ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.257
Committed: Mon Jan 18 11:53:09 2016 UTC (8 years, 4 months ago) by root
Branch: MAIN
CVS Tags: rel-4_33
Changes since 1.256: +7 -4 lines
Log Message:
4.33

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73 root 1.156 use EV;
74 root 1.86 use IO::AIO;
75    
76 root 1.156 # register the IO::AIO callback with EV
77     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
78 root 1.86
79     # queue the request to open /etc/passwd
80 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
81 root 1.94 my $fh = shift
82 root 1.86 or die "error while opening: $!";
83    
84     # stat'ing filehandles is generally non-blocking
85     my $size = -s $fh;
86    
87     # queue a request to read the file
88     my $contents;
89     aio_read $fh, 0, $size, $contents, 0, sub {
90     $_[0] == $size
91     or die "short read: $!";
92    
93     close $fh;
94    
95     # file contents now in $contents
96     print $contents;
97    
98     # exit event loop and program
99 root 1.257 EV::break;
100 root 1.86 };
101     };
102    
103     # possibly queue up other requests, or open GUI windows,
104     # check for sockets etc. etc.
105    
106     # process events as long as there are some:
107 root 1.257 EV::run;
108 root 1.86
109 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
110    
111     Every C<aio_*> function creates a request. which is a C data structure not
112     directly visible to Perl.
113    
114     If called in non-void context, every request function returns a Perl
115     object representing the request. In void context, nothing is returned,
116     which saves a bit of memory.
117    
118     The perl object is a fairly standard ref-to-hash object. The hash contents
119     are not used by IO::AIO so you are free to store anything you like in it.
120    
121     During their existance, aio requests travel through the following states,
122     in order:
123    
124     =over 4
125    
126     =item ready
127    
128     Immediately after a request is created it is put into the ready state,
129     waiting for a thread to execute it.
130    
131     =item execute
132    
133     A thread has accepted the request for processing and is currently
134     executing it (e.g. blocking in read).
135    
136     =item pending
137    
138     The request has been executed and is waiting for result processing.
139    
140     While request submission and execution is fully asynchronous, result
141     processing is not and relies on the perl interpreter calling C<poll_cb>
142     (or another function with the same effect).
143    
144     =item result
145    
146     The request results are processed synchronously by C<poll_cb>.
147    
148     The C<poll_cb> function will process all outstanding aio requests by
149     calling their callbacks, freeing memory associated with them and managing
150     any groups they are contained in.
151    
152     =item done
153    
154     Request has reached the end of its lifetime and holds no resources anymore
155     (except possibly for the Perl object, but its connection to the actual
156     aio request is severed and calling its methods will either do nothing or
157     result in a runtime error).
158 root 1.1
159 root 1.88 =back
160    
161 root 1.1 =cut
162    
163     package IO::AIO;
164    
165 root 1.117 use Carp ();
166    
167 root 1.161 use common::sense;
168 root 1.23
169 root 1.1 use base 'Exporter';
170    
171     BEGIN {
172 root 1.257 our $VERSION = 4.33;
173 root 1.1
174 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
175 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
176 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
177 root 1.236 aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_allocate
178 root 1.222 aio_pathsync aio_readahead aio_fiemap
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183 root 1.208 aio_statvfs
184     aio_wd);
185 root 1.120
186 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
187 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
188 root 1.188 min_parallel max_parallel max_idle idle_timeout
189 root 1.86 nreqs nready npending nthreads
190 root 1.157 max_poll_time max_poll_reqs
191 root 1.182 sendfile fadvise madvise
192     mmap munmap munlock munlockall);
193 root 1.1
194 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
195    
196 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
197    
198 root 1.1 require XSLoader;
199 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
200 root 1.1 }
201    
202 root 1.5 =head1 FUNCTIONS
203 root 1.1
204 root 1.175 =head2 QUICK OVERVIEW
205    
206 root 1.230 This section simply lists the prototypes most of the functions for
207     quick reference. See the following sections for function-by-function
208 root 1.175 documentation.
