ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.219
Committed: Tue Mar 27 18:54:45 2012 UTC (12 years, 1 month ago) by root
Branch: MAIN
Changes since 1.218: +3 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.218 our $VERSION = '4.12';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
178     aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate
179 root 1.203 aio_pathsync aio_readahead
180 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
181     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 root 1.170 aio_chmod aio_utime aio_truncate
183 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
184 root 1.208 aio_statvfs
185     aio_wd);
186 root 1.120
187 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
188 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
189 root 1.188 min_parallel max_parallel max_idle idle_timeout
190 root 1.86 nreqs nready npending nthreads
191 root 1.157 max_poll_time max_poll_reqs
192 root 1.182 sendfile fadvise madvise
193     mmap munmap munlock munlockall);
194 root 1.1
195 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
196    
197 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
198    
199 root 1.1 require XSLoader;
200 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
201 root 1.1 }
202    
203 root 1.5 =head1 FUNCTIONS
204 root 1.1
205 root 1.175 =head2 QUICK OVERVIEW
206    
207     This section simply lists the prototypes of the most important functions
208     for quick reference. See the following sections for function-by-function
209     documentation.
210    
211 root 1.208 aio_wd $pathname, $callback->($wd)
212 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
213     aio_close $fh, $callback->($status)
214     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
215     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
217     aio_readahead $fh,$offset,$length, $callback->($retval)
218     aio_stat $fh_or_path, $callback->($status)
219     aio_lstat $fh, $callback->($status)
220     aio_statvfs $fh_or_path, $callback->($statvfs)
221     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
222     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
223     aio_truncate $fh_or_path, $offset, $callback->($status)
224     aio_chmod $fh_or_path, $mode, $callback->($status)
225     aio_unlink $pathname, $callback->($status)
226 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
227 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
228     aio_symlink $srcpath, $dstpath, $callback->($status)
229 root 1.209 aio_readlink $pathname, $callback->($link)
230     aio_realpath $pathname, $callback->($link)
231 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
232     aio_mkdir $pathname, $mode, $callback->($status)
233     aio_rmdir $pathname, $callback->($status)
234     aio_readdir $pathname, $callback->($entries)
235     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
236     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
237     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
238 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
239 root 1.209 aio_load $pathname, $data, $callback->($status)
240 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
241     aio_move $srcpath, $dstpath, $callback->($status)
242 root 1.209 aio_rmtree $pathname, $callback->($status)
243 root 1.175 aio_sync $callback->($status)
244 root 1.206 aio_syncfs $fh, $callback->($status)
245 root 1.175 aio_fsync $fh, $callback->($status)
246     aio_fdatasync $fh, $callback->($status)
247     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
248 root 1.209 aio_pathsync $pathname, $callback->($status)
249 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
250     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
251 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
252     aio_mlockall $flags, $callback->($status)
253 root 1.175 aio_group $callback->(...)
254     aio_nop $callback->()
255    
256     $prev_pri = aioreq_pri [$pri]
257     aioreq_nice $pri_adjust
258    
259     IO::AIO::poll_wait
260     IO::AIO::poll_cb
261     IO::AIO::poll
262     IO::AIO::flush
263     IO::AIO::max_poll_reqs $nreqs
264     IO::AIO::max_poll_time $seconds
265     IO::AIO::min_parallel $nthreads
266     IO::AIO::max_parallel $nthreads
267     IO::AIO::max_idle $nthreads
268 root 1.188 IO::AIO::idle_timeout $seconds
269 root 1.175 IO::AIO::max_outstanding $maxreqs
270     IO::AIO::nreqs
271     IO::AIO::nready
272     IO::AIO::npending
273    
274     IO::AIO::sendfile $ofh, $ifh, $offset, $count
275     IO::AIO::fadvise $fh, $offset, $len, $advice
276 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
277     IO::AIO::mprotect $scalar, $offset, $length, $protect
278 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
279 root 1.175 IO::AIO::munlockall
280    
281 root 1.219 =head2 API NOTES
282 root 1.1
283 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
284     with the same name (sans C<aio_>). The arguments are similar or identical,
285 root 1.14 and they all accept an additional (and optional) C<$callback> argument
286 root 1.212 which must be a code reference. This code reference will be called after
287     the syscall has been executed in an asynchronous fashion. The results
288     of the request will be passed as arguments to the callback (and, if an
289     error occured, in C<$!>) - for most requests the syscall return code (e.g.
290     most syscalls return C<-1> on error, unlike perl, which usually delivers
291     "false").
292    
293     Some requests (such as C<aio_readdir>) pass the actual results and
294     communicate failures by passing C<undef>.
295 root 1.1
296 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
297     internally until the request has finished.
298 root 1.1
299 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
300     further manipulation of those requests while they are in-flight.
301 root 1.52
302 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
303     reason for this is that at the time the request is being executed, the
304 root 1.212 current working directory could have changed. Alternatively, you can
305     make sure that you never change the current working directory anywhere
306     in the program and then use relative paths. You can also take advantage
307     of IO::AIOs working directory abstraction, that lets you specify paths
308     relative to some previously-opened "working directory object" - see the
309     description of the C<IO::AIO::WD> class later in this document.
310 root 1.28
311 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
312     in filenames you got from outside (command line, readdir etc.) without
313 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
314     module and encode your pathnames to the locale (or other) encoding in
315     effect in the user environment, d) use Glib::filename_from_unicode on
316     unicode filenames or e) use something else to ensure your scalar has the
317     correct contents.
318 root 1.87
319     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
320 root 1.136 handles correctly whether it is set or not.
321 root 1.1
322 root 1.219 =head2 AIO REQUEST FUNCTIONS
323    
324 root 1.5 =over 4
325 root 1.1
326 root 1.80 =item $prev_pri = aioreq_pri [$pri]
327 root 1.68
328 root 1.80 Returns the priority value that would be used for the next request and, if
329     C<$pri> is given, sets the priority for the next aio request.
330 root 1.68
331 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
332     and C<4>, respectively. Requests with higher priority will be serviced
333     first.
334    
335     The priority will be reset to C<0> after each call to one of the C<aio_*>
336 root 1.68 functions.
337    
338 root 1.69 Example: open a file with low priority, then read something from it with
339     higher priority so the read request is serviced before other low priority
340     open requests (potentially spamming the cache):
341    
342     aioreq_pri -3;
343     aio_open ..., sub {
344     return unless $_[0];
345    
346     aioreq_pri -2;
347     aio_read $_[0], ..., sub {
348     ...
349     };
350     };
351    
352 root 1.106
353 root 1.69 =item aioreq_nice $pri_adjust
354    
355     Similar to C<aioreq_pri>, but subtracts the given value from the current
356 root 1.87 priority, so the effect is cumulative.
357 root 1.69
358 root 1.106
359 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
360 root 1.1
361 root 1.2 Asynchronously open or create a file and call the callback with a newly
362     created filehandle for the file.
363 root 1.1
364     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
365     for an explanation.
366    
367 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
368     list. They are the same as used by C<sysopen>.
369    
370     Likewise, C<$mode> specifies the mode of the newly created file, if it
371     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
372     except that it is mandatory (i.e. use C<0> if you don't create new files,
373 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
374     by the umask in effect then the request is being executed, so better never
375     change the umask.
376 root 1.1
377     Example:
378    
379 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
380 root 1.2 if ($_[0]) {
381     print "open successful, fh is $_[0]\n";
382 root 1.1 ...
