ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.255
Committed: Thu Jun 25 15:20:11 2015 UTC (8 years, 10 months ago) by root
Branch: MAIN
Changes since 1.254: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73 root 1.156 use EV;
74 root 1.86 use IO::AIO;
75    
76 root 1.156 # register the IO::AIO callback with EV
77     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
78 root 1.86
79     # queue the request to open /etc/passwd
80 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
81 root 1.94 my $fh = shift
82 root 1.86 or die "error while opening: $!";
83    
84     # stat'ing filehandles is generally non-blocking
85     my $size = -s $fh;
86    
87     # queue a request to read the file
88     my $contents;
89     aio_read $fh, 0, $size, $contents, 0, sub {
90     $_[0] == $size
91     or die "short read: $!";
92    
93     close $fh;
94    
95     # file contents now in $contents
96     print $contents;
97    
98     # exit event loop and program
99 root 1.156 EV::unloop;
100 root 1.86 };
101     };
102    
103     # possibly queue up other requests, or open GUI windows,
104     # check for sockets etc. etc.
105    
106     # process events as long as there are some:
107 root 1.156 EV::loop;
108 root 1.86
109 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
110    
111     Every C<aio_*> function creates a request. which is a C data structure not
112     directly visible to Perl.
113    
114     If called in non-void context, every request function returns a Perl
115     object representing the request. In void context, nothing is returned,
116     which saves a bit of memory.
117    
118     The perl object is a fairly standard ref-to-hash object. The hash contents
119     are not used by IO::AIO so you are free to store anything you like in it.
120    
121     During their existance, aio requests travel through the following states,
122     in order:
123    
124     =over 4
125    
126     =item ready
127    
128     Immediately after a request is created it is put into the ready state,
129     waiting for a thread to execute it.
130    
131     =item execute
132    
133     A thread has accepted the request for processing and is currently
134     executing it (e.g. blocking in read).
135    
136     =item pending
137    
138     The request has been executed and is waiting for result processing.
139    
140     While request submission and execution is fully asynchronous, result
141     processing is not and relies on the perl interpreter calling C<poll_cb>
142     (or another function with the same effect).
143    
144     =item result
145    
146     The request results are processed synchronously by C<poll_cb>.
147    
148     The C<poll_cb> function will process all outstanding aio requests by
149     calling their callbacks, freeing memory associated with them and managing
150     any groups they are contained in.
151    
152     =item done
153    
154     Request has reached the end of its lifetime and holds no resources anymore
155     (except possibly for the Perl object, but its connection to the actual
156     aio request is severed and calling its methods will either do nothing or
157     result in a runtime error).
158 root 1.1
159 root 1.88 =back
160    
161 root 1.1 =cut
162    
163     package IO::AIO;
164    
165 root 1.117 use Carp ();
166    
167 root 1.161 use common::sense;
168 root 1.23
169 root 1.1 use base 'Exporter';
170    
171     BEGIN {
172 root 1.251 our $VERSION = 4.32;
173 root 1.1
174 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
175 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
176 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
177 root 1.236 aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_allocate
178 root 1.222 aio_pathsync aio_readahead aio_fiemap
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183 root 1.208 aio_statvfs
184     aio_wd);
185 root 1.120
186 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
187 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
188 root 1.188 min_parallel max_parallel max_idle idle_timeout
189 root 1.86 nreqs nready npending nthreads
190 root 1.157 max_poll_time max_poll_reqs
191 root 1.182 sendfile fadvise madvise
192     mmap munmap munlock munlockall);
193 root 1.1
194 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
195    
196 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
197    
198 root 1.1 require XSLoader;
199 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
200 root 1.1 }
201    
202 root 1.5 =head1 FUNCTIONS
203 root 1.1
204 root 1.175 =head2 QUICK OVERVIEW
205    
206 root 1.230 This section simply lists the prototypes most of the functions for
207     quick reference. See the following sections for function-by-function
208 root 1.175 documentation.
209    
210 root 1.208 aio_wd $pathname, $callback->($wd)
211 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
212     aio_close $fh, $callback->($status)
213 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
214 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
215     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
217     aio_readahead $fh,$offset,$length, $callback->($retval)
218     aio_stat $fh_or_path, $callback->($status)
219     aio_lstat $fh, $callback->($status)
220     aio_statvfs $fh_or_path, $callback->($statvfs)
221     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
222     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
223 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
224 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
225 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
226 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
227 root 1.175 aio_unlink $pathname, $callback->($status)
228 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
229 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
230     aio_symlink $srcpath, $dstpath, $callback->($status)
231 root 1.209 aio_readlink $pathname, $callback->($link)
232 root 1.249 aio_realpath $pathname, $callback->($path)
233 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
234     aio_mkdir $pathname, $mode, $callback->($status)
235     aio_rmdir $pathname, $callback->($status)
236     aio_readdir $pathname, $callback->($entries)
237     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
238     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
239     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
240 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
241 root 1.209 aio_load $pathname, $data, $callback->($status)
242 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
243     aio_move $srcpath, $dstpath, $callback->($status)
244 root 1.209 aio_rmtree $pathname, $callback->($status)
245 root 1.175 aio_sync $callback->($status)
246 root 1.206 aio_syncfs $fh, $callback->($status)
247 root 1.175 aio_fsync $fh, $callback->($status)
248     aio_fdatasync $fh, $callback->($status)
249     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
250 root 1.209 aio_pathsync $pathname, $callback->($status)
251 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
252     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
253 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
254     aio_mlockall $flags, $callback->($status)
255 root 1.175 aio_group $callback->(...)
256     aio_nop $callback->()
257    
258     $prev_pri = aioreq_pri [$pri]
259     aioreq_nice $pri_adjust
260    
261     IO::AIO::poll_wait
262     IO::AIO::poll_cb
263     IO::AIO::poll
264     IO::AIO::flush
265     IO::AIO::max_poll_reqs $nreqs
266     IO::AIO::max_poll_time $seconds
267     IO::AIO::min_parallel $nthreads
268     IO::AIO::max_parallel $nthreads
269     IO::AIO::max_idle $nthreads
270 root 1.188 IO::AIO::idle_timeout $seconds
271 root 1.175 IO::AIO::max_outstanding $maxreqs
272     IO::AIO::nreqs
273     IO::AIO::nready
274     IO::AIO::npending
275    
276     IO::AIO::sendfile $ofh, $ifh, $offset, $count
277     IO::AIO::fadvise $fh, $offset, $len, $advice
278 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
279     IO::AIO::munmap $scalar
280 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
281     IO::AIO::mprotect $scalar, $offset, $length, $protect
282 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
283 root 1.175 IO::AIO::munlockall
284    
285 root 1.219 =head2 API NOTES
286 root 1.1
287 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
288     with the same name (sans C<aio_>). The arguments are similar or identical,
289 root 1.14 and they all accept an additional (and optional) C<$callback> argument
290 root 1.212 which must be a code reference. This code reference will be called after
291     the syscall has been executed in an asynchronous fashion. The results
292     of the request will be passed as arguments to the callback (and, if an
293     error occured, in C<$!>) - for most requests the syscall return code (e.g.
294     most syscalls return C<-1> on error, unlike perl, which usually delivers
295     "false").
296    
297     Some requests (such as C<aio_readdir>) pass the actual results and
298     communicate failures by passing C<undef>.
299 root 1.1
300 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
301     internally until the request has finished.
302 root 1.1
303 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
304     further manipulation of those requests while they are in-flight.
305 root 1.52
306 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
307     reason for this is that at the time the request is being executed, the
308 root 1.212 current working directory could have changed. Alternatively, you can
309     make sure that you never change the current working directory anywhere
310     in the program and then use relative paths. You can also take advantage
311     of IO::AIOs working directory abstraction, that lets you specify paths
312     relative to some previously-opened "working directory object" - see the
313     description of the C<IO::AIO::WD> class later in this document.
314 root 1.28
315 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
316     in filenames you got from outside (command line, readdir etc.) without
317 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
318     module and encode your pathnames to the locale (or other) encoding in
319     effect in the user environment, d) use Glib::filename_from_unicode on
320     unicode filenames or e) use something else to ensure your scalar has the
321     correct contents.
322 root 1.87
323     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
324 root 1.136 handles correctly whether it is set or not.
325 root 1.1
326 root 1.219 =head2 AIO REQUEST FUNCTIONS
327    
328 root 1.5 =over 4
329 root 1.1
330 root 1.80 =item $prev_pri = aioreq_pri [$pri]
331 root 1.68
332 root 1.80 Returns the priority value that would be used for the next request and, if
333     C<$pri> is given, sets the priority for the next aio request.
334 root 1.68
335 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
336     and C<4>, respectively. Requests with higher priority will be serviced
337     first.
