> state and skipping calling the callback when
1263     entering the the B<result> state, but will leave the request otherwise
1264 root 1.151 untouched (with the exception of readdir). That means that requests that
1265     currently execute will not be stopped and resources held by the request
1266     will not be freed prematurely.
1267 root 1.52
1268 root 1.65 =item cb $req $callback->(...)
1269    
1270     Replace (or simply set) the callback registered to the request.
1271    
1272 root 1.52 =back
1273    
1274 root 1.55 =head2 IO::AIO::GRP CLASS
1275    
1276     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1277     objects of this class, too.
1278    
1279     A IO::AIO::GRP object is a special request that can contain multiple other
1280     aio requests.
1281    
1282     You create one by calling the C<aio_group> constructing function with a
1283     callback that will be called when all contained requests have entered the
1284     C<done> state:
1285    
1286     my $grp = aio_group sub {
1287     print "all requests are done\n";
1288     };
1289    
1290     You add requests by calling the C<add> method with one or more
1291     C<IO::AIO::REQ> objects:
1292    
1293     $grp->add (aio_unlink "...");
1294    
1295 root 1.58 add $grp aio_stat "...", sub {
1296     $_[0] or return $grp->result ("error");
1297    
1298     # add another request dynamically, if first succeeded
1299     add $grp aio_open "...", sub {
1300     $grp->result ("ok");
1301     };
1302     };
1303 root 1.55
1304     This makes it very easy to create composite requests (see the source of
1305     C<aio_move> for an application) that work and feel like simple requests.
1306    
1307 root 1.62 =over 4
1308    
1309     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1310 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1311    
1312 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1313 root 1.59 only the request itself, but also all requests it contains.
1314 root 1.55
1315 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1316 root 1.55
1317 root 1.62 =item * You must not add requests to a group from within the group callback (or
1318 root 1.60 any later time).
1319    
1320 root 1.62 =back
1321    
1322 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1323     will finish very quickly. If they contain only requests that are in the
1324     C<done> state, they will also finish. Otherwise they will continue to
1325     exist.
1326    
1327 root 1.133 That means after creating a group you have some time to add requests
1328     (precisely before the callback has been invoked, which is only done within
1329     the C<poll_cb>). And in the callbacks of those requests, you can add
1330     further requests to the group. And only when all those requests have
1331     finished will the the group itself finish.
1332 root 1.57
1333 root 1.55 =over 4
1334    
1335 root 1.65 =item add $grp ...
1336    
1337 root 1.55 =item $grp->add (...)
1338    
1339 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1340     be added, including other groups, as long as you do not create circular
1341     dependencies.
1342    
1343     Returns all its arguments.
1344 root 1.55
1345 root 1.74 =item $grp->cancel_subs
1346    
1347     Cancel all subrequests and clears any feeder, but not the group request
1348     itself. Useful when you queued a lot of events but got a result early.
1349    
1350 root 1.168 The group request will finish normally (you cannot add requests to the
1351     group).
1352    
1353 root 1.58 =item $grp->result (...)
1354    
1355     Set the result value(s) that will be passed to the group callback when all
1356 root 1.120 subrequests have finished and set the groups errno to the current value
1357 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1358     no argument will be passed and errno is zero.
1359    
1360     =item $grp->errno ([$errno])
1361    
1362     Sets the group errno value to C<$errno>, or the current value of errno
1363     when the argument is missing.
1364    
1365     Every aio request has an associated errno value that is restored when
1366     the callback is invoked. This method lets you change this value from its
1367     default (0).
1368    
1369     Calling C<result> will also set errno, so make sure you either set C<$!>
1370     before the call to C<result>, or call c<errno> after it.
1371 root 1.58
1372 root 1.65 =item feed $grp $callback->($grp)
1373 root 1.60
1374     Sets a feeder/generator on this group: every group can have an attached
1375     generator that generates requests if idle. The idea behind this is that,
1376     although you could just queue as many requests as you want in a group,
1377 root 1.139 this might starve other requests for a potentially long time. For example,
1378     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1379     delaying any later requests for a long time.