383     } else {
384     die "open failed: $!\n";
385     }
386     };
387    
388 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
389     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
390     following POSIX and non-POSIX constants are available (missing ones on
391     your system are, as usual, C<0>):
392    
393     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
394     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
395     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
396    
397 root 1.106
398 root 1.40 =item aio_close $fh, $callback->($status)
399 root 1.1
400 root 1.2 Asynchronously close a file and call the callback with the result
401 root 1.116 code.
402    
403 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
404 root 1.121 closing the file descriptor associated with the filehandle itself.
405 root 1.117
406 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
407     use dup2 to overwrite the file descriptor with the write-end of a pipe
408     (the pipe fd will be created on demand and will be cached).
409 root 1.117
410 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
411     free for reuse until the perl filehandle is closed.
412 root 1.117
413     =cut
414    
415 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
416 root 1.1
417 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
418 root 1.1
419 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
420     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
421     and calls the callback without the actual number of bytes read (or -1 on
422     error, just like the syscall).
423 root 1.109
424 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
425     offset plus the actual number of bytes read.
426    
427 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
428     be used (and updated), otherwise the file descriptor offset will not be
429     changed by these calls.
430 root 1.109
431 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
432     C<$data>.
433 root 1.109
434     If C<$dataoffset> is less than zero, it will be counted from the end of
435     C<$data>.
436 root 1.1
437 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
438 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
439     the necessary/optional hardware is installed).
440 root 1.31
441 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
442 root 1.1 offset C<0> within the scalar:
443    
444     aio_read $fh, 7, 15, $buffer, 0, sub {
445 root 1.9 $_[0] > 0 or die "read error: $!";
446     print "read $_[0] bytes: <$buffer>\n";
447 root 1.1 };
448    
449 root 1.106
450 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
451 root 1.35
452     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
453     reading at byte offset C<$in_offset>, and starts writing at the current
454     file offset of C<$out_fh>. Because of that, it is not safe to issue more
455     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
456 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
457     move or use the file offset of C<$in_fh>.
458 root 1.35
459 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
460 root 1.196 are written, and there is no way to find out how many more bytes have been
461     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
462     number of bytes written to C<$out_fh>. Only if the result value equals
463     C<$length> one can assume that C<$length> bytes have been read.
464 root 1.185
465     Unlike with other C<aio_> functions, it makes a lot of sense to use
466     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
467     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
468 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
469     into a trap where C<aio_sendfile> reads some data with readahead, then
470     fails to write all data, and when the socket is ready the next time, the
471     data in the cache is already lost, forcing C<aio_sendfile> to again hit
472     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
473     resource usage.
474    
475     This call tries to make use of a native C<sendfile>-like syscall to
476     provide zero-copy operation. For this to work, C<$out_fh> should refer to
477     a socket, and C<$in_fh> should refer to an mmap'able file.
478 root 1.35
479 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
480 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
481     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
482     type of filehandle regardless of the limitations of the operating system.
483    
484     As native sendfile syscalls (as practically any non-POSIX interface hacked
485     together in a hurry to improve benchmark numbers) tend to be rather buggy
486     on many systems, this implementation tries to work around some known bugs
487     in Linux and FreeBSD kernels (probably others, too), but that might fail,
488     so you really really should check the return value of C<aio_sendfile> -
489     fewre bytes than expected might have been transferred.
490 root 1.35
491 root 1.106
492 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
493 root 1.1
494 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
495 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
496     argument specifies the starting point from which data is to be read and
497     C<$length> specifies the number of bytes to be read. I/O is performed in
498     whole pages, so that offset is effectively rounded down to a page boundary
499     and bytes are read up to the next page boundary greater than or equal to
500 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
501 root 1.1 file. The current file offset of the file is left unchanged.
502    
503 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
504     emulated by simply reading the data, which would have a similar effect.
505    
506 root 1.106
507 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
508 root 1.1
509 root 1.40 =item aio_lstat $fh, $callback->($status)
510 root 1.1
511     Works like perl's C<stat> or C<lstat> in void context. The callback will
512     be called after the stat and the results will be available using C<stat _>
513     or C<-s _> etc...
514    
515     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
516     for an explanation.
517    
518     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
519     error when stat'ing a large file, the results will be silently truncated
520     unless perl itself is compiled with large file support.
521    
522 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
523     following constants and functions (if not implemented, the constants will
524     be C<0> and the functions will either C<croak> or fall back on traditional
525     behaviour).
526    
527     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
528     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
529     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
530    
531 root 1.1 Example: Print the length of F</etc/passwd>:
532    
533     aio_stat "/etc/passwd", sub {
534     $_[0] and die "stat failed: $!";
535     print "size is ", -s _, "\n";
536     };
537    
538 root 1.106
539 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
540 root 1.172
541     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
542     whether a file handle or path was passed.
543    
544     On success, the callback is passed a hash reference with the following
545     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
546     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
547     is passed.
548    
549     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
550     C<ST_NOSUID>.
551    
552     The following non-POSIX IO::AIO::ST_* flag masks are defined to
553     their correct value when available, or to C<0> on systems that do
554     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
555     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
556     C<ST_NODIRATIME> and C<ST_RELATIME>.
557    
558     Example: stat C</wd> and dump out the data if successful.
559    
560     aio_statvfs "/wd", sub {
561     my $f = $_[0]
562     or die "statvfs: $!";
563    
564     use Data::Dumper;
565     say Dumper $f;
566     };
567    
568     # result:
569     {
570     bsize => 1024,
571     bfree => 4333064312,
572     blocks => 10253828096,
573     files => 2050765568,
574     flag => 4096,
575     favail => 2042092649,
576     bavail => 4333064312,
577     ffree => 2042092649,
578     namemax => 255,
579     frsize => 1024,
580     fsid => 1810
581     }
582    
583    
584 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
585    
586     Works like perl's C<utime> function (including the special case of $atime
587     and $mtime being undef). Fractional times are supported if the underlying
588     syscalls support them.
589    
590     When called with a pathname, uses utimes(2) if available, otherwise
591     utime(2). If called on a file descriptor, uses futimes(2) if available,
592     otherwise returns ENOSYS, so this is not portable.
593    
594     Examples:
595    
596 root 1.107 # set atime and mtime to current time (basically touch(1)):
597 root 1.106 aio_utime "path", undef, undef;
598     # set atime to current time and mtime to beginning of the epoch:
599     aio_utime "path", time, undef; # undef==0
600    
601    
602     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
603    
604     Works like perl's C<chown> function, except that C<undef> for either $uid
605     or $gid is being interpreted as "do not change" (but -1 can also be used).
606    
607     Examples:
608    
609     # same as "chown root path" in the shell:
610     aio_chown "path", 0, -1;
611     # same as above:
612     aio_chown "path", 0, undef;
613    
614    
615 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
616    
617     Works like truncate(2) or ftruncate(2).
618    
619    
620 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
621    
622     Works like perl's C<chmod> function.
623    
624    
625 root 1.40 =item aio_unlink $pathname, $callback->($status)
626 root 1.1
627     Asynchronously unlink (delete) a file and call the callback with the
628     result code.
629    
630 root 1.106
631 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
632 root 1.82
633 root 1.86 [EXPERIMENTAL]
634    
635 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
636    
637 root 1.86 The only (POSIX-) portable way of calling this function is:
638 root 1.83
639 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
640 root 1.82
641 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
642     and functions.
643 root 1.106
644 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
645    
646     Asynchronously create a new link to the existing object at C<$srcpath> at
647     the path C<$dstpath> and call the callback with the result code.