209    
210 root 1.208 aio_wd $pathname, $callback->($wd)
211 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
212     aio_close $fh, $callback->($status)
213 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
214 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
215     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
217     aio_readahead $fh,$offset,$length, $callback->($retval)
218     aio_stat $fh_or_path, $callback->($status)
219     aio_lstat $fh, $callback->($status)
220     aio_statvfs $fh_or_path, $callback->($statvfs)
221     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
222     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
223 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
224 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
225 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
226 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
227 root 1.175 aio_unlink $pathname, $callback->($status)
228 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
229 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
230     aio_symlink $srcpath, $dstpath, $callback->($status)
231 root 1.209 aio_readlink $pathname, $callback->($link)
232 root 1.249 aio_realpath $pathname, $callback->($path)
233 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
234     aio_mkdir $pathname, $mode, $callback->($status)
235     aio_rmdir $pathname, $callback->($status)
236     aio_readdir $pathname, $callback->($entries)
237     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
238     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
239     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
240 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
241 root 1.209 aio_load $pathname, $data, $callback->($status)
242 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
243     aio_move $srcpath, $dstpath, $callback->($status)
244 root 1.209 aio_rmtree $pathname, $callback->($status)
245 root 1.175 aio_sync $callback->($status)
246 root 1.206 aio_syncfs $fh, $callback->($status)
247 root 1.175 aio_fsync $fh, $callback->($status)
248     aio_fdatasync $fh, $callback->($status)
249     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
250 root 1.209 aio_pathsync $pathname, $callback->($status)
251 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
252     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
253 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
254     aio_mlockall $flags, $callback->($status)
255 root 1.175 aio_group $callback->(...)
256     aio_nop $callback->()
257    
258     $prev_pri = aioreq_pri [$pri]
259     aioreq_nice $pri_adjust
260    
261     IO::AIO::poll_wait
262     IO::AIO::poll_cb
263     IO::AIO::poll
264     IO::AIO::flush
265     IO::AIO::max_poll_reqs $nreqs
266     IO::AIO::max_poll_time $seconds
267     IO::AIO::min_parallel $nthreads
268     IO::AIO::max_parallel $nthreads
269     IO::AIO::max_idle $nthreads
270 root 1.188 IO::AIO::idle_timeout $seconds
271 root 1.175 IO::AIO::max_outstanding $maxreqs
272     IO::AIO::nreqs
273     IO::AIO::nready
274     IO::AIO::npending
275    
276     IO::AIO::sendfile $ofh, $ifh, $offset, $count
277     IO::AIO::fadvise $fh, $offset, $len, $advice
278 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
279     IO::AIO::munmap $scalar
280 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
281     IO::AIO::mprotect $scalar, $offset, $length, $protect
282 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
283 root 1.175 IO::AIO::munlockall
284    
285 root 1.219 =head2 API NOTES
286 root 1.1
287 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
288     with the same name (sans C<aio_>). The arguments are similar or identical,
289 root 1.14 and they all accept an additional (and optional) C<$callback> argument
290 root 1.212 which must be a code reference. This code reference will be called after
291     the syscall has been executed in an asynchronous fashion. The results
292     of the request will be passed as arguments to the callback (and, if an
293     error occured, in C<$!>) - for most requests the syscall return code (e.g.
294     most syscalls return C<-1> on error, unlike perl, which usually delivers
295     "false").
296    
297     Some requests (such as C<aio_readdir>) pass the actual results and
298     communicate failures by passing C<undef>.
299 root 1.1
300 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
301     internally until the request has finished.
302 root 1.1
303 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
304     further manipulation of those requests while they are in-flight.
305 root 1.52
306 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
307     reason for this is that at the time the request is being executed, the
308 root 1.212 current working directory could have changed. Alternatively, you can
309     make sure that you never change the current working directory anywhere
310     in the program and then use relative paths. You can also take advantage
311     of IO::AIOs working directory abstraction, that lets you specify paths
312     relative to some previously-opened "working directory object" - see the
313     description of the C<IO::AIO::WD> class later in this document.
314 root 1.28
315 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
316     in filenames you got from outside (command line, readdir etc.) without
317 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
318     module and encode your pathnames to the locale (or other) encoding in
319     effect in the user environment, d) use Glib::filename_from_unicode on
320     unicode filenames or e) use something else to ensure your scalar has the
321     correct contents.