338    
339     The priority will be reset to C<0> after each call to one of the C<aio_*>
340 root 1.68 functions.
341    
342 root 1.69 Example: open a file with low priority, then read something from it with
343     higher priority so the read request is serviced before other low priority
344     open requests (potentially spamming the cache):
345    
346     aioreq_pri -3;
347     aio_open ..., sub {
348     return unless $_[0];
349    
350     aioreq_pri -2;
351     aio_read $_[0], ..., sub {
352     ...
353     };
354     };
355    
356 root 1.106
357 root 1.69 =item aioreq_nice $pri_adjust
358    
359     Similar to C<aioreq_pri>, but subtracts the given value from the current
360 root 1.87 priority, so the effect is cumulative.
361 root 1.69
362 root 1.106
363 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
364 root 1.1
365 root 1.2 Asynchronously open or create a file and call the callback with a newly
366 root 1.233 created filehandle for the file (or C<undef> in case of an error).
367 root 1.1
368     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
369     for an explanation.
370    
371 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
372     list. They are the same as used by C<sysopen>.
373    
374     Likewise, C<$mode> specifies the mode of the newly created file, if it
375     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
376     except that it is mandatory (i.e. use C<0> if you don't create new files,
377 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
378     by the umask in effect then the request is being executed, so better never
379     change the umask.
380 root 1.1
381     Example:
382    
383 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
384 root 1.2 if ($_[0]) {
385     print "open successful, fh is $_[0]\n";
386 root 1.1 ...
387     } else {
388     die "open failed: $!\n";
389     }
390     };
391    
392 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
393     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
394     following POSIX and non-POSIX constants are available (missing ones on
395     your system are, as usual, C<0>):
396    
397     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
398     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
399 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
400 root 1.194
401 root 1.106
402 root 1.40 =item aio_close $fh, $callback->($status)
403 root 1.1
404 root 1.2 Asynchronously close a file and call the callback with the result
405 root 1.116 code.
406    
407 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
408 root 1.121 closing the file descriptor associated with the filehandle itself.
409 root 1.117
410 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
411     use dup2 to overwrite the file descriptor with the write-end of a pipe
412     (the pipe fd will be created on demand and will be cached).
413 root 1.117
414 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
415     free for reuse until the perl filehandle is closed.
416 root 1.117
417     =cut
418    
419 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
420    
421 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
422 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
423     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
424     C<IO::AIO::SEEK_END>).
425    
426     The resulting absolute offset will be passed to the callback, or C<-1> in
427     case of an error.
428    
429     In theory, the C<$whence> constants could be different than the
430     corresponding values from L<Fcntl>, but perl guarantees they are the same,
431     so don't panic.
432    
433 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
434     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
435     could be found. No guarantees about suitability for use in C<aio_seek> or
436     Perl's C<sysseek> can be made though, although I would naively assume they
437     "just work".
438    
439 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
440 root 1.1
441 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
442 root 1.1
443 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
444     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
445     and calls the callback without the actual number of bytes read (or -1 on
446     error, just like the syscall).
447 root 1.109
448 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
449     offset plus the actual number of bytes read.
450    
451 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
452     be used (and updated), otherwise the file descriptor offset will not be
453     changed by these calls.
454 root 1.109
455 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
456     C<$data>.
457 root 1.109
458     If C<$dataoffset> is less than zero, it will be counted from the end of
459     C<$data>.
460 root 1.1
461 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
462 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
463     the necessary/optional hardware is installed).
464 root 1.31
465 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
466 root 1.1 offset C<0> within the scalar:
467    
468     aio_read $fh, 7, 15, $buffer, 0, sub {
469 root 1.9 $_[0] > 0 or die "read error: $!";
470     print "read $_[0] bytes: <$buffer>\n";
471 root 1.1 };
472    
473 root 1.106
474 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
475 root 1.35
476     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
477     reading at byte offset C<$in_offset>, and starts writing at the current
478     file offset of C<$out_fh>. Because of that, it is not safe to issue more
479     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
480 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
481     move or use the file offset of C<$in_fh>.
482 root 1.35
483 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
484 root 1.196 are written, and there is no way to find out how many more bytes have been
485     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
486     number of bytes written to C<$out_fh>. Only if the result value equals
487     C<$length> one can assume that C<$length> bytes have been read.
488 root 1.185
489     Unlike with other C<aio_> functions, it makes a lot of sense to use
490     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
491     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
492 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
493     into a trap where C<aio_sendfile> reads some data with readahead, then
494     fails to write all data, and when the socket is ready the next time, the
495     data in the cache is already lost, forcing C<aio_sendfile> to again hit
496     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
497     resource usage.
498    
499     This call tries to make use of a native C<sendfile>-like syscall to
500     provide zero-copy operation. For this to work, C<$out_fh> should refer to
501     a socket, and C<$in_fh> should refer to an mmap'able file.
502 root 1.35
503 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
504 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
505     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
506     type of filehandle regardless of the limitations of the operating system.
507    
508     As native sendfile syscalls (as practically any non-POSIX interface hacked
509     together in a hurry to improve benchmark numbers) tend to be rather buggy
510     on many systems, this implementation tries to work around some known bugs
511     in Linux and FreeBSD kernels (probably others, too), but that might fail,
512     so you really really should check the return value of C<aio_sendfile> -
513     fewre bytes than expected might have been transferred.
514 root 1.35
515 root 1.106
516 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
517 root 1.1
518 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
519 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
520     argument specifies the starting point from which data is to be read and
521     C<$length> specifies the number of bytes to be read. I/O is performed in
522     whole pages, so that offset is effectively rounded down to a page boundary
523     and bytes are read up to the next page boundary greater than or equal to
524 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
525 root 1.1 file. The current file offset of the file is left unchanged.
526    
527 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
528     emulated by simply reading the data, which would have a similar effect.
529    
530 root 1.106
531 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
532 root 1.1
533 root 1.40 =item aio_lstat $fh, $callback->($status)
534 root 1.1
535     Works like perl's C<stat> or C<lstat> in void context. The callback will
536     be called after the stat and the results will be available using C<stat _>
537     or C<-s _> etc...
538    
539     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
540     for an explanation.
541    
542     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
543     error when stat'ing a large file, the results will be silently truncated
544     unless perl itself is compiled with large file support.
545    
546 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
547     following constants and functions (if not implemented, the constants will
548     be C<0> and the functions will either C<croak> or fall back on traditional
549     behaviour).
550    
551     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
552     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
553     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
554    
555 root 1.1 Example: Print the length of F</etc/passwd>:
556    
557     aio_stat "/etc/passwd", sub {
558     $_[0] and die "stat failed: $!";
559     print "size is ", -s _, "\n";
560     };
561    
562 root 1.106
563 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
564 root 1.172
565     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
566     whether a file handle or path was passed.
567    
568     On success, the callback is passed a hash reference with the following
569     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
570     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
571     is passed.