648    
649 root 1.106
650 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
651    
652     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
653     the path C<$dstpath> and call the callback with the result code.
654    
655 root 1.106
656 root 1.209 =item aio_readlink $pathname, $callback->($link)
657 root 1.90
658     Asynchronously read the symlink specified by C<$path> and pass it to
659     the callback. If an error occurs, nothing or undef gets passed to the
660     callback.
661    
662 root 1.106
663 root 1.209 =item aio_realpath $pathname, $callback->($path)
664 root 1.201
665     Asynchronously make the path absolute and resolve any symlinks in
666 root 1.202 C<$path>. The resulting path only consists of directories (Same as
667     L<Cwd::realpath>).
668 root 1.201
669     This request can be used to get the absolute path of the current working
670     directory by passing it a path of F<.> (a single dot).
671    
672    
673 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
674    
675     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
676     rename(2) and call the callback with the result code.
677    
678 root 1.106
679 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
680    
681     Asynchronously mkdir (create) a directory and call the callback with
682     the result code. C<$mode> will be modified by the umask at the time the
683     request is executed, so do not change your umask.
684    
685 root 1.106
686 root 1.40 =item aio_rmdir $pathname, $callback->($status)
687 root 1.27
688     Asynchronously rmdir (delete) a directory and call the callback with the
689     result code.
690    
691 root 1.106
692 root 1.46 =item aio_readdir $pathname, $callback->($entries)
693 root 1.37
694     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
695     directory (i.e. opendir + readdir + closedir). The entries will not be
696     sorted, and will B<NOT> include the C<.> and C<..> entries.
697    
698 root 1.148 The callback is passed a single argument which is either C<undef> or an
699     array-ref with the filenames.
700    
701    
702     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
703    
704 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
705     tune behaviour and output format. In case of an error, C<$entries> will be
706 root 1.148 C<undef>.
707    
708     The flags are a combination of the following constants, ORed together (the
709     flags will also be passed to the callback, possibly modified):
710    
711     =over 4
712    
713 root 1.150 =item IO::AIO::READDIR_DENTS
714 root 1.148
715 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
716     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
717 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
718 root 1.148 entry in more detail.
719    
720     C<$name> is the name of the entry.
721    
722 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
723 root 1.148
724 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
725     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
726     C<IO::AIO::DT_WHT>.
727 root 1.148
728 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
729 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
730     scalars are read-only: you can not modify them.
731    
732 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
733 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
734     systems that do not deliver the inode information.
735 root 1.150
736     =item IO::AIO::READDIR_DIRS_FIRST
737 root 1.148
738     When this flag is set, then the names will be returned in an order where
739 root 1.193 likely directories come first, in optimal stat order. This is useful when
740     you need to quickly find directories, or you want to find all directories
741     while avoiding to stat() each entry.
742 root 1.148
743 root 1.149 If the system returns type information in readdir, then this is used
744 root 1.193 to find directories directly. Otherwise, likely directories are names
745     beginning with ".", or otherwise names with no dots, of which names with
746 root 1.149 short names are tried first.
747    
748 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
749 root 1.148
750     When this flag is set, then the names will be returned in an order
751     suitable for stat()'ing each one. That is, when you plan to stat()
752     all files in the given directory, then the returned order will likely
753     be fastest.
754    
755 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
756     the likely dirs come first, resulting in a less optimal stat order.
757 root 1.148
758 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
759 root 1.148
760     This flag should not be set when calling C<aio_readdirx>. Instead, it
761     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
762 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
763 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
764    
765     =back
766 root 1.37
767 root 1.106
768 root 1.209 =item aio_load $pathname, $data, $callback->($status)
769 root 1.98
770     This is a composite request that tries to fully load the given file into
771     memory. Status is the same as with aio_read.
772    
773     =cut
774    
775     sub aio_load($$;$) {
776 root 1.123 my ($path, undef, $cb) = @_;
777     my $data = \$_[1];
778 root 1.98
779 root 1.123 my $pri = aioreq_pri;
780     my $grp = aio_group $cb;
781    
782     aioreq_pri $pri;
783     add $grp aio_open $path, O_RDONLY, 0, sub {
784     my $fh = shift
785     or return $grp->result (-1);
786 root 1.98
787     aioreq_pri $pri;
788 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
789     $grp->result ($_[0]);
790 root 1.98 };
791 root 1.123 };
792 root 1.98
793 root 1.123 $grp
794 root 1.98 }
795    
796 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
797    
798     Try to copy the I<file> (directories not supported as either source or
799     destination) from C<$srcpath> to C<$dstpath> and call the callback with
800 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
801 root 1.82
802 root 1.134 This is a composite request that creates the destination file with
803 root 1.82 mode 0200 and copies the contents of the source file into it using
804     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
805     uid/gid, in that order.
806    
807     If an error occurs, the partial destination file will be unlinked, if
808     possible, except when setting atime, mtime, access mode and uid/gid, where
809     errors are being ignored.
810    
811     =cut
812    
813     sub aio_copy($$;$) {
814 root 1.123 my ($src, $dst, $cb) = @_;
815 root 1.82
816 root 1.123 my $pri = aioreq_pri;
817     my $grp = aio_group $cb;
818 root 1.82
819 root 1.123 aioreq_pri $pri;
820     add $grp aio_open $src, O_RDONLY, 0, sub {
821     if (my $src_fh = $_[0]) {
822 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
823 root 1.95
824 root 1.123 aioreq_pri $pri;
825     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
826     if (my $dst_fh = $_[0]) {
827     aioreq_pri $pri;
828     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
829     if ($_[0] == $stat[7]) {
830     $grp->result (0);
831     close $src_fh;
832    
833 root 1.147 my $ch = sub {
834     aioreq_pri $pri;
835     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
836     aioreq_pri $pri;
837     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
838     aioreq_pri $pri;
839     add $grp aio_close $dst_fh;
840     }
841     };
842     };
843 root 1.123
844     aioreq_pri $pri;
845 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
846     if ($_[0] < 0 && $! == ENOSYS) {
847     aioreq_pri $pri;
848     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
849     } else {
850     $ch->();
851     }
852     };
853 root 1.123 } else {
854     $grp->result (-1);
855     close $src_fh;
856     close $dst_fh;
857    
858     aioreq $pri;
859     add $grp aio_unlink $dst;
860     }
861     };
862     } else {
863     $grp->result (-1);
864     }
865     },
866 root 1.82
867 root 1.123 } else {
868     $grp->result (-1);
869     }
870     };
871 root 1.82
872 root 1.123 $grp
873 root 1.82 }
874    
875     =item aio_move $srcpath, $dstpath, $callback->($status)
876    
877     Try to move the I<file> (directories not supported as either source or
878     destination) from C<$srcpath> to C<$dstpath> and call the callback with
879 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
880 root 1.82
881 root 1.137 This is a composite request that tries to rename(2) the file first; if
882     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
883     that is successful, unlinks the C<$srcpath>.
884 root 1.82
885     =cut
886    
887     sub aio_move($$;$) {
888 root 1.123 my ($src, $dst, $cb) = @_;
889 root 1.82
890 root 1.123 my $pri = aioreq_pri;
891     my $grp = aio_group $cb;
892 root 1.82
893 root 1.123 aioreq_pri $pri;
894     add $grp aio_rename $src, $dst, sub {
895     if ($_[0] && $! == EXDEV) {
896     aioreq_pri $pri;
897     add $grp aio_copy $src, $dst, sub {
898     $grp->result ($_[0]);
899 root 1.95
900 root 1.196 unless ($_[0]) {
901 root 1.123 aioreq_pri $pri;
902     add $grp aio_unlink $src;
903     }
904     };
905     } else {
906     $grp->result ($_[0]);
907     }
908     };
909 root 1.82
910 root 1.123 $grp
911 root 1.82 }
912    
913 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
914 root 1.40
915 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
916 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
917     names, directories you can recurse into (directories), and ones you cannot
918     recurse into (everything else, including symlinks to directories).