1380 root 1.60
1381     To avoid this, and allow incremental generation of requests, you can
1382     instead a group and set a feeder on it that generates those requests. The
1383 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1384 root 1.60 below) requests active in the group itself and is expected to queue more
1385     requests.
1386    
1387 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1388     not impose any limits).
1389 root 1.60
1390 root 1.65 If the feed does not queue more requests when called, it will be
1391 root 1.60 automatically removed from the group.
1392    
1393 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1394     C<2> automatically.
1395 root 1.60
1396     Example:
1397    
1398     # stat all files in @files, but only ever use four aio requests concurrently:
1399    
1400     my $grp = aio_group sub { print "finished\n" };
1401 root 1.68 limit $grp 4;
1402 root 1.65 feed $grp sub {
1403 root 1.60 my $file = pop @files
1404     or return;
1405    
1406     add $grp aio_stat $file, sub { ... };
1407 root 1.65 };
1408 root 1.60
1409 root 1.68 =item limit $grp $num
1410 root 1.60
1411     Sets the feeder limit for the group: The feeder will be called whenever
1412     the group contains less than this many requests.
1413    
1414     Setting the limit to C<0> will pause the feeding process.
1415    
1416 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1417     automatically bumps it up to C<2>.
1418    
1419 root 1.55 =back
1420    
1421 root 1.5 =head2 SUPPORT FUNCTIONS
1422    
1423 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1424    
1425 root 1.5 =over 4
1426    
1427     =item $fileno = IO::AIO::poll_fileno
1428    
1429 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1430 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1431     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1432     you have to call C<poll_cb> to check the results.
1433 root 1.5
1434     See C<poll_cb> for an example.
1435    
1436     =item IO::AIO::poll_cb
1437    
1438 root 1.191 Process some outstanding events on the result pipe. You have to call
1439     this regularly. Returns C<0> if all events could be processed (or there
1440     were no events to process), or C<-1> if it returned earlier for whatever
1441     reason. Returns immediately when no events are outstanding. The amount of
1442     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1443     C<IO::AIO::max_poll_time>.
1444 root 1.5
1445 root 1.78 If not all requests were processed for whatever reason, the filehandle
1446 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1447     do anything special to have it called later.
1448 root 1.78
1449 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1450     ready, it can be beneficial to call this function from loops which submit
1451     a lot of requests, to make sure the results get processed when they become
1452     available and not just when the loop is finished and the event loop takes
1453     over again. This function returns very fast when there are no outstanding
1454     requests.
1455    
1456 root 1.20 Example: Install an Event watcher that automatically calls
1457 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1458     SYNOPSIS section, at the top of this document):
1459 root 1.5
1460     Event->io (fd => IO::AIO::poll_fileno,
1461     poll => 'r', async => 1,
1462     cb => \&IO::AIO::poll_cb);
1463    
1464 root 1.175 =item IO::AIO::poll_wait
1465    
1466     If there are any outstanding requests and none of them in the result
1467     phase, wait till the result filehandle becomes ready for reading (simply
1468     does a C<select> on the filehandle. This is useful if you want to
1469     synchronously wait for some requests to finish).
1470    
1471     See C<nreqs> for an example.
1472    
1473     =item IO::AIO::poll
1474    
1475     Waits until some requests have been handled.
1476    
1477     Returns the number of requests processed, but is otherwise strictly
1478     equivalent to:
1479    
1480     IO::AIO::poll_wait, IO::AIO::poll_cb
1481    
1482     =item IO::AIO::flush
1483    
1484     Wait till all outstanding AIO requests have been handled.
1485    
1486     Strictly equivalent to:
1487    
1488     IO::AIO::poll_wait, IO::AIO::poll_cb
1489     while IO::AIO::nreqs;
1490    
1491 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1492    
1493     =item IO::AIO::max_poll_time $seconds
1494    
1495     These set the maximum number of requests (default C<0>, meaning infinity)
1496     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1497     the maximum amount of time (default C<0>, meaning infinity) spent in
1498     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1499     of time C<poll_cb> is allowed to use).