322 root 1.87
323     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
324 root 1.136 handles correctly whether it is set or not.
325 root 1.1
326 root 1.219 =head2 AIO REQUEST FUNCTIONS
327    
328 root 1.5 =over 4
329 root 1.1
330 root 1.80 =item $prev_pri = aioreq_pri [$pri]
331 root 1.68
332 root 1.80 Returns the priority value that would be used for the next request and, if
333     C<$pri> is given, sets the priority for the next aio request.
334 root 1.68
335 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
336     and C<4>, respectively. Requests with higher priority will be serviced
337     first.
338    
339     The priority will be reset to C<0> after each call to one of the C<aio_*>
340 root 1.68 functions.
341    
342 root 1.69 Example: open a file with low priority, then read something from it with
343     higher priority so the read request is serviced before other low priority
344     open requests (potentially spamming the cache):
345    
346     aioreq_pri -3;
347     aio_open ..., sub {
348     return unless $_[0];
349    
350     aioreq_pri -2;
351     aio_read $_[0], ..., sub {
352     ...
353     };
354     };
355    
356 root 1.106
357 root 1.69 =item aioreq_nice $pri_adjust
358    
359     Similar to C<aioreq_pri>, but subtracts the given value from the current
360 root 1.87 priority, so the effect is cumulative.
361 root 1.69
362 root 1.106
363 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
364 root 1.1
365 root 1.2 Asynchronously open or create a file and call the callback with a newly
366 root 1.233 created filehandle for the file (or C<undef> in case of an error).
367 root 1.1
368     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
369     for an explanation.
370    
371 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
372     list. They are the same as used by C<sysopen>.
373    
374     Likewise, C<$mode> specifies the mode of the newly created file, if it
375     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
376     except that it is mandatory (i.e. use C<0> if you don't create new files,
377 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
378     by the umask in effect then the request is being executed, so better never
379     change the umask.
380 root 1.1
381     Example:
382    
383 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
384 root 1.2 if ($_[0]) {
385     print "open successful, fh is $_[0]\n";
386 root 1.1 ...
387     } else {
388     die "open failed: $!\n";
389     }
390     };
391    
392 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
393     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
394     following POSIX and non-POSIX constants are available (missing ones on
395     your system are, as usual, C<0>):
396    
397     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
398     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
399 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
400 root 1.194
401 root 1.106
402 root 1.40 =item aio_close $fh, $callback->($status)
403 root 1.1
404 root 1.2 Asynchronously close a file and call the callback with the result
405 root 1.116 code.
406    
407 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
408 root 1.121 closing the file descriptor associated with the filehandle itself.
409 root 1.117
410 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
411     use dup2 to overwrite the file descriptor with the write-end of a pipe
412     (the pipe fd will be created on demand and will be cached).
413 root 1.117
414 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
415     free for reuse until the perl filehandle is closed.
416 root 1.117
417     =cut
418    
419 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
420    
421 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
422 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
423     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
424     C<IO::AIO::SEEK_END>).
425    
426     The resulting absolute offset will be passed to the callback, or C<-1> in
427     case of an error.
428    
429     In theory, the C<$whence> constants could be different than the
430     corresponding values from L<Fcntl>, but perl guarantees they are the same,
431     so don't panic.
432    
433 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
434     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
435     could be found. No guarantees about suitability for use in C<aio_seek> or
436     Perl's C<sysseek> can be made though, although I would naively assume they
437     "just work".
438    
439 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
440 root 1.1
441 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
442 root 1.1
443 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
444     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
445     and calls the callback without the actual number of bytes read (or -1 on
446     error, just like the syscall).
447 root 1.109
448 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
449     offset plus the actual number of bytes read.
450    
451 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
452     be used (and updated), otherwise the file descriptor offset will not be
453     changed by these calls.
454 root 1.109
455 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
456     C<$data>.
457 root 1.109
458     If C<$dataoffset> is less than zero, it will be counted from the end of
459     C<$data>.
460 root 1.1
461 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
462 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
463     the necessary/optional hardware is installed).