919 root 1.52
920 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
921     C<$maxreq> specifies the maximum number of outstanding aio requests that
922     this function generates. If it is C<< <= 0 >>, then a suitable default
923 root 1.81 will be chosen (currently 4).
924 root 1.40
925     On error, the callback is called without arguments, otherwise it receives
926     two array-refs with path-relative entry names.
927    
928     Example:
929    
930     aio_scandir $dir, 0, sub {
931     my ($dirs, $nondirs) = @_;
932     print "real directories: @$dirs\n";
933     print "everything else: @$nondirs\n";
934     };
935    
936     Implementation notes.
937    
938     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
939    
940 root 1.149 If readdir returns file type information, then this is used directly to
941     find directories.
942    
943     Otherwise, after reading the directory, the modification time, size etc.
944     of the directory before and after the readdir is checked, and if they
945     match (and isn't the current time), the link count will be used to decide
946     how many entries are directories (if >= 2). Otherwise, no knowledge of the
947     number of subdirectories will be assumed.
948    
949     Then entries will be sorted into likely directories a non-initial dot
950     currently) and likely non-directories (see C<aio_readdirx>). Then every
951     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
952     in order of their inode numbers. If that succeeds, it assumes that the
953     entry is a directory or a symlink to directory (which will be checked
954 root 1.207 separately). This is often faster than stat'ing the entry itself because
955 root 1.52 filesystems might detect the type of the entry without reading the inode
956 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
957     the filetype information on readdir.
958 root 1.52
959     If the known number of directories (link count - 2) has been reached, the
960     rest of the entries is assumed to be non-directories.
961    
962     This only works with certainty on POSIX (= UNIX) filesystems, which
963     fortunately are the vast majority of filesystems around.
964    
965     It will also likely work on non-POSIX filesystems with reduced efficiency
966     as those tend to return 0 or 1 as link counts, which disables the
967     directory counting heuristic.
968 root 1.40
969     =cut
970    
971 root 1.100 sub aio_scandir($$;$) {
972 root 1.123 my ($path, $maxreq, $cb) = @_;
973    
974     my $pri = aioreq_pri;
975 root 1.40
976 root 1.123 my $grp = aio_group $cb;
977 root 1.80
978 root 1.123 $maxreq = 4 if $maxreq <= 0;
979 root 1.55
980 root 1.210 # get a wd object
981 root 1.123 aioreq_pri $pri;
982 root 1.210 add $grp aio_wd $path, sub {
983 root 1.212 $_[0]
984     or return $grp->result ();
985    
986 root 1.210 my $wd = [shift, "."];
987 root 1.40
988 root 1.210 # stat once
989 root 1.80 aioreq_pri $pri;
990 root 1.210 add $grp aio_stat $wd, sub {
991     return $grp->result () if $_[0];
992     my $now = time;
993     my $hash1 = join ":", (stat _)[0,1,3,7,9];
994 root 1.40
995 root 1.210 # read the directory entries
996 root 1.80 aioreq_pri $pri;
997 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
998     my $entries = shift
999     or return $grp->result ();
1000    
1001     # stat the dir another time
1002     aioreq_pri $pri;
1003     add $grp aio_stat $wd, sub {
1004     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1005 root 1.95
1006 root 1.210 my $ndirs;
1007 root 1.95
1008 root 1.210 # take the slow route if anything looks fishy
1009     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1010     $ndirs = -1;
1011     } else {
1012     # if nlink == 2, we are finished
1013     # for non-posix-fs's, we rely on nlink < 2
1014     $ndirs = (stat _)[3] - 2
1015     or return $grp->result ([], $entries);
1016     }
1017 root 1.123
1018 root 1.210 my (@dirs, @nondirs);
1019 root 1.40
1020 root 1.210 my $statgrp = add $grp aio_group sub {
1021     $grp->result (\@dirs, \@nondirs);
1022     };
1023 root 1.40
1024 root 1.210 limit $statgrp $maxreq;
1025     feed $statgrp sub {
1026     return unless @$entries;
1027     my $entry = shift @$entries;
1028    
1029     aioreq_pri $pri;
1030     $wd->[1] = "$entry/.";
1031     add $statgrp aio_stat $wd, sub {
1032     if ($_[0] < 0) {
1033     push @nondirs, $entry;
1034     } else {
1035     # need to check for real directory
1036     aioreq_pri $pri;
1037     $wd->[1] = $entry;
1038     add $statgrp aio_lstat $wd, sub {
1039     if (-d _) {
1040     push @dirs, $entry;
1041    
1042     unless (--$ndirs) {
1043     push @nondirs, @$entries;
1044     feed $statgrp;
1045     }
1046     } else {
1047     push @nondirs, $entry;
1048 root 1.74 }
1049 root 1.40 }
1050     }
1051 root 1.210 };
1052 root 1.74 };
1053 root 1.40 };
1054     };
1055     };
1056 root 1.123 };
1057 root 1.55
1058 root 1.123 $grp
1059 root 1.40 }
1060    
1061 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1062 root 1.99
1063 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1064     status of the final C<rmdir> only. This is a composite request that
1065     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1066     everything else.
1067 root 1.99
1068     =cut
1069    
1070     sub aio_rmtree;
1071 root 1.100 sub aio_rmtree($;$) {
1072 root 1.123 my ($path, $cb) = @_;
1073 root 1.99
1074 root 1.123 my $pri = aioreq_pri;
1075     my $grp = aio_group $cb;
1076 root 1.99
1077 root 1.123 aioreq_pri $pri;
1078     add $grp aio_scandir $path, 0, sub {
1079     my ($dirs, $nondirs) = @_;
1080 root 1.99
1081 root 1.123 my $dirgrp = aio_group sub {
1082     add $grp aio_rmdir $path, sub {
1083     $grp->result ($_[0]);
1084 root 1.99 };
1085 root 1.123 };
1086 root 1.99
1087 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1088     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1089 root 1.99
1090 root 1.123 add $grp $dirgrp;
1091     };
1092 root 1.99
1093 root 1.123 $grp
1094 root 1.99 }
1095    
1096 root 1.119 =item aio_sync $callback->($status)
1097    
1098     Asynchronously call sync and call the callback when finished.
1099    
1100 root 1.40 =item aio_fsync $fh, $callback->($status)
1101 root 1.1
1102     Asynchronously call fsync on the given filehandle and call the callback
1103     with the fsync result code.
1104    
1105 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1106 root 1.1
1107     Asynchronously call fdatasync on the given filehandle and call the
1108 root 1.26 callback with the fdatasync result code.
1109    
1110     If this call isn't available because your OS lacks it or it couldn't be
1111     detected, it will be emulated by calling C<fsync> instead.
1112 root 1.1
1113 root 1.206 =item aio_syncfs $fh, $callback->($status)
1114    
1115     Asynchronously call the syncfs syscall to sync the filesystem associated
1116     to the given filehandle and call the callback with the syncfs result
1117     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1118     errno to C<ENOSYS> nevertheless.