572    
573     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
574     C<ST_NOSUID>.
575    
576     The following non-POSIX IO::AIO::ST_* flag masks are defined to
577     their correct value when available, or to C<0> on systems that do
578     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
579     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
580     C<ST_NODIRATIME> and C<ST_RELATIME>.
581    
582     Example: stat C</wd> and dump out the data if successful.
583    
584     aio_statvfs "/wd", sub {
585     my $f = $_[0]
586     or die "statvfs: $!";
587    
588     use Data::Dumper;
589     say Dumper $f;
590     };
591    
592     # result:
593     {
594     bsize => 1024,
595     bfree => 4333064312,
596     blocks => 10253828096,
597     files => 2050765568,
598     flag => 4096,
599     favail => 2042092649,
600     bavail => 4333064312,
601     ffree => 2042092649,
602     namemax => 255,
603     frsize => 1024,
604     fsid => 1810
605     }
606    
607 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
608     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
609 root 1.235
610     0x0000adf5 adfs
611     0x0000adff affs
612     0x5346414f afs
613     0x09041934 anon-inode filesystem
614     0x00000187 autofs
615     0x42465331 befs
616     0x1badface bfs
617     0x42494e4d binfmt_misc
618     0x9123683e btrfs
619     0x0027e0eb cgroupfs
620     0xff534d42 cifs
621     0x73757245 coda
622     0x012ff7b7 coh
623     0x28cd3d45 cramfs
624     0x453dcd28 cramfs-wend (wrong endianness)
625     0x64626720 debugfs
626     0x00001373 devfs
627     0x00001cd1 devpts
628     0x0000f15f ecryptfs
629     0x00414a53 efs
630     0x0000137d ext
631     0x0000ef53 ext2/ext3
632     0x0000ef51 ext2
633     0x00004006 fat
634     0x65735546 fuseblk
635     0x65735543 fusectl
636     0x0bad1dea futexfs
637     0x01161970 gfs2
638     0x47504653 gpfs
639     0x00004244 hfs
640     0xf995e849 hpfs
641     0x958458f6 hugetlbfs
642     0x2bad1dea inotifyfs
643     0x00009660 isofs
644     0x000072b6 jffs2
645     0x3153464a jfs
646     0x6b414653 k-afs
647     0x0bd00bd0 lustre
648     0x0000137f minix
649     0x0000138f minix 30 char names
650     0x00002468 minix v2
651     0x00002478 minix v2 30 char names
652     0x00004d5a minix v3
653     0x19800202 mqueue
654     0x00004d44 msdos
655     0x0000564c novell
656     0x00006969 nfs
657     0x6e667364 nfsd
658     0x00003434 nilfs
659     0x5346544e ntfs
660     0x00009fa1 openprom
661     0x7461636F ocfs2
662     0x00009fa0 proc
663     0x6165676c pstorefs
664     0x0000002f qnx4
665     0x858458f6 ramfs
666     0x52654973 reiserfs
667     0x00007275 romfs
668     0x67596969 rpc_pipefs
669     0x73636673 securityfs
670     0xf97cff8c selinux
671     0x0000517b smb
672     0x534f434b sockfs
673     0x73717368 squashfs
674     0x62656572 sysfs
675     0x012ff7b6 sysv2
676     0x012ff7b5 sysv4
677     0x01021994 tmpfs
678     0x15013346 udf
679     0x00011954 ufs
680     0x54190100 ufs byteswapped
681     0x00009fa2 usbdevfs
682     0x01021997 v9fs
683     0xa501fcf5 vxfs
684     0xabba1974 xenfs
685     0x012ff7b4 xenix
686     0x58465342 xfs
687     0x012fd16d xia
688 root 1.172
689 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
690    
691     Works like perl's C<utime> function (including the special case of $atime
692     and $mtime being undef). Fractional times are supported if the underlying
693     syscalls support them.
694    
695     When called with a pathname, uses utimes(2) if available, otherwise
696     utime(2). If called on a file descriptor, uses futimes(2) if available,
697     otherwise returns ENOSYS, so this is not portable.
698    
699     Examples:
700    
701 root 1.107 # set atime and mtime to current time (basically touch(1)):
702 root 1.106 aio_utime "path", undef, undef;
703     # set atime to current time and mtime to beginning of the epoch:
704     aio_utime "path", time, undef; # undef==0
705    
706    
707     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
708    
709     Works like perl's C<chown> function, except that C<undef> for either $uid
710     or $gid is being interpreted as "do not change" (but -1 can also be used).
711    
712     Examples:
713    
714     # same as "chown root path" in the shell:
715     aio_chown "path", 0, -1;
716     # same as above:
717     aio_chown "path", 0, undef;
718    
719    
720 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
721    
722     Works like truncate(2) or ftruncate(2).
723    
724    
725 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
726    
727 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
728     linux C<fallocate> documentation for details.
729 root 1.229
730 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
731     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
732     to deallocate a file range.
733    
734     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
735     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
736     your L<fallocate(2)> manpage).
737 root 1.229
738     The file system block size used by C<fallocate> is presumably the
739     C<f_bsize> returned by C<statvfs>.
740    
741     If C<fallocate> isn't available or cannot be emulated (currently no
742     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
743    
744    
745 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
746    
747     Works like perl's C<chmod> function.
748    
749    
750 root 1.40 =item aio_unlink $pathname, $callback->($status)
751 root 1.1
752     Asynchronously unlink (delete) a file and call the callback with the
753     result code.
754    
755 root 1.106
756 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
757 root 1.82
758 root 1.86 [EXPERIMENTAL]
759    
760 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
761    
762 root 1.86 The only (POSIX-) portable way of calling this function is:
763 root 1.83
764 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
765 root 1.82
766 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
767     and functions.
768 root 1.106
769 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
770    
771     Asynchronously create a new link to the existing object at C<$srcpath> at
772     the path C<$dstpath> and call the callback with the result code.
773    
774 root 1.106
775 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
776    
777     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
778     the path C<$dstpath> and call the callback with the result code.
779    
780 root 1.106
781 root 1.209 =item aio_readlink $pathname, $callback->($link)
782 root 1.90
783     Asynchronously read the symlink specified by C<$path> and pass it to
784     the callback. If an error occurs, nothing or undef gets passed to the
785     callback.
786    
787 root 1.106
788 root 1.209 =item aio_realpath $pathname, $callback->($path)
789 root 1.201
790     Asynchronously make the path absolute and resolve any symlinks in
791 root 1.239 C<$path>. The resulting path only consists of directories (same as
792 root 1.202 L<Cwd::realpath>).
793 root 1.201
794     This request can be used to get the absolute path of the current working
795     directory by passing it a path of F<.> (a single dot).
796    
797    
798 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
799    
800     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
801     rename(2) and call the callback with the result code.
802    
803 root 1.241 On systems that support the AIO::WD working directory abstraction
804     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
805     of failing, C<rename> is called on the absolute path of C<$wd>.
806    
807 root 1.106
808 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
809    
810     Asynchronously mkdir (create) a directory and call the callback with
811     the result code. C<$mode> will be modified by the umask at the time the
812     request is executed, so do not change your umask.
813    
814 root 1.106
815 root 1.40 =item aio_rmdir $pathname, $callback->($status)
816 root 1.27
817     Asynchronously rmdir (delete) a directory and call the callback with the
818     result code.
819    
820 root 1.241 On systems that support the AIO::WD working directory abstraction
821     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
822     C<rmdir> is called on the absolute path of C<$wd>.
823    
824 root 1.106
825 root 1.46 =item aio_readdir $pathname, $callback->($entries)
826 root 1.37
827     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
828     directory (i.e. opendir + readdir + closedir). The entries will not be
829     sorted, and will B<NOT> include the C<.> and C<..> entries.
830    
831 root 1.148 The callback is passed a single argument which is either C<undef> or an
832     array-ref with the filenames.
833    
834    
835     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
836    
837 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
838     tune behaviour and output format. In case of an error, C<$entries> will be
839 root 1.148 C<undef>.
840    
841     The flags are a combination of the following constants, ORed together (the
842     flags will also be passed to the callback, possibly modified):
843    
844     =over 4
845    
846 root 1.150 =item IO::AIO::READDIR_DENTS
847 root 1.148
848 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
849     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
850 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
851 root 1.148 entry in more detail.
852    
853     C<$name> is the name of the entry.
854    
855 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
856 root 1.148
857 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
858     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
859     C<IO::AIO::DT_WHT>.
860 root 1.148
861 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
862 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
863     scalars are read-only: you can not modify them.
864    
865 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
866 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
867     systems that do not deliver the inode information.
868 root 1.150
869     =item IO::AIO::READDIR_DIRS_FIRST
870 root 1.148
871     When this flag is set, then the names will be returned in an order where
872 root 1.193 likely directories come first, in optimal stat order. This is useful when
873     you need to quickly find directories, or you want to find all directories
874     while avoiding to stat() each entry.
875 root 1.148
876 root 1.149 If the system returns type information in readdir, then this is used
877 root 1.193 to find directories directly. Otherwise, likely directories are names
878     beginning with ".", or otherwise names with no dots, of which names with
879 root 1.149 short names are tried first.
880    
881 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
882 root 1.148
883     When this flag is set, then the names will be returned in an order
884     suitable for stat()'ing each one. That is, when you plan to stat()
885     all files in the given directory, then the returned order will likely
886     be fastest.
887    
888 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
889     the likely dirs come first, resulting in a less optimal stat order.
890 root 1.148
891 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
892 root 1.148
893     This flag should not be set when calling C<aio_readdirx>. Instead, it
894     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
895 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
896 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
897    
898     =back
899 root 1.37
900 root 1.106
901 root 1.209 =item aio_load $pathname, $data, $callback->($status)
902 root 1.98
903     This is a composite request that tries to fully load the given file into
904     memory. Status is the same as with aio_read.