464 root 1.31
465 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
466 root 1.1 offset C<0> within the scalar:
467    
468     aio_read $fh, 7, 15, $buffer, 0, sub {
469 root 1.9 $_[0] > 0 or die "read error: $!";
470     print "read $_[0] bytes: <$buffer>\n";
471 root 1.1 };
472    
473 root 1.106
474 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
475 root 1.35
476     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
477     reading at byte offset C<$in_offset>, and starts writing at the current
478     file offset of C<$out_fh>. Because of that, it is not safe to issue more
479     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
480 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
481     move or use the file offset of C<$in_fh>.
482 root 1.35
483 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
484 root 1.196 are written, and there is no way to find out how many more bytes have been
485     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
486     number of bytes written to C<$out_fh>. Only if the result value equals
487     C<$length> one can assume that C<$length> bytes have been read.
488 root 1.185
489     Unlike with other C<aio_> functions, it makes a lot of sense to use
490     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
491     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
492 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
493     into a trap where C<aio_sendfile> reads some data with readahead, then
494     fails to write all data, and when the socket is ready the next time, the
495     data in the cache is already lost, forcing C<aio_sendfile> to again hit
496     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
497     resource usage.
498    
499     This call tries to make use of a native C<sendfile>-like syscall to
500     provide zero-copy operation. For this to work, C<$out_fh> should refer to
501     a socket, and C<$in_fh> should refer to an mmap'able file.
502 root 1.35
503 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
504 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
505     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
506     type of filehandle regardless of the limitations of the operating system.
507    
508     As native sendfile syscalls (as practically any non-POSIX interface hacked
509     together in a hurry to improve benchmark numbers) tend to be rather buggy
510     on many systems, this implementation tries to work around some known bugs
511     in Linux and FreeBSD kernels (probably others, too), but that might fail,
512     so you really really should check the return value of C<aio_sendfile> -
513     fewre bytes than expected might have been transferred.
514 root 1.35
515 root 1.106
516 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
517 root 1.1
518 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
519 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
520     argument specifies the starting point from which data is to be read and
521     C<$length> specifies the number of bytes to be read. I/O is performed in
522     whole pages, so that offset is effectively rounded down to a page boundary
523     and bytes are read up to the next page boundary greater than or equal to
524 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
525 root 1.1 file. The current file offset of the file is left unchanged.
526    
527 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
528     emulated by simply reading the data, which would have a similar effect.
529    
530 root 1.106
531 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
532 root 1.1
533 root 1.40 =item aio_lstat $fh, $callback->($status)
534 root 1.1
535     Works like perl's C<stat> or C<lstat> in void context. The callback will
536     be called after the stat and the results will be available using C<stat _>
537     or C<-s _> etc...
538    
539     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
540     for an explanation.
541    
542     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
543     error when stat'ing a large file, the results will be silently truncated
544     unless perl itself is compiled with large file support.
545    
546 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
547     following constants and functions (if not implemented, the constants will
548     be C<0> and the functions will either C<croak> or fall back on traditional
549     behaviour).
550    
551     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
552     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
553     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
554    
555 root 1.1 Example: Print the length of F</etc/passwd>:
556    
557     aio_stat "/etc/passwd", sub {
558     $_[0] and die "stat failed: $!";
559     print "size is ", -s _, "\n";
560     };
561    
562 root 1.106
563 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
564 root 1.172
565     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
566     whether a file handle or path was passed.
567    
568     On success, the callback is passed a hash reference with the following
569     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
570     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
571     is passed.