1119    
1120 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1121    
1122     Sync the data portion of the file specified by C<$offset> and C<$length>
1123     to disk (but NOT the metadata), by calling the Linux-specific
1124     sync_file_range call. If sync_file_range is not available or it returns
1125     ENOSYS, then fdatasync or fsync is being substituted.
1126    
1127     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1128     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1129     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1130     manpage for details.
1131    
1132 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1133 root 1.120
1134     This request tries to open, fsync and close the given path. This is a
1135 root 1.135 composite request intended to sync directories after directory operations
1136 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1137     specific effect, but usually it makes sure that directory changes get
1138     written to disc. It works for anything that can be opened for read-only,
1139     not just directories.
1140    
1141 root 1.162 Future versions of this function might fall back to other methods when
1142     C<fsync> on the directory fails (such as calling C<sync>).
1143    
1144 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1145    
1146     =cut
1147    
1148     sub aio_pathsync($;$) {
1149 root 1.123 my ($path, $cb) = @_;
1150    
1151     my $pri = aioreq_pri;
1152     my $grp = aio_group $cb;
1153 root 1.120
1154 root 1.123 aioreq_pri $pri;
1155     add $grp aio_open $path, O_RDONLY, 0, sub {
1156     my ($fh) = @_;
1157     if ($fh) {
1158     aioreq_pri $pri;
1159     add $grp aio_fsync $fh, sub {
1160     $grp->result ($_[0]);
1161 root 1.120
1162     aioreq_pri $pri;
1163 root 1.123 add $grp aio_close $fh;
1164     };
1165     } else {
1166     $grp->result (-1);
1167     }
1168     };
1169 root 1.120
1170 root 1.123 $grp
1171 root 1.120 }
1172    
1173 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1174    
1175     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1176 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1177     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1178     scalar must only be modified in-place while an aio operation is pending on
1179     it).
1180 root 1.170
1181     It calls the C<msync> function of your OS, if available, with the memory
1182     area starting at C<$offset> in the string and ending C<$length> bytes
1183     later. If C<$length> is negative, counts from the end, and if C<$length>
1184     is C<undef>, then it goes till the end of the string. The flags can be
1185     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1186     C<IO::AIO::MS_SYNC>.
1187    
1188     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1189    
1190     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1191     scalars.
1192    
1193     It touches (reads or writes) all memory pages in the specified
1194     range inside the scalar. All caveats and parameters are the same
1195     as for C<aio_msync>, above, except for flags, which must be either
1196     C<0> (which reads all pages and ensures they are instantiated) or
1197     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1198     writing an octet from it, which dirties the page).
1199    
1200 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1201    
1202     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1203     scalars.
1204    
1205     It reads in all the pages of the underlying storage into memory (if any)
1206     and locks them, so they are not getting swapped/paged out or removed.
1207    
1208     If C<$length> is undefined, then the scalar will be locked till the end.
1209    
1210     On systems that do not implement C<mlock>, this function returns C<-1>
1211     and sets errno to C<ENOSYS>.
1212    
1213     Note that the corresponding C<munlock> is synchronous and is
1214     documented under L<MISCELLANEOUS FUNCTIONS>.
1215    
1216 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1217     C<$data> gets destroyed.
1218    
1219     open my $fh, "<", $path or die "$path: $!";
1220     my $data;
1221     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1222     aio_mlock $data; # mlock in background
1223    
1224 root 1.182 =item aio_mlockall $flags, $callback->($status)
1225    
1226     Calls the C<mlockall> function with the given C<$flags> (a combination of
1227     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1228    
1229     On systems that do not implement C<mlockall>, this function returns C<-1>
1230     and sets errno to C<ENOSYS>.
1231    
1232     Note that the corresponding C<munlockall> is synchronous and is
1233     documented under L<MISCELLANEOUS FUNCTIONS>.
1234    
1235 root 1.183 Example: asynchronously lock all current and future pages into memory.
1236    
1237     aio_mlockall IO::AIO::MCL_FUTURE;
1238    
1239 root 1.58 =item aio_group $callback->(...)
1240 root 1.54
1241 root 1.55 This is a very special aio request: Instead of doing something, it is a
1242     container for other aio requests, which is useful if you want to bundle
1243 root 1.71 many requests into a single, composite, request with a definite callback
1244     and the ability to cancel the whole request with its subrequests.
1245 root 1.55
1246     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1247     for more info.
1248    
1249     Example:
1250    
1251     my $grp = aio_group sub {
1252     print "all stats done\n";
1253     };
1254    
1255     add $grp
1256     (aio_stat ...),
1257     (aio_stat ...),
1258     ...;
1259    
1260 root 1.63 =item aio_nop $callback->()
1261    
1262     This is a special request - it does nothing in itself and is only used for
1263     side effects, such as when you want to add a dummy request to a group so
1264     that finishing the requests in the group depends on executing the given
1265     code.
1266    
1267 root 1.64 While this request does nothing, it still goes through the execution
1268     phase and still requires a worker thread. Thus, the callback will not
1269     be executed immediately but only after other requests in the queue have
1270     entered their execution phase. This can be used to measure request
1271     latency.
1272    
1273 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1274 root 1.54
1275     Mainly used for debugging and benchmarking, this aio request puts one of
1276     the request workers to sleep for the given time.
1277    
1278 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1279 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1280     immense (it blocks a thread for a long time) so do not use this function
1281     except to put your application under artificial I/O pressure.
1282 root 1.56
1283 root 1.5 =back
1284    
1285 root 1.209
1286     =head2 IO::AIO::WD - multiple working directories
1287    
1288     Your process only has one current working directory, which is used by all
1289     threads. This makes it hard to use relative paths (some other component
1290     could call C<chdir> at any time, and it is hard to control when the path
1291     will be used by IO::AIO).
1292    
1293     One solution for this is to always use absolute paths. This usually works,
1294     but can be quite slow (the kernel has to walk the whole path on every
1295     access), and can also be a hassle to implement.
1296    
1297     Newer POSIX systems have a number of functions (openat, fdopendir,
1298     futimensat and so on) that make it possible to specify working directories
1299     per operation.
1300    
1301     For portability, and because the clowns who "designed", or shall I write,
1302     perpetrated this new interface were obviously half-drunk, this abstraction
1303     cannot be perfect, though.
1304    
1305     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1306     object. This object stores the canonicalised, absolute version of the
1307     path, and on systems that allow it, also a directory file descriptor.
1308    
1309     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1310     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1311 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1312     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1313 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1314 root 1.209 to that IO::AIO::WD object.
1315    
1316     For example, to get a wd object for F</etc> and then stat F<passwd>
1317     inside, you would write:
1318    
1319     aio_wd "/etc", sub {
1320     my $etcdir = shift;
1321    
1322     # although $etcdir can be undef on error, there is generally no reason
1323     # to check for errors here, as aio_stat will fail with ENOENT
1324     # when $etcdir is undef.
1325    
1326     aio_stat [$etcdir, "passwd"], sub {
1327     # yay
1328     };
1329     };
1330    
1331 root 1.214 That C<aio_wd> is a request and not a normal function shows that creating
1332     an IO::AIO::WD object is itself a potentially blocking operation, which is
1333     why it is done asynchronously.