905    
906     =cut
907    
908     sub aio_load($$;$) {
909 root 1.123 my ($path, undef, $cb) = @_;
910     my $data = \$_[1];
911 root 1.98
912 root 1.123 my $pri = aioreq_pri;
913     my $grp = aio_group $cb;
914    
915     aioreq_pri $pri;
916     add $grp aio_open $path, O_RDONLY, 0, sub {
917     my $fh = shift
918     or return $grp->result (-1);
919 root 1.98
920     aioreq_pri $pri;
921 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
922     $grp->result ($_[0]);
923 root 1.98 };
924 root 1.123 };
925 root 1.98
926 root 1.123 $grp
927 root 1.98 }
928    
929 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
930    
931     Try to copy the I<file> (directories not supported as either source or
932     destination) from C<$srcpath> to C<$dstpath> and call the callback with
933 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
934 root 1.82
935 root 1.134 This is a composite request that creates the destination file with
936 root 1.82 mode 0200 and copies the contents of the source file into it using
937     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
938     uid/gid, in that order.
939    
940     If an error occurs, the partial destination file will be unlinked, if
941     possible, except when setting atime, mtime, access mode and uid/gid, where
942     errors are being ignored.
943    
944     =cut
945    
946     sub aio_copy($$;$) {
947 root 1.123 my ($src, $dst, $cb) = @_;
948 root 1.82
949 root 1.123 my $pri = aioreq_pri;
950     my $grp = aio_group $cb;
951 root 1.82
952 root 1.123 aioreq_pri $pri;
953     add $grp aio_open $src, O_RDONLY, 0, sub {
954     if (my $src_fh = $_[0]) {
955 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
956 root 1.95
957 root 1.123 aioreq_pri $pri;
958     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
959     if (my $dst_fh = $_[0]) {
960     aioreq_pri $pri;
961     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
962     if ($_[0] == $stat[7]) {
963     $grp->result (0);
964     close $src_fh;
965    
966 root 1.147 my $ch = sub {
967     aioreq_pri $pri;
968     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
969     aioreq_pri $pri;
970     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
971     aioreq_pri $pri;
972     add $grp aio_close $dst_fh;
973     }
974     };
975     };
976 root 1.123
977     aioreq_pri $pri;
978 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
979     if ($_[0] < 0 && $! == ENOSYS) {
980     aioreq_pri $pri;
981     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
982     } else {
983     $ch->();
984     }
985     };
986 root 1.123 } else {
987     $grp->result (-1);
988     close $src_fh;
989     close $dst_fh;
990    
991     aioreq $pri;
992     add $grp aio_unlink $dst;
993     }
994     };
995     } else {
996     $grp->result (-1);
997     }
998     },
999 root 1.82
1000 root 1.123 } else {
1001     $grp->result (-1);
1002     }
1003     };
1004 root 1.82
1005 root 1.123 $grp
1006 root 1.82 }
1007    
1008     =item aio_move $srcpath, $dstpath, $callback->($status)
1009    
1010     Try to move the I<file> (directories not supported as either source or
1011     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1012 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1013 root 1.82
1014 root 1.137 This is a composite request that tries to rename(2) the file first; if
1015     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1016     that is successful, unlinks the C<$srcpath>.
1017 root 1.82
1018     =cut
1019    
1020     sub aio_move($$;$) {
1021 root 1.123 my ($src, $dst, $cb) = @_;
1022 root 1.82
1023 root 1.123 my $pri = aioreq_pri;
1024     my $grp = aio_group $cb;
1025 root 1.82
1026 root 1.123 aioreq_pri $pri;
1027     add $grp aio_rename $src, $dst, sub {
1028     if ($_[0] && $! == EXDEV) {
1029     aioreq_pri $pri;
1030     add $grp aio_copy $src, $dst, sub {
1031     $grp->result ($_[0]);
1032 root 1.95
1033 root 1.196 unless ($_[0]) {
1034 root 1.123 aioreq_pri $pri;
1035     add $grp aio_unlink $src;
1036     }
1037     };
1038     } else {
1039     $grp->result ($_[0]);
1040     }
1041     };
1042 root 1.82
1043 root 1.123 $grp
1044 root 1.82 }
1045    
1046 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1047 root 1.40
1048 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1049 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1050     names, directories you can recurse into (directories), and ones you cannot
1051     recurse into (everything else, including symlinks to directories).
1052 root 1.52
1053 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1054     C<$maxreq> specifies the maximum number of outstanding aio requests that
1055     this function generates. If it is C<< <= 0 >>, then a suitable default
1056 root 1.81 will be chosen (currently 4).
1057 root 1.40
1058     On error, the callback is called without arguments, otherwise it receives
1059     two array-refs with path-relative entry names.
1060    
1061     Example:
1062    
1063     aio_scandir $dir, 0, sub {
1064     my ($dirs, $nondirs) = @_;
1065     print "real directories: @$dirs\n";
1066     print "everything else: @$nondirs\n";
1067     };
1068    
1069     Implementation notes.
1070    
1071     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1072    
1073 root 1.149 If readdir returns file type information, then this is used directly to
1074     find directories.
1075    
1076     Otherwise, after reading the directory, the modification time, size etc.
1077     of the directory before and after the readdir is checked, and if they
1078     match (and isn't the current time), the link count will be used to decide
1079     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1080     number of subdirectories will be assumed.
1081    
1082     Then entries will be sorted into likely directories a non-initial dot
1083     currently) and likely non-directories (see C<aio_readdirx>). Then every
1084     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1085     in order of their inode numbers. If that succeeds, it assumes that the
1086     entry is a directory or a symlink to directory (which will be checked
1087 root 1.207 separately). This is often faster than stat'ing the entry itself because
1088 root 1.52 filesystems might detect the type of the entry without reading the inode
1089 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1090     the filetype information on readdir.
1091 root 1.52
1092     If the known number of directories (link count - 2) has been reached, the
1093     rest of the entries is assumed to be non-directories.
1094    
1095     This only works with certainty on POSIX (= UNIX) filesystems, which
1096     fortunately are the vast majority of filesystems around.
1097    
1098     It will also likely work on non-POSIX filesystems with reduced efficiency
1099     as those tend to return 0 or 1 as link counts, which disables the
1100     directory counting heuristic.
1101 root 1.40
1102     =cut
1103    
1104 root 1.100 sub aio_scandir($$;$) {
1105 root 1.123 my ($path, $maxreq, $cb) = @_;
1106    
1107     my $pri = aioreq_pri;
1108 root 1.40
1109 root 1.123 my $grp = aio_group $cb;
1110 root 1.80
1111 root 1.123 $maxreq = 4 if $maxreq <= 0;
1112 root 1.55
1113 root 1.210 # get a wd object
1114 root 1.123 aioreq_pri $pri;
1115 root 1.210 add $grp aio_wd $path, sub {
1116 root 1.212 $_[0]
1117     or return $grp->result ();
1118    
1119 root 1.210 my $wd = [shift, "."];
1120 root 1.40
1121 root 1.210 # stat once
1122 root 1.80 aioreq_pri $pri;
1123 root 1.210 add $grp aio_stat $wd, sub {
1124     return $grp->result () if $_[0];
1125     my $now = time;
1126     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1127 root 1.40
1128 root 1.210 # read the directory entries
1129 root 1.80 aioreq_pri $pri;
1130 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1131     my $entries = shift
1132     or return $grp->result ();
1133    
1134     # stat the dir another time
1135     aioreq_pri $pri;
1136     add $grp aio_stat $wd, sub {
1137     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1138 root 1.95
1139 root 1.210 my $ndirs;
1140 root 1.95
1141 root 1.210 # take the slow route if anything looks fishy
1142     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1143     $ndirs = -1;
1144     } else {
1145     # if nlink == 2, we are finished
1146     # for non-posix-fs's, we rely on nlink < 2
1147     $ndirs = (stat _)[3] - 2
1148     or return $grp->result ([], $entries);
1149     }
1150 root 1.123
1151 root 1.210 my (@dirs, @nondirs);
1152 root 1.40
1153 root 1.210 my $statgrp = add $grp aio_group sub {
1154     $grp->result (\@dirs, \@nondirs);
1155     };
1156 root 1.40
1157 root 1.210 limit $statgrp $maxreq;
1158     feed $statgrp sub {
1159     return unless @$entries;
1160     my $entry = shift @$entries;
1161    
1162     aioreq_pri $pri;
1163     $wd->[1] = "$entry/.";
1164     add $statgrp aio_stat $wd, sub {
1165     if ($_[0] < 0) {
1166     push @nondirs, $entry;
1167     } else {
1168     # need to check for real directory
1169     aioreq_pri $pri;
1170     $wd->[1] = $entry;
1171     add $statgrp aio_lstat $wd, sub {
1172     if (-d _) {
1173     push @dirs, $entry;
1174    
1175     unless (--$ndirs) {
1176     push @nondirs, @$entries;
1177     feed $statgrp;
1178     }
1179     } else {
1180     push @nondirs, $entry;
1181 root 1.74 }
1182 root 1.40 }
1183     }
1184 root 1.210 };
1185 root 1.74 };
1186 root 1.40 };
1187     };
1188     };
1189 root 1.123 };
1190 root 1.55
1191 root 1.123 $grp
1192 root 1.40 }
1193    
1194 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1195 root 1.99
1196 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1197 root 1.239 status of the final C<rmdir> only. This is a composite request that
1198 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1199     everything else.