572    
573     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
574     C<ST_NOSUID>.
575    
576     The following non-POSIX IO::AIO::ST_* flag masks are defined to
577     their correct value when available, or to C<0> on systems that do
578     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
579     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
580     C<ST_NODIRATIME> and C<ST_RELATIME>.
581    
582     Example: stat C</wd> and dump out the data if successful.
583    
584     aio_statvfs "/wd", sub {
585     my $f = $_[0]
586     or die "statvfs: $!";
587    
588     use Data::Dumper;
589     say Dumper $f;
590     };
591    
592     # result:
593     {
594     bsize => 1024,
595     bfree => 4333064312,
596     blocks => 10253828096,
597     files => 2050765568,
598     flag => 4096,
599     favail => 2042092649,
600     bavail => 4333064312,
601     ffree => 2042092649,
602     namemax => 255,
603     frsize => 1024,
604     fsid => 1810
605     }
606    
607 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
608     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
609 root 1.235
610     0x0000adf5 adfs
611     0x0000adff affs
612     0x5346414f afs
613     0x09041934 anon-inode filesystem
614     0x00000187 autofs
615     0x42465331 befs
616     0x1badface bfs
617     0x42494e4d binfmt_misc
618     0x9123683e btrfs
619     0x0027e0eb cgroupfs
620     0xff534d42 cifs
621     0x73757245 coda
622     0x012ff7b7 coh
623     0x28cd3d45 cramfs
624     0x453dcd28 cramfs-wend (wrong endianness)
625     0x64626720 debugfs
626     0x00001373 devfs
627     0x00001cd1 devpts
628     0x0000f15f ecryptfs
629     0x00414a53 efs
630     0x0000137d ext
631 root 1.257 0x0000ef53 ext2/ext3/ext4
632 root 1.235 0x0000ef51 ext2
633 root 1.257 0xf2f52010 f2fs
634 root 1.235 0x00004006 fat
635     0x65735546 fuseblk
636     0x65735543 fusectl
637     0x0bad1dea futexfs
638     0x01161970 gfs2
639     0x47504653 gpfs
640     0x00004244 hfs
641     0xf995e849 hpfs
642 root 1.257 0x00c0ffee hostfs
643 root 1.235 0x958458f6 hugetlbfs
644     0x2bad1dea inotifyfs
645     0x00009660 isofs
646     0x000072b6 jffs2
647     0x3153464a jfs
648     0x6b414653 k-afs
649     0x0bd00bd0 lustre
650     0x0000137f minix
651     0x0000138f minix 30 char names
652     0x00002468 minix v2
653     0x00002478 minix v2 30 char names
654     0x00004d5a minix v3
655     0x19800202 mqueue
656     0x00004d44 msdos
657     0x0000564c novell
658     0x00006969 nfs
659     0x6e667364 nfsd
660     0x00003434 nilfs
661     0x5346544e ntfs
662     0x00009fa1 openprom
663     0x7461636F ocfs2
664     0x00009fa0 proc
665     0x6165676c pstorefs
666     0x0000002f qnx4
667 root 1.257 0x68191122 qnx6
668 root 1.235 0x858458f6 ramfs
669     0x52654973 reiserfs
670     0x00007275 romfs
671     0x67596969 rpc_pipefs
672     0x73636673 securityfs
673     0xf97cff8c selinux
674     0x0000517b smb
675     0x534f434b sockfs
676     0x73717368 squashfs
677     0x62656572 sysfs
678     0x012ff7b6 sysv2
679     0x012ff7b5 sysv4
680     0x01021994 tmpfs
681     0x15013346 udf
682     0x00011954 ufs
683     0x54190100 ufs byteswapped
684     0x00009fa2 usbdevfs
685     0x01021997 v9fs
686     0xa501fcf5 vxfs
687     0xabba1974 xenfs
688     0x012ff7b4 xenix
689     0x58465342 xfs
690     0x012fd16d xia
691 root 1.172
692 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
693    
694     Works like perl's C<utime> function (including the special case of $atime
695     and $mtime being undef). Fractional times are supported if the underlying
696     syscalls support them.
697    
698     When called with a pathname, uses utimes(2) if available, otherwise
699     utime(2). If called on a file descriptor, uses futimes(2) if available,
700     otherwise returns ENOSYS, so this is not portable.
701    
702     Examples:
703    
704 root 1.107 # set atime and mtime to current time (basically touch(1)):
705 root 1.106 aio_utime "path", undef, undef;
706     # set atime to current time and mtime to beginning of the epoch:
707     aio_utime "path", time, undef; # undef==0
708    
709    
710     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
711    
712     Works like perl's C<chown> function, except that C<undef> for either $uid
713     or $gid is being interpreted as "do not change" (but -1 can also be used).