1334    
1335     To stat the directory obtained with C<aio_wd> above, one could write
1336     either of the following three request calls:
1337    
1338     aio_lstat "/etc" , sub { ... # pathname as normal string
1339     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1340     aio_lstat $wd , sub { ... # shorthand for the previous
1341 root 1.209
1342     As with normal pathnames, IO::AIO keeps a copy of the working directory
1343     object and the pathname string, so you could write the following without
1344     causing any issues due to C<$path> getting reused:
1345    
1346     my $path = [$wd, undef];
1347    
1348     for my $name (qw(abc def ghi)) {
1349     $path->[1] = $name;
1350     aio_stat $path, sub {
1351     # ...
1352     };
1353     }
1354    
1355     There are some caveats: when directories get renamed (or deleted), the
1356     pathname string doesn't change, so will point to the new directory (or
1357     nowhere at all), while the directory fd, if available on the system,
1358     will still point to the original directory. Most functions accepting a
1359     pathname will use the directory fd on newer systems, and the string on
1360     older systems. Some functions (such as realpath) will always rely on the
1361     string form of the pathname.
1362    
1363     So this fucntionality is mainly useful to get some protection against
1364     C<chdir>, to easily get an absolute path out of a relative path for future
1365     reference, and to speed up doing many operations in the same directory
1366     (e.g. when stat'ing all files in a directory).
1367    
1368     The following functions implement this working directory abstraction:
1369    
1370     =over 4
1371    
1372     =item aio_wd $pathname, $callback->($wd)
1373    
1374     Asynchonously canonicalise the given pathname and convert it to an
1375     IO::AIO::WD object representing it. If possible and supported on the
1376     system, also open a directory fd to speed up pathname resolution relative
1377     to this working directory.
1378    
1379     If something goes wrong, then C<undef> is passwd to the callback instead
1380     of a working directory object and C<$!> is set appropriately. Since
1381     passing C<undef> as working directory component of a pathname fails the
1382     request with C<ENOENT>, there is often no need for error checking in the
1383     C<aio_wd> callback, as future requests using the value will fail in the
1384     expected way.
1385    
1386     If this call isn't available because your OS lacks it or it couldn't be
1387     detected, it will be emulated by calling C<fsync> instead.
1388    
1389     =item IO::AIO::CWD
1390    
1391     This is a compiletime constant (object) that represents the process
1392     current working directory.
1393    
1394     Specifying this object as working directory object for a pathname is as
1395     if the pathname would be specified directly, without a directory object,
1396     e.g., these calls are functionally identical:
1397    
1398     aio_stat "somefile", sub { ... };
1399     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1400    
1401     =back
1402    
1403    
1404 root 1.53 =head2 IO::AIO::REQ CLASS
1405 root 1.52
1406     All non-aggregate C<aio_*> functions return an object of this class when
1407     called in non-void context.
1408    
1409     =over 4
1410    
1411 root 1.65 =item cancel $req
1412 root 1.52
1413     Cancels the request, if possible. Has the effect of skipping execution
1414     when entering the B<execute> state and skipping calling the callback when
1415     entering the the B<result> state, but will leave the request otherwise
1416 root 1.151 untouched (with the exception of readdir). That means that requests that
1417     currently execute will not be stopped and resources held by the request
1418     will not be freed prematurely.
1419 root 1.52
1420 root 1.65 =item cb $req $callback->(...)
1421    
1422     Replace (or simply set) the callback registered to the request.
1423    
1424 root 1.52 =back
1425    
1426 root 1.55 =head2 IO::AIO::GRP CLASS
1427    
1428     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1429     objects of this class, too.
1430    
1431     A IO::AIO::GRP object is a special request that can contain multiple other
1432     aio requests.
1433    
1434     You create one by calling the C<aio_group> constructing function with a
1435     callback that will be called when all contained requests have entered the
1436     C<done> state:
1437    
1438     my $grp = aio_group sub {
1439     print "all requests are done\n";
1440     };
1441    
1442     You add requests by calling the C<add> method with one or more
1443     C<IO::AIO::REQ> objects:
1444    
1445     $grp->add (aio_unlink "...");
1446    
1447 root 1.58 add $grp aio_stat "...", sub {
1448     $_[0] or return $grp->result ("error");
1449    
1450     # add another request dynamically, if first succeeded
1451     add $grp aio_open "...", sub {
1452     $grp->result ("ok");
1453     };
1454     };
1455 root 1.55
1456     This makes it very easy to create composite requests (see the source of
1457     C<aio_move> for an application) that work and feel like simple requests.
1458    
1459 root 1.62 =over 4
1460    
1461     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1462 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1463    
1464 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1465 root 1.59 only the request itself, but also all requests it contains.
1466 root 1.55
1467 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1468 root 1.55
1469 root 1.62 =item * You must not add requests to a group from within the group callback (or
1470 root 1.60 any later time).
1471    
1472 root 1.62 =back
1473    
1474 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1475     will finish very quickly. If they contain only requests that are in the
1476     C<done> state, they will also finish. Otherwise they will continue to
1477     exist.
1478    
1479 root 1.133 That means after creating a group you have some time to add requests
1480     (precisely before the callback has been invoked, which is only done within
1481     the C<poll_cb>). And in the callbacks of those requests, you can add
1482     further requests to the group. And only when all those requests have
1483     finished will the the group itself finish.
1484 root 1.57
1485 root 1.55 =over 4
1486    
1487 root 1.65 =item add $grp ...
1488    
1489 root 1.55 =item $grp->add (...)
1490    
1491 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1492     be added, including other groups, as long as you do not create circular
1493     dependencies.
1494    
1495     Returns all its arguments.
1496 root 1.55
1497 root 1.74 =item $grp->cancel_subs
1498    
1499     Cancel all subrequests and clears any feeder, but not the group request
1500     itself. Useful when you queued a lot of events but got a result early.
1501    
1502 root 1.168 The group request will finish normally (you cannot add requests to the
1503     group).
1504    
1505 root 1.58 =item $grp->result (...)
1506    
1507     Set the result value(s) that will be passed to the group callback when all
1508 root 1.120 subrequests have finished and set the groups errno to the current value
1509 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1510     no argument will be passed and errno is zero.
1511    
1512     =item $grp->errno ([$errno])
1513    
1514     Sets the group errno value to C<$errno>, or the current value of errno
1515     when the argument is missing.
1516    
1517     Every aio request has an associated errno value that is restored when
1518     the callback is invoked. This method lets you change this value from its
1519     default (0).
1520    
1521     Calling C<result> will also set errno, so make sure you either set C<$!>
1522     before the call to C<result>, or call c<errno> after it.
1523 root 1.58
1524 root 1.65 =item feed $grp $callback->($grp)
1525 root 1.60
1526     Sets a feeder/generator on this group: every group can have an attached
1527     generator that generates requests if idle. The idea behind this is that,
1528     although you could just queue as many requests as you want in a group,
1529 root 1.139 this might starve other requests for a potentially long time. For example,
1530 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1531     requests, delaying any later requests for a long time.
1532 root 1.60
1533     To avoid this, and allow incremental generation of requests, you can
1534     instead a group and set a feeder on it that generates those requests. The
1535 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1536 root 1.60 below) requests active in the group itself and is expected to queue more
1537     requests.
1538    
1539 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1540     not impose any limits).
1541 root 1.60
1542 root 1.65 If the feed does not queue more requests when called, it will be
1543 root 1.60 automatically removed from the group.
1544    
1545 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1546     C<2> automatically.