1200 root 1.99
1201     =cut
1202    
1203     sub aio_rmtree;
1204 root 1.100 sub aio_rmtree($;$) {
1205 root 1.123 my ($path, $cb) = @_;
1206 root 1.99
1207 root 1.123 my $pri = aioreq_pri;
1208     my $grp = aio_group $cb;
1209 root 1.99
1210 root 1.123 aioreq_pri $pri;
1211     add $grp aio_scandir $path, 0, sub {
1212     my ($dirs, $nondirs) = @_;
1213 root 1.99
1214 root 1.123 my $dirgrp = aio_group sub {
1215     add $grp aio_rmdir $path, sub {
1216     $grp->result ($_[0]);
1217 root 1.99 };
1218 root 1.123 };
1219 root 1.99
1220 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1221     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1222 root 1.99
1223 root 1.123 add $grp $dirgrp;
1224     };
1225 root 1.99
1226 root 1.123 $grp
1227 root 1.99 }
1228    
1229 root 1.119 =item aio_sync $callback->($status)
1230    
1231     Asynchronously call sync and call the callback when finished.
1232    
1233 root 1.40 =item aio_fsync $fh, $callback->($status)
1234 root 1.1
1235     Asynchronously call fsync on the given filehandle and call the callback
1236     with the fsync result code.
1237    
1238 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1239 root 1.1
1240     Asynchronously call fdatasync on the given filehandle and call the
1241 root 1.26 callback with the fdatasync result code.
1242    
1243     If this call isn't available because your OS lacks it or it couldn't be
1244     detected, it will be emulated by calling C<fsync> instead.
1245 root 1.1
1246 root 1.206 =item aio_syncfs $fh, $callback->($status)
1247    
1248     Asynchronously call the syncfs syscall to sync the filesystem associated
1249     to the given filehandle and call the callback with the syncfs result
1250     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1251     errno to C<ENOSYS> nevertheless.
1252    
1253 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1254    
1255     Sync the data portion of the file specified by C<$offset> and C<$length>
1256     to disk (but NOT the metadata), by calling the Linux-specific
1257     sync_file_range call. If sync_file_range is not available or it returns
1258     ENOSYS, then fdatasync or fsync is being substituted.
1259    
1260     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1261     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1262     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1263     manpage for details.
1264    
1265 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1266 root 1.120
1267     This request tries to open, fsync and close the given path. This is a
1268 root 1.135 composite request intended to sync directories after directory operations
1269 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1270     specific effect, but usually it makes sure that directory changes get
1271     written to disc. It works for anything that can be opened for read-only,
1272     not just directories.
1273    
1274 root 1.162 Future versions of this function might fall back to other methods when
1275     C<fsync> on the directory fails (such as calling C<sync>).
1276    
1277 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1278    
1279     =cut
1280    
1281     sub aio_pathsync($;$) {
1282 root 1.123 my ($path, $cb) = @_;
1283    
1284     my $pri = aioreq_pri;
1285     my $grp = aio_group $cb;
1286 root 1.120
1287 root 1.123 aioreq_pri $pri;
1288     add $grp aio_open $path, O_RDONLY, 0, sub {
1289     my ($fh) = @_;
1290     if ($fh) {
1291     aioreq_pri $pri;
1292     add $grp aio_fsync $fh, sub {
1293     $grp->result ($_[0]);
1294 root 1.120
1295     aioreq_pri $pri;
1296 root 1.123 add $grp aio_close $fh;
1297     };
1298     } else {
1299     $grp->result (-1);
1300     }
1301     };
1302 root 1.120
1303 root 1.123 $grp
1304 root 1.120 }
1305    
1306 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1307    
1308     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1309 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1310     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1311     scalar must only be modified in-place while an aio operation is pending on
1312     it).
1313 root 1.170
1314     It calls the C<msync> function of your OS, if available, with the memory
1315     area starting at C<$offset> in the string and ending C<$length> bytes
1316     later. If C<$length> is negative, counts from the end, and if C<$length>
1317     is C<undef>, then it goes till the end of the string. The flags can be
1318     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1319     C<IO::AIO::MS_SYNC>.
1320    
1321     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1322    
1323     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1324     scalars.
1325    
1326     It touches (reads or writes) all memory pages in the specified
1327 root 1.239 range inside the scalar. All caveats and parameters are the same
1328 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1329     C<0> (which reads all pages and ensures they are instantiated) or
1330 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1331 root 1.170 writing an octet from it, which dirties the page).
1332    
1333 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1334    
1335     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1336     scalars.
1337    
1338     It reads in all the pages of the underlying storage into memory (if any)
1339     and locks them, so they are not getting swapped/paged out or removed.
1340    
1341     If C<$length> is undefined, then the scalar will be locked till the end.
1342    
1343     On systems that do not implement C<mlock>, this function returns C<-1>
1344     and sets errno to C<ENOSYS>.
1345    
1346     Note that the corresponding C<munlock> is synchronous and is
1347     documented under L<MISCELLANEOUS FUNCTIONS>.
1348    
1349 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1350     C<$data> gets destroyed.
1351    
1352     open my $fh, "<", $path or die "$path: $!";
1353     my $data;
1354     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1355     aio_mlock $data; # mlock in background
1356    
1357 root 1.182 =item aio_mlockall $flags, $callback->($status)
1358    
1359     Calls the C<mlockall> function with the given C<$flags> (a combination of
1360     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1361    
1362     On systems that do not implement C<mlockall>, this function returns C<-1>
1363     and sets errno to C<ENOSYS>.
1364    
1365     Note that the corresponding C<munlockall> is synchronous and is
1366     documented under L<MISCELLANEOUS FUNCTIONS>.
1367    
1368 root 1.183 Example: asynchronously lock all current and future pages into memory.
1369    
1370     aio_mlockall IO::AIO::MCL_FUTURE;
1371    
1372 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1373    
1374 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1375     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1376     the ioctl is not available on your OS, then this request will fail with
1377 root 1.223 C<ENOSYS>.
1378    
1379     C<$start> is the starting offset to query extents for, C<$length> is the
1380     size of the range to query - if it is C<undef>, then the whole file will
1381     be queried.
1382    
1383     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1384     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1385     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1386     the data portion.
1387    
1388     C<$count> is the maximum number of extent records to return. If it is
1389 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1390 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1391 root 1.232 instead of the extents themselves (which is unreliable, see below).
1392 root 1.223
1393     If an error occurs, the callback receives no arguments. The special
1394     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1395    
1396     Otherwise, the callback receives an array reference with extent
1397     structures. Each extent structure is an array reference itself, with the
1398     following members:
1399    
1400     [$logical, $physical, $length, $flags]
1401    
1402     Flags is any combination of the following flag values (typically either C<0>
1403 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1404 root 1.223
1405     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1406     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1407     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1408     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1409     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1410     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1411    
1412 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1413     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1414     it to return all extents of a range for files with large number of
1415     extents. The code works around all these issues if C<$count> is undef.
1416    
1417 root 1.58 =item aio_group $callback->(...)
1418 root 1.54
1419 root 1.55 This is a very special aio request: Instead of doing something, it is a
1420     container for other aio requests, which is useful if you want to bundle
1421 root 1.71 many requests into a single, composite, request with a definite callback
1422     and the ability to cancel the whole request with its subrequests.
1423 root 1.55
1424     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1425     for more info.
1426    
1427     Example:
1428    
1429     my $grp = aio_group sub {
1430     print "all stats done\n";
1431     };
1432    
1433     add $grp
1434     (aio_stat ...),
1435     (aio_stat ...),
1436     ...;
1437    
1438 root 1.63 =item aio_nop $callback->()
1439    
1440     This is a special request - it does nothing in itself and is only used for
1441     side effects, such as when you want to add a dummy request to a group so
1442     that finishing the requests in the group depends on executing the given
1443     code.
1444    
1445 root 1.64 While this request does nothing, it still goes through the execution
1446     phase and still requires a worker thread. Thus, the callback will not
1447     be executed immediately but only after other requests in the queue have
1448     entered their execution phase. This can be used to measure request
1449     latency.
1450    
1451 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1452 root 1.54
1453     Mainly used for debugging and benchmarking, this aio request puts one of
1454     the request workers to sleep for the given time.
1455    
1456 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1457 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1458     immense (it blocks a thread for a long time) so do not use this function
1459     except to put your application under artificial I/O pressure.