1500 root 1.78
1501 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1502     syscall per request processed, which is not normally a problem unless your
1503     callbacks are really really fast or your OS is really really slow (I am
1504     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1505    
1506 root 1.86 Setting these is useful if you want to ensure some level of
1507     interactiveness when perl is not fast enough to process all requests in
1508     time.
1509 root 1.78
1510 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1511 root 1.78
1512     Example: Install an Event watcher that automatically calls
1513 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1514 root 1.78 program get the CPU sometimes even under high AIO load.
1515    
1516 root 1.86 # try not to spend much more than 0.1s in poll_cb
1517     IO::AIO::max_poll_time 0.1;
1518    
1519     # use a low priority so other tasks have priority
1520 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1521     poll => 'r', nice => 1,
1522 root 1.86 cb => &IO::AIO::poll_cb);
1523 root 1.78
1524 root 1.104 =back
1525    
1526 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1527 root 1.13
1528 root 1.105 =over
1529    
1530 root 1.5 =item IO::AIO::min_parallel $nthreads
1531    
1532 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1533     default is C<8>, which means eight asynchronous operations can execute
1534     concurrently at any one time (the number of outstanding requests,
1535     however, is unlimited).
1536 root 1.5
1537 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1538 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1539     create demand for a hundred threads, even if it turns out that everything
1540     is in the cache and could have been processed faster by a single thread.
1541 root 1.34
1542 root 1.61 It is recommended to keep the number of threads relatively low, as some
1543     Linux kernel versions will scale negatively with the number of threads
1544     (higher parallelity => MUCH higher latency). With current Linux 2.6
1545     versions, 4-32 threads should be fine.
1546 root 1.5
1547 root 1.34 Under most circumstances you don't need to call this function, as the
1548     module selects a default that is suitable for low to moderate load.
1549 root 1.5
1550     =item IO::AIO::max_parallel $nthreads
1551    
1552 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1553     specified number of threads are currently running, this function kills
1554     them. This function blocks until the limit is reached.
1555    
1556     While C<$nthreads> are zero, aio requests get queued but not executed
1557     until the number of threads has been increased again.
1558 root 1.5
1559     This module automatically runs C<max_parallel 0> at program end, to ensure
1560     that all threads are killed and that there are no outstanding requests.
1561    
1562     Under normal circumstances you don't need to call this function.
1563    
1564 root 1.86 =item IO::AIO::max_idle $nthreads
1565    
1566 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1567     (i.e., threads that did not get a request to process within the idle
1568     timeout (default: 10 seconds). That means if a thread becomes idle while
1569     C<$nthreads> other threads are also idle, it will free its resources and
1570     exit.
1571 root 1.86
1572     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1573     to allow for extremely high load situations, but want to free resources
1574     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1575    
1576     The default is probably ok in most situations, especially if thread
1577     creation is fast. If thread creation is very slow on your system you might
1578     want to use larger values.
1579    
1580 root 1.188 =item IO::AIO::idle_timeout $seconds
1581    
1582     Sets the minimum idle timeout (default 10) after which worker threads are
1583     allowed to exit. SEe C<IO::AIO::max_idle>.
1584    
1585 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1586 root 1.5
1587 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1588     you do queue up more than this number of requests, the next call to
1589     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1590     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1591     longer exceeded.
1592    
1593     In other words, this setting does not enforce a queue limit, but can be
1594     used to make poll functions block if the limit is exceeded.
1595    
1596 root 1.79 This is a very bad function to use in interactive programs because it
1597     blocks, and a bad way to reduce concurrency because it is inexact: Better
1598     use an C<aio_group> together with a feed callback.