1547 root 1.60
1548     Example:
1549    
1550     # stat all files in @files, but only ever use four aio requests concurrently:
1551    
1552     my $grp = aio_group sub { print "finished\n" };
1553 root 1.68 limit $grp 4;
1554 root 1.65 feed $grp sub {
1555 root 1.60 my $file = pop @files
1556     or return;
1557    
1558     add $grp aio_stat $file, sub { ... };
1559 root 1.65 };
1560 root 1.60
1561 root 1.68 =item limit $grp $num
1562 root 1.60
1563     Sets the feeder limit for the group: The feeder will be called whenever
1564     the group contains less than this many requests.
1565    
1566     Setting the limit to C<0> will pause the feeding process.
1567    
1568 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1569     automatically bumps it up to C<2>.
1570    
1571 root 1.55 =back
1572    
1573 root 1.5 =head2 SUPPORT FUNCTIONS
1574    
1575 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1576    
1577 root 1.5 =over 4
1578    
1579     =item $fileno = IO::AIO::poll_fileno
1580    
1581 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1582 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1583     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1584     you have to call C<poll_cb> to check the results.
1585 root 1.5
1586     See C<poll_cb> for an example.
1587    
1588     =item IO::AIO::poll_cb
1589    
1590 root 1.191 Process some outstanding events on the result pipe. You have to call
1591     this regularly. Returns C<0> if all events could be processed (or there
1592     were no events to process), or C<-1> if it returned earlier for whatever
1593     reason. Returns immediately when no events are outstanding. The amount of
1594     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1595     C<IO::AIO::max_poll_time>.
1596 root 1.5
1597 root 1.78 If not all requests were processed for whatever reason, the filehandle
1598 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1599     do anything special to have it called later.
1600 root 1.78
1601 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1602     ready, it can be beneficial to call this function from loops which submit
1603     a lot of requests, to make sure the results get processed when they become
1604     available and not just when the loop is finished and the event loop takes
1605     over again. This function returns very fast when there are no outstanding
1606     requests.
1607    
1608 root 1.20 Example: Install an Event watcher that automatically calls
1609 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1610     SYNOPSIS section, at the top of this document):
1611 root 1.5
1612     Event->io (fd => IO::AIO::poll_fileno,
1613     poll => 'r', async => 1,
1614     cb => \&IO::AIO::poll_cb);
1615    
1616 root 1.175 =item IO::AIO::poll_wait
1617    
1618     If there are any outstanding requests and none of them in the result
1619     phase, wait till the result filehandle becomes ready for reading (simply
1620     does a C<select> on the filehandle. This is useful if you want to
1621     synchronously wait for some requests to finish).
1622    
1623     See C<nreqs> for an example.
1624    
1625     =item IO::AIO::poll
1626    
1627     Waits until some requests have been handled.
1628    
1629     Returns the number of requests processed, but is otherwise strictly
1630     equivalent to:
1631    
1632     IO::AIO::poll_wait, IO::AIO::poll_cb
1633    
1634     =item IO::AIO::flush
1635    
1636     Wait till all outstanding AIO requests have been handled.
1637    
1638     Strictly equivalent to:
1639    
1640     IO::AIO::poll_wait, IO::AIO::poll_cb
1641     while IO::AIO::nreqs;
1642    
1643 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1644    
1645     =item IO::AIO::max_poll_time $seconds
1646    
1647     These set the maximum number of requests (default C<0>, meaning infinity)
1648     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1649     the maximum amount of time (default C<0>, meaning infinity) spent in
1650     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1651     of time C<poll_cb> is allowed to use).
1652 root 1.78
1653 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1654     syscall per request processed, which is not normally a problem unless your
1655     callbacks are really really fast or your OS is really really slow (I am
1656     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1657    
1658 root 1.86 Setting these is useful if you want to ensure some level of
1659     interactiveness when perl is not fast enough to process all requests in
1660     time.
1661 root 1.78
1662 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1663 root 1.78
1664     Example: Install an Event watcher that automatically calls
1665 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1666 root 1.78 program get the CPU sometimes even under high AIO load.
1667    
1668 root 1.86 # try not to spend much more than 0.1s in poll_cb
1669     IO::AIO::max_poll_time 0.1;
1670    
1671     # use a low priority so other tasks have priority
1672 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1673     poll => 'r', nice => 1,
1674 root 1.86 cb => &IO::AIO::poll_cb);
1675 root 1.78
1676 root 1.104 =back
1677    
1678 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1679 root 1.13
1680 root 1.105 =over
1681    
1682 root 1.5 =item IO::AIO::min_parallel $nthreads
1683    
1684 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1685     default is C<8>, which means eight asynchronous operations can execute
1686     concurrently at any one time (the number of outstanding requests,
1687     however, is unlimited).
1688 root 1.5
1689 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1690 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1691     create demand for a hundred threads, even if it turns out that everything
1692     is in the cache and could have been processed faster by a single thread.
1693 root 1.34
1694 root 1.61 It is recommended to keep the number of threads relatively low, as some
1695     Linux kernel versions will scale negatively with the number of threads
1696     (higher parallelity => MUCH higher latency). With current Linux 2.6
1697     versions, 4-32 threads should be fine.
1698 root 1.5
1699 root 1.34 Under most circumstances you don't need to call this function, as the
1700     module selects a default that is suitable for low to moderate load.
1701 root 1.5
1702     =item IO::AIO::max_parallel $nthreads
1703    
1704 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1705     specified number of threads are currently running, this function kills
1706     them. This function blocks until the limit is reached.
1707    
1708     While C<$nthreads> are zero, aio requests get queued but not executed
1709     until the number of threads has been increased again.
1710 root 1.5
1711     This module automatically runs C<max_parallel 0> at program end, to ensure
1712     that all threads are killed and that there are no outstanding requests.
1713    
1714     Under normal circumstances you don't need to call this function.
1715    
1716 root 1.86 =item IO::AIO::max_idle $nthreads
1717    
1718 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1719     (i.e., threads that did not get a request to process within the idle
1720     timeout (default: 10 seconds). That means if a thread becomes idle while
1721     C<$nthreads> other threads are also idle, it will free its resources and
1722     exit.
1723 root 1.86
1724     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1725     to allow for extremely high load situations, but want to free resources
1726     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1727    
1728     The default is probably ok in most situations, especially if thread
1729     creation is fast. If thread creation is very slow on your system you might
1730     want to use larger values.
1731    
1732 root 1.188 =item IO::AIO::idle_timeout $seconds
1733    
1734     Sets the minimum idle timeout (default 10) after which worker threads are
1735     allowed to exit. SEe C<IO::AIO::max_idle>.
1736    
1737 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1738 root 1.5
1739 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1740     you do queue up more than this number of requests, the next call to
1741     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1742     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1743     longer exceeded.
1744    
1745     In other words, this setting does not enforce a queue limit, but can be
1746     used to make poll functions block if the limit is exceeded.
1747    
1748 root 1.79 This is a very bad function to use in interactive programs because it
1749     blocks, and a bad way to reduce concurrency because it is inexact: Better
1750     use an C<aio_group> together with a feed callback.
1751    
1752 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1753     a lot of files, you can write somehting like this:
1754    
1755     IO::AIO::max_outstanding 32;
1756    
1757     for my $path (...) {
1758     aio_stat $path , ...;
1759     IO::AIO::poll_cb;
1760     }
1761    
1762     IO::AIO::flush;
1763    
1764     The call to C<poll_cb> inside the loop will normally return instantly, but
1765     as soon as more thna C<32> reqeusts are in-flight, it will block until
1766     some requests have been handled. This keeps the loop from pushing a large
1767     number of C<aio_stat> requests onto the queue.
1768    
1769     The default value for C<max_outstanding> is very large, so there is no
1770     practical limit on the number of outstanding requests.