1460 root 1.56
1461 root 1.5 =back
1462    
1463 root 1.209
1464     =head2 IO::AIO::WD - multiple working directories
1465    
1466     Your process only has one current working directory, which is used by all
1467     threads. This makes it hard to use relative paths (some other component
1468     could call C<chdir> at any time, and it is hard to control when the path
1469     will be used by IO::AIO).
1470    
1471     One solution for this is to always use absolute paths. This usually works,
1472     but can be quite slow (the kernel has to walk the whole path on every
1473     access), and can also be a hassle to implement.
1474    
1475     Newer POSIX systems have a number of functions (openat, fdopendir,
1476     futimensat and so on) that make it possible to specify working directories
1477     per operation.
1478    
1479     For portability, and because the clowns who "designed", or shall I write,
1480     perpetrated this new interface were obviously half-drunk, this abstraction
1481     cannot be perfect, though.
1482    
1483     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1484     object. This object stores the canonicalised, absolute version of the
1485     path, and on systems that allow it, also a directory file descriptor.
1486    
1487     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1488     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1489 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1490     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1491 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1492 root 1.209 to that IO::AIO::WD object.
1493    
1494     For example, to get a wd object for F</etc> and then stat F<passwd>
1495     inside, you would write:
1496    
1497     aio_wd "/etc", sub {
1498     my $etcdir = shift;
1499    
1500     # although $etcdir can be undef on error, there is generally no reason
1501     # to check for errors here, as aio_stat will fail with ENOENT
1502     # when $etcdir is undef.
1503    
1504     aio_stat [$etcdir, "passwd"], sub {
1505     # yay
1506     };
1507     };
1508    
1509 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1510     creating an IO::AIO::WD object is itself a potentially blocking operation,
1511     which is why it is done asynchronously.
1512 root 1.214
1513     To stat the directory obtained with C<aio_wd> above, one could write
1514     either of the following three request calls:
1515    
1516     aio_lstat "/etc" , sub { ... # pathname as normal string
1517     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1518     aio_lstat $wd , sub { ... # shorthand for the previous
1519 root 1.209
1520     As with normal pathnames, IO::AIO keeps a copy of the working directory
1521     object and the pathname string, so you could write the following without
1522     causing any issues due to C<$path> getting reused:
1523    
1524     my $path = [$wd, undef];
1525    
1526     for my $name (qw(abc def ghi)) {
1527     $path->[1] = $name;
1528     aio_stat $path, sub {
1529     # ...
1530     };
1531     }
1532    
1533     There are some caveats: when directories get renamed (or deleted), the
1534     pathname string doesn't change, so will point to the new directory (or
1535     nowhere at all), while the directory fd, if available on the system,
1536     will still point to the original directory. Most functions accepting a
1537     pathname will use the directory fd on newer systems, and the string on
1538     older systems. Some functions (such as realpath) will always rely on the
1539     string form of the pathname.
1540    
1541 root 1.239 So this functionality is mainly useful to get some protection against
1542 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1543     reference, and to speed up doing many operations in the same directory
1544     (e.g. when stat'ing all files in a directory).
1545    
1546     The following functions implement this working directory abstraction:
1547    
1548     =over 4
1549    
1550     =item aio_wd $pathname, $callback->($wd)
1551    
1552     Asynchonously canonicalise the given pathname and convert it to an
1553     IO::AIO::WD object representing it. If possible and supported on the
1554     system, also open a directory fd to speed up pathname resolution relative
1555     to this working directory.
1556    
1557     If something goes wrong, then C<undef> is passwd to the callback instead
1558     of a working directory object and C<$!> is set appropriately. Since
1559     passing C<undef> as working directory component of a pathname fails the
1560     request with C<ENOENT>, there is often no need for error checking in the
1561     C<aio_wd> callback, as future requests using the value will fail in the
1562     expected way.
1563    
1564     =item IO::AIO::CWD
1565    
1566     This is a compiletime constant (object) that represents the process
1567     current working directory.
1568    
1569 root 1.239 Specifying this object as working directory object for a pathname is as if
1570     the pathname would be specified directly, without a directory object. For
1571     example, these calls are functionally identical:
1572 root 1.209
1573     aio_stat "somefile", sub { ... };
1574     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1575    
1576     =back
1577    
1578 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1579     C<aio_realpath>:
1580    
1581     aio_realpath $wd, sub {
1582     warn "path is $_[0]\n";
1583     };
1584    
1585 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1586     sometimes, fall back to using an absolue path.
1587 root 1.209
1588 root 1.53 =head2 IO::AIO::REQ CLASS
1589 root 1.52
1590     All non-aggregate C<aio_*> functions return an object of this class when
1591     called in non-void context.
1592    
1593     =over 4
1594    
1595 root 1.65 =item cancel $req
1596 root 1.52
1597     Cancels the request, if possible. Has the effect of skipping execution
1598     when entering the B<execute> state and skipping calling the callback when
1599     entering the the B<result> state, but will leave the request otherwise
1600 root 1.151 untouched (with the exception of readdir). That means that requests that
1601     currently execute will not be stopped and resources held by the request
1602     will not be freed prematurely.
1603 root 1.52
1604 root 1.65 =item cb $req $callback->(...)
1605    
1606     Replace (or simply set) the callback registered to the request.
1607    
1608 root 1.52 =back
1609    
1610 root 1.55 =head2 IO::AIO::GRP CLASS
1611    
1612     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1613     objects of this class, too.
1614    
1615     A IO::AIO::GRP object is a special request that can contain multiple other
1616     aio requests.
1617    
1618     You create one by calling the C<aio_group> constructing function with a
1619     callback that will be called when all contained requests have entered the
1620     C<done> state:
1621    
1622     my $grp = aio_group sub {
1623     print "all requests are done\n";
1624     };
1625    
1626     You add requests by calling the C<add> method with one or more
1627     C<IO::AIO::REQ> objects:
1628    
1629     $grp->add (aio_unlink "...");
1630    
1631 root 1.58 add $grp aio_stat "...", sub {
1632     $_[0] or return $grp->result ("error");
1633    
1634     # add another request dynamically, if first succeeded
1635     add $grp aio_open "...", sub {
1636     $grp->result ("ok");
1637     };
1638     };
1639 root 1.55
1640     This makes it very easy to create composite requests (see the source of
1641     C<aio_move> for an application) that work and feel like simple requests.
1642    
1643 root 1.62 =over 4
1644    
1645     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1646 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1647    
1648 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1649 root 1.59 only the request itself, but also all requests it contains.
1650 root 1.55
1651 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1652 root 1.55
1653 root 1.62 =item * You must not add requests to a group from within the group callback (or
1654 root 1.60 any later time).
1655    
1656 root 1.62 =back
1657    
1658 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1659     will finish very quickly. If they contain only requests that are in the
1660     C<done> state, they will also finish. Otherwise they will continue to
1661     exist.
1662    
1663 root 1.133 That means after creating a group you have some time to add requests
1664     (precisely before the callback has been invoked, which is only done within
1665     the C<poll_cb>). And in the callbacks of those requests, you can add
1666     further requests to the group. And only when all those requests have
1667     finished will the the group itself finish.
1668 root 1.57
1669 root 1.55 =over 4
1670    
1671 root 1.65 =item add $grp ...
1672    
1673 root 1.55 =item $grp->add (...)
1674    
1675 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1676     be added, including other groups, as long as you do not create circular
1677     dependencies.
1678    
1679     Returns all its arguments.
1680 root 1.55
1681 root 1.74 =item $grp->cancel_subs
1682    
1683     Cancel all subrequests and clears any feeder, but not the group request
1684     itself. Useful when you queued a lot of events but got a result early.
1685    
1686 root 1.168 The group request will finish normally (you cannot add requests to the
1687     group).
1688    
1689 root 1.58 =item $grp->result (...)
1690    
1691     Set the result value(s) that will be passed to the group callback when all
1692 root 1.120 subrequests have finished and set the groups errno to the current value
1693 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1694     no argument will be passed and errno is zero.
1695    
1696     =item $grp->errno ([$errno])
1697    
1698     Sets the group errno value to C<$errno>, or the current value of errno
1699     when the argument is missing.
1700    
1701     Every aio request has an associated errno value that is restored when
1702     the callback is invoked. This method lets you change this value from its
1703     default (0).
1704    
1705     Calling C<result> will also set errno, so make sure you either set C<$!>
1706     before the call to C<result>, or call c<errno> after it.
1707 root 1.58
1708 root 1.65 =item feed $grp $callback->($grp)
1709 root 1.60
1710     Sets a feeder/generator on this group: every group can have an attached
1711     generator that generates requests if idle. The idea behind this is that,
1712     although you could just queue as many requests as you want in a group,
1713 root 1.139 this might starve other requests for a potentially long time. For example,
1714 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1715     requests, delaying any later requests for a long time.