1599    
1600 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1601     a lot of files, you can write somehting like this:
1602    
1603     IO::AIO::max_outstanding 32;
1604    
1605     for my $path (...) {
1606     aio_stat $path , ...;
1607     IO::AIO::poll_cb;
1608     }
1609    
1610     IO::AIO::flush;
1611    
1612     The call to C<poll_cb> inside the loop will normally return instantly, but
1613     as soon as more thna C<32> reqeusts are in-flight, it will block until
1614     some requests have been handled. This keeps the loop from pushing a large
1615     number of C<aio_stat> requests onto the queue.
1616    
1617     The default value for C<max_outstanding> is very large, so there is no
1618     practical limit on the number of outstanding requests.
1619 root 1.5
1620 root 1.104 =back
1621    
1622 root 1.86 =head3 STATISTICAL INFORMATION
1623    
1624 root 1.104 =over
1625    
1626 root 1.86 =item IO::AIO::nreqs
1627    
1628     Returns the number of requests currently in the ready, execute or pending
1629     states (i.e. for which their callback has not been invoked yet).
1630    
1631     Example: wait till there are no outstanding requests anymore:
1632    
1633     IO::AIO::poll_wait, IO::AIO::poll_cb
1634     while IO::AIO::nreqs;
1635    
1636     =item IO::AIO::nready
1637    
1638     Returns the number of requests currently in the ready state (not yet
1639     executed).
1640    
1641     =item IO::AIO::npending
1642    
1643     Returns the number of requests currently in the pending state (executed,
1644     but not yet processed by poll_cb).
1645    
1646 root 1.5 =back
1647    
1648 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1649    
1650     IO::AIO implements some functions that might be useful, but are not
1651     asynchronous.
1652    
1653     =over 4
1654    
1655     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1656    
1657     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1658     but is blocking (this makes most sense if you know the input data is
1659     likely cached already and the output filehandle is set to non-blocking
1660     operations).
1661    
1662     Returns the number of bytes copied, or C<-1> on error.
1663    
1664     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1665    
1666 root 1.184 Simply calls the C<posix_fadvise> function (see its
1667 root 1.157 manpage for details). The following advice constants are
1668     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1669     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1670     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1671    
1672     On systems that do not implement C<posix_fadvise>, this function returns
1673     ENOSYS, otherwise the return value of C<posix_fadvise>.
1674    
1675 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1676    
1677     Simply calls the C<posix_madvise> function (see its
1678     manpage for details). The following advice constants are
1679     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1680     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1681    
1682     On systems that do not implement C<posix_madvise>, this function returns
1683     ENOSYS, otherwise the return value of C<posix_madvise>.
1684    
1685     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1686    
1687     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1688     $scalar (see its manpage for details). The following protect
1689     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1690     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1691    
1692     On systems that do not implement C<mprotect>, this function returns
1693     ENOSYS, otherwise the return value of C<mprotect>.
1694    
1695 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1696    
1697     Memory-maps a file (or anonymous memory range) and attaches it to the
1698     given C<$scalar>, which will act like a string scalar.
1699    
1700     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1701     change the string length, and most read-only operations such as copying it
1702     or searching it with regexes and so on.
1703    
1704     Anything else is unsafe and will, at best, result in memory leaks.
1705    
1706     The memory map associated with the C<$scalar> is automatically removed
1707     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1708     C<IO::AIO::munmap> functions are called.
1709    
1710     This calls the C<mmap>(2) function internally. See your system's manual
1711     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1712    
1713     The C<$length> must be larger than zero and smaller than the actual
1714     filesize.