1771 root 1.5
1772 root 1.104 =back
1773    
1774 root 1.86 =head3 STATISTICAL INFORMATION
1775    
1776 root 1.104 =over
1777    
1778 root 1.86 =item IO::AIO::nreqs
1779    
1780     Returns the number of requests currently in the ready, execute or pending
1781     states (i.e. for which their callback has not been invoked yet).
1782    
1783     Example: wait till there are no outstanding requests anymore:
1784    
1785     IO::AIO::poll_wait, IO::AIO::poll_cb
1786     while IO::AIO::nreqs;
1787    
1788     =item IO::AIO::nready
1789    
1790     Returns the number of requests currently in the ready state (not yet
1791     executed).
1792    
1793     =item IO::AIO::npending
1794    
1795     Returns the number of requests currently in the pending state (executed,
1796     but not yet processed by poll_cb).
1797    
1798 root 1.5 =back
1799    
1800 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1801    
1802     IO::AIO implements some functions that might be useful, but are not
1803     asynchronous.
1804    
1805     =over 4
1806    
1807     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1808    
1809     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1810     but is blocking (this makes most sense if you know the input data is
1811     likely cached already and the output filehandle is set to non-blocking
1812     operations).
1813    
1814     Returns the number of bytes copied, or C<-1> on error.
1815    
1816     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1817    
1818 root 1.184 Simply calls the C<posix_fadvise> function (see its
1819 root 1.157 manpage for details). The following advice constants are
1820 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1821 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1822     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1823    
1824     On systems that do not implement C<posix_fadvise>, this function returns
1825     ENOSYS, otherwise the return value of C<posix_fadvise>.
1826    
1827 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1828    
1829     Simply calls the C<posix_madvise> function (see its
1830     manpage for details). The following advice constants are
1831 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1832 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1833    
1834     On systems that do not implement C<posix_madvise>, this function returns
1835     ENOSYS, otherwise the return value of C<posix_madvise>.
1836    
1837     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1838    
1839     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1840     $scalar (see its manpage for details). The following protect
1841 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1842 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1843    
1844     On systems that do not implement C<mprotect>, this function returns
1845     ENOSYS, otherwise the return value of C<mprotect>.
1846    
1847 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1848    
1849     Memory-maps a file (or anonymous memory range) and attaches it to the
1850     given C<$scalar>, which will act like a string scalar.
1851    
1852     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1853     change the string length, and most read-only operations such as copying it
1854     or searching it with regexes and so on.
1855    
1856     Anything else is unsafe and will, at best, result in memory leaks.
1857    
1858     The memory map associated with the C<$scalar> is automatically removed
1859     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1860     C<IO::AIO::munmap> functions are called.
1861    
1862     This calls the C<mmap>(2) function internally. See your system's manual
1863     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1864    
1865     The C<$length> must be larger than zero and smaller than the actual
1866     filesize.
1867    
1868     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1869     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1870    
1871     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1872     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1873     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1874     (which is set to C<MAP_ANON> if your system only provides this
1875     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1876     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1877     C<IO::AIO::MAP_NONBLOCK>
1878    
1879     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1880    
1881 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1882     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1883    
1884 root 1.177 Example:
1885    
1886     use Digest::MD5;
1887     use IO::AIO;
1888    
1889     open my $fh, "<verybigfile"
1890     or die "$!";
1891    
1892     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1893     or die "verybigfile: $!";
1894    
1895     my $fast_md5 = md5 $data;
1896    
1897 root 1.176 =item IO::AIO::munmap $scalar
1898    
1899     Removes a previous mmap and undefines the C<$scalar>.
1900    
1901 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1902 root 1.174
1903 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1904     C<aio_mlock> call (see its description for details).
1905 root 1.174
1906     =item IO::AIO::munlockall
1907    
1908     Calls the C<munlockall> function.
1909    
1910     On systems that do not implement C<munlockall>, this function returns
1911     ENOSYS, otherwise the return value of C<munlockall>.
1912    
1913 root 1.157 =back
1914    
1915 root 1.1 =cut
1916    
1917 root 1.61 min_parallel 8;
1918 root 1.1
1919 root 1.95 END { flush }
1920 root 1.82
1921 root 1.1 1;
1922    
1923 root 1.175 =head1 EVENT LOOP INTEGRATION
1924    
1925     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1926     automatically into many event loops:
1927    
1928     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1929     use AnyEvent::AIO;
1930    
1931     You can also integrate IO::AIO manually into many event loops, here are
1932     some examples of how to do this:
1933    
1934     # EV integration
1935     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1936    
1937     # Event integration
1938     Event->io (fd => IO::AIO::poll_fileno,
1939     poll => 'r',
1940     cb => \&IO::AIO::poll_cb);
1941    
1942     # Glib/Gtk2 integration
1943     add_watch Glib::IO IO::AIO::poll_fileno,
1944     in => sub { IO::AIO::poll_cb; 1 };
1945    
1946     # Tk integration
1947     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1948     readable => \&IO::AIO::poll_cb);
1949    
1950     # Danga::Socket integration
1951     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1952     \&IO::AIO::poll_cb);
1953    
1954 root 1.27 =head2 FORK BEHAVIOUR
1955    
1956 root 1.197 Usage of pthreads in a program changes the semantics of fork
1957     considerably. Specifically, only async-safe functions can be called after
1958     fork. Perl doesn't know about this, so in general, you cannot call fork
1959 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
1960     pthreads, so this applies, but many other extensions and (for inexplicable
1961     reasons) perl itself often is linked against pthreads, so this limitation
1962     applies to quite a lot of perls.
1963    
1964     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
1965     only works in the process that loaded it. Forking is fully supported, but
1966     using IO::AIO in the child is not.
1967    
1968     You might get around by not I<using> IO::AIO before (or after)
1969     forking. You could also try to call the L<IO::AIO::reinit> function in the
1970     child:
1971    
1972     =over 4
1973    
1974     =item IO::AIO::reinit
1975    
1976 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
1977     data structures. This is not an operation supported by any standards, but
1978 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
1979    
1980     The only reasonable use for this function is to call it after forking, if
1981     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
1982     the process will result in undefined behaviour. Calling it at any time
1983     will also result in any undefined (by POSIX) behaviour.
1984    
1985     =back
1986 root 1.52
1987 root 1.60 =head2 MEMORY USAGE
1988    
1989 root 1.72 Per-request usage:
1990    
1991     Each aio request uses - depending on your architecture - around 100-200
1992     bytes of memory. In addition, stat requests need a stat buffer (possibly
1993     a few hundred bytes), readdir requires a result buffer and so on. Perl
1994     scalars and other data passed into aio requests will also be locked and
1995     will consume memory till the request has entered the done state.
1996 root 1.60
1997 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1998 root 1.60 problem.
1999    
2000 root 1.72 Per-thread usage:
2001    
2002     In the execution phase, some aio requests require more memory for
2003     temporary buffers, and each thread requires a stack and other data
2004     structures (usually around 16k-128k, depending on the OS).
2005    
2006     =head1 KNOWN BUGS
2007    
2008 root 1.73 Known bugs will be fixed in the next release.
2009 root 1.60
2010 root 1.1 =head1 SEE ALSO
2011    
2012 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2013     more natural syntax.
2014 root 1.1
2015     =head1 AUTHOR
2016    
2017     Marc Lehmann <schmorp@schmorp.de>
2018     http://home.schmorp.de/
2019    
2020     =cut
2021