1716 root 1.60
1717     To avoid this, and allow incremental generation of requests, you can
1718     instead a group and set a feeder on it that generates those requests. The
1719 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1720 root 1.60 below) requests active in the group itself and is expected to queue more
1721     requests.
1722    
1723 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1724     not impose any limits).
1725 root 1.60
1726 root 1.65 If the feed does not queue more requests when called, it will be
1727 root 1.60 automatically removed from the group.
1728    
1729 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1730     C<2> automatically.
1731 root 1.60
1732     Example:
1733    
1734     # stat all files in @files, but only ever use four aio requests concurrently:
1735    
1736     my $grp = aio_group sub { print "finished\n" };
1737 root 1.68 limit $grp 4;
1738 root 1.65 feed $grp sub {
1739 root 1.60 my $file = pop @files
1740     or return;
1741    
1742     add $grp aio_stat $file, sub { ... };
1743 root 1.65 };
1744 root 1.60
1745 root 1.68 =item limit $grp $num
1746 root 1.60
1747     Sets the feeder limit for the group: The feeder will be called whenever
1748     the group contains less than this many requests.
1749    
1750     Setting the limit to C<0> will pause the feeding process.
1751    
1752 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1753     automatically bumps it up to C<2>.
1754    
1755 root 1.55 =back
1756    
1757 root 1.5 =head2 SUPPORT FUNCTIONS
1758    
1759 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1760    
1761 root 1.5 =over 4
1762    
1763     =item $fileno = IO::AIO::poll_fileno
1764    
1765 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1766 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1767     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1768     you have to call C<poll_cb> to check the results.
1769 root 1.5
1770     See C<poll_cb> for an example.
1771    
1772     =item IO::AIO::poll_cb
1773    
1774 root 1.240 Process some requests that have reached the result phase (i.e. they have
1775     been executed but the results are not yet reported). You have to call
1776     this "regularly" to finish outstanding requests.
1777    
1778     Returns C<0> if all events could be processed (or there were no
1779     events to process), or C<-1> if it returned earlier for whatever
1780     reason. Returns immediately when no events are outstanding. The amount
1781     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1782     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1783    
1784     If not all requests were processed for whatever reason, the poll file
1785     descriptor will still be ready when C<poll_cb> returns, so normally you
1786     don't have to do anything special to have it called later.
1787 root 1.78
1788 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1789     ready, it can be beneficial to call this function from loops which submit
1790     a lot of requests, to make sure the results get processed when they become
1791     available and not just when the loop is finished and the event loop takes
1792     over again. This function returns very fast when there are no outstanding
1793     requests.
1794    
1795 root 1.20 Example: Install an Event watcher that automatically calls
1796 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1797     SYNOPSIS section, at the top of this document):
1798 root 1.5
1799     Event->io (fd => IO::AIO::poll_fileno,
1800     poll => 'r', async => 1,
1801     cb => \&IO::AIO::poll_cb);
1802    
1803 root 1.175 =item IO::AIO::poll_wait
1804    
1805 root 1.240 Wait until either at least one request is in the result phase or no
1806     requests are outstanding anymore.
1807    
1808     This is useful if you want to synchronously wait for some requests to
1809     become ready, without actually handling them.
1810 root 1.175
1811     See C<nreqs> for an example.
1812    
1813     =item IO::AIO::poll
1814    
1815     Waits until some requests have been handled.
1816    
1817     Returns the number of requests processed, but is otherwise strictly
1818     equivalent to:
1819    
1820     IO::AIO::poll_wait, IO::AIO::poll_cb
1821    
1822     =item IO::AIO::flush
1823    
1824     Wait till all outstanding AIO requests have been handled.
1825    
1826     Strictly equivalent to:
1827    
1828     IO::AIO::poll_wait, IO::AIO::poll_cb
1829     while IO::AIO::nreqs;
1830    
1831 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1832    
1833     =item IO::AIO::max_poll_time $seconds
1834    
1835     These set the maximum number of requests (default C<0>, meaning infinity)
1836     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1837     the maximum amount of time (default C<0>, meaning infinity) spent in
1838     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1839     of time C<poll_cb> is allowed to use).
1840 root 1.78
1841 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1842     syscall per request processed, which is not normally a problem unless your
1843     callbacks are really really fast or your OS is really really slow (I am
1844     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1845    
1846 root 1.86 Setting these is useful if you want to ensure some level of
1847     interactiveness when perl is not fast enough to process all requests in
1848     time.
1849 root 1.78
1850 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1851 root 1.78
1852     Example: Install an Event watcher that automatically calls
1853 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1854 root 1.78 program get the CPU sometimes even under high AIO load.
1855    
1856 root 1.86 # try not to spend much more than 0.1s in poll_cb
1857     IO::AIO::max_poll_time 0.1;
1858    
1859     # use a low priority so other tasks have priority
1860 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1861     poll => 'r', nice => 1,
1862 root 1.86 cb => &IO::AIO::poll_cb);
1863 root 1.78
1864 root 1.104 =back
1865    
1866 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1867 root 1.13
1868 root 1.105 =over
1869    
1870 root 1.5 =item IO::AIO::min_parallel $nthreads
1871    
1872 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1873     default is C<8>, which means eight asynchronous operations can execute
1874     concurrently at any one time (the number of outstanding requests,
1875     however, is unlimited).
1876 root 1.5
1877 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1878 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1879     create demand for a hundred threads, even if it turns out that everything
1880     is in the cache and could have been processed faster by a single thread.
1881 root 1.34
1882 root 1.61 It is recommended to keep the number of threads relatively low, as some
1883     Linux kernel versions will scale negatively with the number of threads
1884     (higher parallelity => MUCH higher latency). With current Linux 2.6
1885     versions, 4-32 threads should be fine.
1886 root 1.5
1887 root 1.34 Under most circumstances you don't need to call this function, as the
1888     module selects a default that is suitable for low to moderate load.
1889 root 1.5
1890     =item IO::AIO::max_parallel $nthreads
1891    
1892 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1893     specified number of threads are currently running, this function kills
1894     them. This function blocks until the limit is reached.
1895    
1896     While C<$nthreads> are zero, aio requests get queued but not executed
1897     until the number of threads has been increased again.
1898 root 1.5
1899     This module automatically runs C<max_parallel 0> at program end, to ensure
1900     that all threads are killed and that there are no outstanding requests.
1901    
1902     Under normal circumstances you don't need to call this function.
1903    
1904 root 1.86 =item IO::AIO::max_idle $nthreads
1905    
1906 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1907     (i.e., threads that did not get a request to process within the idle
1908     timeout (default: 10 seconds). That means if a thread becomes idle while
1909     C<$nthreads> other threads are also idle, it will free its resources and
1910     exit.
1911 root 1.86
1912     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1913     to allow for extremely high load situations, but want to free resources
1914     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1915    
1916     The default is probably ok in most situations, especially if thread
1917     creation is fast. If thread creation is very slow on your system you might
1918     want to use larger values.
1919    
1920 root 1.188 =item IO::AIO::idle_timeout $seconds
1921    
1922     Sets the minimum idle timeout (default 10) after which worker threads are
1923     allowed to exit. SEe C<IO::AIO::max_idle>.
1924    
1925 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1926 root 1.5
1927 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1928     you do queue up more than this number of requests, the next call to
1929     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1930     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1931     longer exceeded.
1932    
1933     In other words, this setting does not enforce a queue limit, but can be
1934     used to make poll functions block if the limit is exceeded.
1935    
1936 root 1.79 This is a very bad function to use in interactive programs because it
1937     blocks, and a bad way to reduce concurrency because it is inexact: Better
1938     use an C<aio_group> together with a feed callback.
1939    
1940 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1941 root 1.195 a lot of files, you can write somehting like this:
1942    
1943     IO::AIO::max_outstanding 32;
1944    
1945     for my $path (...) {
1946     aio_stat $path , ...;
1947     IO::AIO::poll_cb;
1948     }
1949    
1950     IO::AIO::flush;
1951    
1952     The call to C<poll_cb> inside the loop will normally return instantly, but
1953     as soon as more thna C<32> reqeusts are in-flight, it will block until
1954     some requests have been handled. This keeps the loop from pushing a large
1955     number of C<aio_stat> requests onto the queue.
1956    
1957     The default value for C<max_outstanding> is very large, so there is no
1958     practical limit on the number of outstanding requests.