1715    
1716     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1717     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1718    
1719     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1720     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1721     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1722     (which is set to C<MAP_ANON> if your system only provides this
1723     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1724     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1725     C<IO::AIO::MAP_NONBLOCK>
1726    
1727     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1728    
1729 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1730     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1731    
1732 root 1.177 Example:
1733    
1734     use Digest::MD5;
1735     use IO::AIO;
1736    
1737     open my $fh, "<verybigfile"
1738     or die "$!";
1739    
1740     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1741     or die "verybigfile: $!";
1742    
1743     my $fast_md5 = md5 $data;
1744    
1745 root 1.176 =item IO::AIO::munmap $scalar
1746    
1747     Removes a previous mmap and undefines the C<$scalar>.
1748    
1749 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1750 root 1.174
1751 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1752     C<aio_mlock> call (see its description for details).
1753 root 1.174
1754     =item IO::AIO::munlockall
1755    
1756     Calls the C<munlockall> function.
1757    
1758     On systems that do not implement C<munlockall>, this function returns
1759     ENOSYS, otherwise the return value of C<munlockall>.
1760    
1761 root 1.157 =back
1762    
1763 root 1.1 =cut
1764    
1765 root 1.61 min_parallel 8;
1766 root 1.1
1767 root 1.95 END { flush }
1768 root 1.82
1769 root 1.1 1;
1770    
1771 root 1.175 =head1 EVENT LOOP INTEGRATION
1772    
1773     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1774     automatically into many event loops:
1775    
1776     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1777     use AnyEvent::AIO;
1778    
1779     You can also integrate IO::AIO manually into many event loops, here are
1780     some examples of how to do this:
1781    
1782     # EV integration
1783     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1784    
1785     # Event integration
1786     Event->io (fd => IO::AIO::poll_fileno,
1787     poll => 'r',
1788     cb => \&IO::AIO::poll_cb);
1789    
1790     # Glib/Gtk2 integration
1791     add_watch Glib::IO IO::AIO::poll_fileno,
1792     in => sub { IO::AIO::poll_cb; 1 };
1793    
1794     # Tk integration
1795     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1796     readable => \&IO::AIO::poll_cb);
1797    
1798     # Danga::Socket integration
1799     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1800     \&IO::AIO::poll_cb);
1801    
1802 root 1.27 =head2 FORK BEHAVIOUR
1803    
1804 root 1.197 Usage of pthreads in a program changes the semantics of fork
1805     considerably. Specifically, only async-safe functions can be called after
1806     fork. Perl doesn't know about this, so in general, you cannot call fork
1807     with defined behaviour in perl. IO::AIO uses pthreads, so this applies,
1808     but many other extensions and (for inexplicable reasons) perl itself often
1809     is linked against pthreads, so this limitation applies.
1810    
1811     Some operating systems have extensions that allow safe use of fork, and
1812     this module should do "the right thing" on those, and tries on others. At
1813     the time of this writing (2011) only GNU/Linux supports these extensions
1814     to POSIX.
1815 root 1.52
1816 root 1.60 =head2 MEMORY USAGE
1817    
1818 root 1.72 Per-request usage:
1819    
1820     Each aio request uses - depending on your architecture - around 100-200
1821     bytes of memory. In addition, stat requests need a stat buffer (possibly
1822     a few hundred bytes), readdir requires a result buffer and so on. Perl
1823     scalars and other data passed into aio requests will also be locked and
1824     will consume memory till the request has entered the done state.
1825 root 1.60
1826 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1827 root 1.60 problem.
1828    
1829 root 1.72 Per-thread usage:
1830    
1831     In the execution phase, some aio requests require more memory for
1832     temporary buffers, and each thread requires a stack and other data
1833     structures (usually around 16k-128k, depending on the OS).
1834    
1835     =head1 KNOWN BUGS
1836    
1837 root 1.73 Known bugs will be fixed in the next release.
1838 root 1.60
1839 root 1.1 =head1 SEE ALSO
1840    
1841 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1842     more natural syntax.
1843 root 1.1
1844     =head1 AUTHOR
1845    
1846     Marc Lehmann <schmorp@schmorp.de>
1847     http://home.schmorp.de/
1848    
1849     =cut
1850