714    
715     Examples:
716    
717     # same as "chown root path" in the shell:
718     aio_chown "path", 0, -1;
719     # same as above:
720     aio_chown "path", 0, undef;
721    
722    
723 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
724    
725     Works like truncate(2) or ftruncate(2).
726    
727    
728 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
729    
730 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
731     linux C<fallocate> documentation for details.
732 root 1.229
733 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
734     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
735     to deallocate a file range.
736    
737     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
738     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
739     your L<fallocate(2)> manpage).
740 root 1.229
741     The file system block size used by C<fallocate> is presumably the
742     C<f_bsize> returned by C<statvfs>.
743    
744     If C<fallocate> isn't available or cannot be emulated (currently no
745     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
746    
747    
748 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
749    
750     Works like perl's C<chmod> function.
751    
752    
753 root 1.40 =item aio_unlink $pathname, $callback->($status)
754 root 1.1
755     Asynchronously unlink (delete) a file and call the callback with the
756     result code.
757    
758 root 1.106
759 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
760 root 1.82
761 root 1.86 [EXPERIMENTAL]
762    
763 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
764    
765 root 1.86 The only (POSIX-) portable way of calling this function is:
766 root 1.83
767 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
768 root 1.82
769 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
770     and functions.
771 root 1.106
772 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
773    
774     Asynchronously create a new link to the existing object at C<$srcpath> at
775     the path C<$dstpath> and call the callback with the result code.
776    
777 root 1.106
778 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
779    
780     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
781     the path C<$dstpath> and call the callback with the result code.
782    
783 root 1.106
784 root 1.209 =item aio_readlink $pathname, $callback->($link)
785 root 1.90
786     Asynchronously read the symlink specified by C<$path> and pass it to
787     the callback. If an error occurs, nothing or undef gets passed to the
788     callback.
789    
790 root 1.106
791 root 1.209 =item aio_realpath $pathname, $callback->($path)
792 root 1.201
793     Asynchronously make the path absolute and resolve any symlinks in
794 root 1.239 C<$path>. The resulting path only consists of directories (same as
795 root 1.202 L<Cwd::realpath>).
796 root 1.201
797     This request can be used to get the absolute path of the current working
798     directory by passing it a path of F<.> (a single dot).
799    
800    
801 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
802    
803     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
804     rename(2) and call the callback with the result code.
805    
806 root 1.241 On systems that support the AIO::WD working directory abstraction
807     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
808     of failing, C<rename> is called on the absolute path of C<$wd>.
809    
810 root 1.106
811 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
812    
813     Asynchronously mkdir (create) a directory and call the callback with
814     the result code. C<$mode> will be modified by the umask at the time the
815     request is executed, so do not change your umask.
816    
817 root 1.106
818 root 1.40 =item aio_rmdir $pathname, $callback->($status)
819 root 1.27
820     Asynchronously rmdir (delete) a directory and call the callback with the
821     result code.
822    
823 root 1.241 On systems that support the AIO::WD working directory abstraction
824     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
825     C<rmdir> is called on the absolute path of C<$wd>.
826    
827 root 1.106
828 root 1.46 =item aio_readdir $pathname, $callback->($entries)
829 root 1.37
830     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
831     directory (i.e. opendir + readdir + closedir). The entries will not be
832     sorted, and will B<NOT> include the C<.> and C<..> entries.
833    
834 root 1.148 The callback is passed a single argument which is either C<undef> or an
835     array-ref with the filenames.
836    
837    
838     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
839    
840 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
841     tune behaviour and output format. In case of an error, C<$entries> will be
842 root 1.148 C<undef>.
843    
844     The flags are a combination of the following constants, ORed together (the
845     flags will also be passed to the callback, possibly modified):
846    
847     =over 4
848    
849 root 1.150 =item IO::AIO::READDIR_DENTS
850 root 1.148
851 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
852     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
853 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
854 root 1.148 entry in more detail.
855    
856     C<$name> is the name of the entry.
857    
858 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
859 root 1.148
860 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
861     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
862     C<IO::AIO::DT_WHT>.
863 root 1.148
864 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
865 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
866     scalars are read-only: you can not modify them.
867    
868 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
869 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
870     systems that do not deliver the inode information.