1959 root 1.5
1960 root 1.104 =back
1961    
1962 root 1.86 =head3 STATISTICAL INFORMATION
1963    
1964 root 1.104 =over
1965    
1966 root 1.86 =item IO::AIO::nreqs
1967    
1968     Returns the number of requests currently in the ready, execute or pending
1969     states (i.e. for which their callback has not been invoked yet).
1970    
1971     Example: wait till there are no outstanding requests anymore:
1972    
1973     IO::AIO::poll_wait, IO::AIO::poll_cb
1974     while IO::AIO::nreqs;
1975    
1976     =item IO::AIO::nready
1977    
1978     Returns the number of requests currently in the ready state (not yet
1979     executed).
1980    
1981     =item IO::AIO::npending
1982    
1983     Returns the number of requests currently in the pending state (executed,
1984     but not yet processed by poll_cb).
1985    
1986 root 1.5 =back
1987    
1988 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1989    
1990 root 1.248 IO::AIO implements some functions that are useful when you want to use
1991     some "Advanced I/O" function not available to in Perl, without going the
1992     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
1993     counterpart.
1994 root 1.157
1995     =over 4
1996    
1997     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1998    
1999     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2000     but is blocking (this makes most sense if you know the input data is
2001     likely cached already and the output filehandle is set to non-blocking
2002     operations).
2003    
2004     Returns the number of bytes copied, or C<-1> on error.
2005    
2006     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2007    
2008 root 1.184 Simply calls the C<posix_fadvise> function (see its
2009 root 1.157 manpage for details). The following advice constants are
2010 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2011 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2012     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2013    
2014     On systems that do not implement C<posix_fadvise>, this function returns
2015     ENOSYS, otherwise the return value of C<posix_fadvise>.
2016    
2017 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2018    
2019     Simply calls the C<posix_madvise> function (see its
2020     manpage for details). The following advice constants are
2021 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2022 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
2023    
2024     On systems that do not implement C<posix_madvise>, this function returns
2025     ENOSYS, otherwise the return value of C<posix_madvise>.
2026    
2027     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2028    
2029     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2030     $scalar (see its manpage for details). The following protect
2031 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2032 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2033    
2034     On systems that do not implement C<mprotect>, this function returns
2035     ENOSYS, otherwise the return value of C<mprotect>.
2036    
2037 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2038    
2039     Memory-maps a file (or anonymous memory range) and attaches it to the
2040 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2041     success, and false otherwise.
2042 root 1.176
2043     The only operations allowed on the scalar are C<substr>/C<vec> that don't
2044     change the string length, and most read-only operations such as copying it
2045     or searching it with regexes and so on.
2046    
2047     Anything else is unsafe and will, at best, result in memory leaks.
2048    
2049     The memory map associated with the C<$scalar> is automatically removed
2050     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
2051     C<IO::AIO::munmap> functions are called.
2052    
2053     This calls the C<mmap>(2) function internally. See your system's manual
2054     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2055    
2056     The C<$length> must be larger than zero and smaller than the actual
2057     filesize.
2058    
2059     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2060     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2061    
2062     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
2063     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
2064     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
2065     (which is set to C<MAP_ANON> if your system only provides this
2066     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
2067     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
2068     C<IO::AIO::MAP_NONBLOCK>
2069    
2070     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2071    
2072 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2073     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2074    
2075 root 1.177 Example:
2076    
2077     use Digest::MD5;
2078     use IO::AIO;
2079    
2080     open my $fh, "<verybigfile"
2081     or die "$!";
2082    
2083     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2084     or die "verybigfile: $!";
2085    
2086     my $fast_md5 = md5 $data;
2087    
2088 root 1.176 =item IO::AIO::munmap $scalar
2089    
2090     Removes a previous mmap and undefines the C<$scalar>.
2091    
2092 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2093 root 1.174
2094 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2095     C<aio_mlock> call (see its description for details).
2096 root 1.174
2097     =item IO::AIO::munlockall
2098    
2099     Calls the C<munlockall> function.
2100    
2101     On systems that do not implement C<munlockall>, this function returns
2102     ENOSYS, otherwise the return value of C<munlockall>.
2103    
2104 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2105    
2106     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2107     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2108     should be the file offset.
2109    
2110 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2111     silently corrupt the data in this case.
2112    
2113 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2114     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2115     C<IO::AIO::SPLICE_F_GIFT>.
2116    
2117     See the C<splice(2)> manpage for details.
2118    
2119     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2120    
2121 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2122 root 1.225 description for C<IO::AIO::splice> above for details.
2123    
2124 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2125    
2126     Attempts to query or change the pipe buffer size. Obviously works only
2127     on pipes, and currently works only on GNU/Linux systems, and fails with
2128     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2129     size on other systems, drop me a note.
2130    
2131 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2132    
2133     This is a direct interface to the Linux L<pipe2(2)> system call. If
2134     C<$flags> is missing or C<0>, then this should be the same as a call to
2135 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2136     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2137     (..., 4096, O_BINARY)>.
2138 root 1.253
2139     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2140     the given flags (Linux 2.6.27, glibc 2.9).
2141    
2142     On success, the read and write file handles are returned.
2143    
2144     On error, nothing will be returned. If the pipe2 syscall is missing and
2145     C<$flags> is non-zero, fails with C<ENOSYS>.
2146    
2147     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2148     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2149     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2150    
2151 root 1.157 =back
2152    
2153 root 1.1 =cut
2154    
2155 root 1.61 min_parallel 8;
2156 root 1.1
2157 root 1.95 END { flush }
2158 root 1.82
2159 root 1.1 1;
2160    
2161 root 1.175 =head1 EVENT LOOP INTEGRATION
2162    
2163     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2164     automatically into many event loops:
2165    
2166     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2167     use AnyEvent::AIO;
2168    
2169     You can also integrate IO::AIO manually into many event loops, here are
2170     some examples of how to do this:
2171    
2172     # EV integration
2173     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2174    
2175     # Event integration
2176     Event->io (fd => IO::AIO::poll_fileno,
2177     poll => 'r',
2178     cb => \&IO::AIO::poll_cb);
2179    
2180     # Glib/Gtk2 integration
2181     add_watch Glib::IO IO::AIO::poll_fileno,
2182     in => sub { IO::AIO::poll_cb; 1 };
2183    
2184     # Tk integration
2185     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2186     readable => \&IO::AIO::poll_cb);
2187    
2188     # Danga::Socket integration
2189     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2190     \&IO::AIO::poll_cb);
2191    
2192 root 1.27 =head2 FORK BEHAVIOUR
2193    
2194 root 1.197 Usage of pthreads in a program changes the semantics of fork
2195     considerably. Specifically, only async-safe functions can be called after
2196     fork. Perl doesn't know about this, so in general, you cannot call fork
2197 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2198     pthreads, so this applies, but many other extensions and (for inexplicable
2199     reasons) perl itself often is linked against pthreads, so this limitation
2200     applies to quite a lot of perls.
2201    
2202     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2203     only works in the process that loaded it. Forking is fully supported, but
2204     using IO::AIO in the child is not.
2205    
2206     You might get around by not I<using> IO::AIO before (or after)
2207     forking. You could also try to call the L<IO::AIO::reinit> function in the
2208     child:
2209    
2210     =over 4
2211    
2212     =item IO::AIO::reinit
2213    
2214 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2215     data structures. This is not an operation supported by any standards, but
2216 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2217    
2218     The only reasonable use for this function is to call it after forking, if
2219     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2220     the process will result in undefined behaviour. Calling it at any time
2221     will also result in any undefined (by POSIX) behaviour.
2222    
2223     =back
2224 root 1.52
2225 root 1.60 =head2 MEMORY USAGE
2226    
2227 root 1.72 Per-request usage:
2228    
2229     Each aio request uses - depending on your architecture - around 100-200
2230     bytes of memory. In addition, stat requests need a stat buffer (possibly
2231     a few hundred bytes), readdir requires a result buffer and so on. Perl
2232     scalars and other data passed into aio requests will also be locked and
2233     will consume memory till the request has entered the done state.
2234 root 1.60
2235 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2236 root 1.60 problem.
2237    
2238 root 1.72 Per-thread usage:
2239    
2240     In the execution phase, some aio requests require more memory for
2241     temporary buffers, and each thread requires a stack and other data
2242     structures (usually around 16k-128k, depending on the OS).
2243    
2244     =head1 KNOWN BUGS
2245    
2246 root 1.73 Known bugs will be fixed in the next release.
2247 root 1.60
2248 root 1.1 =head1 SEE ALSO
2249    
2250 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2251     more natural syntax.
2252 root 1.1
2253     =head1 AUTHOR
2254    
2255     Marc Lehmann <schmorp@schmorp.de>
2256     http://home.schmorp.de/
2257    
2258     =cut
2259