871 root 1.150
872     =item IO::AIO::READDIR_DIRS_FIRST
873 root 1.148
874     When this flag is set, then the names will be returned in an order where
875 root 1.193 likely directories come first, in optimal stat order. This is useful when
876     you need to quickly find directories, or you want to find all directories
877     while avoiding to stat() each entry.
878 root 1.148
879 root 1.149 If the system returns type information in readdir, then this is used
880 root 1.193 to find directories directly. Otherwise, likely directories are names
881     beginning with ".", or otherwise names with no dots, of which names with
882 root 1.149 short names are tried first.
883    
884 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
885 root 1.148
886     When this flag is set, then the names will be returned in an order
887     suitable for stat()'ing each one. That is, when you plan to stat()
888     all files in the given directory, then the returned order will likely
889     be fastest.
890    
891 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
892     the likely dirs come first, resulting in a less optimal stat order.
893 root 1.148
894 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
895 root 1.148
896     This flag should not be set when calling C<aio_readdirx>. Instead, it
897     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
898 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
899 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
900    
901     =back
902 root 1.37
903 root 1.106
904 root 1.209 =item aio_load $pathname, $data, $callback->($status)
905 root 1.98
906     This is a composite request that tries to fully load the given file into
907     memory. Status is the same as with aio_read.
908    
909     =cut
910    
911     sub aio_load($$;$) {
912 root 1.123 my ($path, undef, $cb) = @_;
913     my $data = \$_[1];
914 root 1.98
915 root 1.123 my $pri = aioreq_pri;
916     my $grp = aio_group $cb;
917    
918     aioreq_pri $pri;
919     add $grp aio_open $path, O_RDONLY, 0, sub {
920     my $fh = shift
921     or return $grp->result (-1);
922 root 1.98
923     aioreq_pri $pri;
924 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
925     $grp->result ($_[0]);
926 root 1.98 };
927 root 1.123 };
928 root 1.98
929 root 1.123 $grp
930 root 1.98 }
931    
932 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
933    
934     Try to copy the I<file> (directories not supported as either source or
935     destination) from C<$srcpath> to C<$dstpath> and call the callback with
936 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
937 root 1.82
938 root 1.134 This is a composite request that creates the destination file with
939 root 1.82 mode 0200 and copies the contents of the source file into it using
940     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
941     uid/gid, in that order.
942    
943     If an error occurs, the partial destination file will be unlinked, if
944     possible, except when setting atime, mtime, access mode and uid/gid, where
945     errors are being ignored.
946    
947     =cut
948    
949     sub aio_copy($$;$) {
950 root 1.123 my ($src, $dst, $cb) = @_;
951 root 1.82
952 root 1.123 my $pri = aioreq_pri;
953     my $grp = aio_group $cb;
954 root 1.82
955 root 1.123 aioreq_pri $pri;
956     add $grp aio_open $src, O_RDONLY, 0, sub {
957     if (my $src_fh = $_[0]) {
958 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
959 root 1.95
960 root 1.123 aioreq_pri $pri;
961     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
962     if (my $dst_fh = $_[0]) {
963     aioreq_pri $pri;
964     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
965     if ($_[0] == $stat[7]) {
966     $grp->result (0);
967     close $src_fh;
968    
969 root 1.147 my $ch = sub {
970     aioreq_pri $pri;
971     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
972     aioreq_pri $pri;
973     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
974     aioreq_pri $pri;
975     add $grp aio_close $dst_fh;
976     }
977     };
978     };
979 root 1.123
980     aioreq_pri $pri;
981 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
982     if ($_[0] < 0 && $! == ENOSYS) {
983     aioreq_pri $pri;
984     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
985     } else {
986     $ch->();
987     }
988     };
989 root 1.123 } else {
990     $grp->result (-1);
991     close $src_fh;
992     close $dst_fh;
993    
994     aioreq $pri;
995     add $grp aio_unlink $dst;
996     }
997     };
998     } else {
999     $grp->result (-1);
1000     }
1001     },
1002 root 1.82
1003 root 1.123 } else {
1004     $grp->result (-1);
1005     }
1006     };
1007 root 1.82
1008 root 1.123 $grp
1009 root 1.82 }
1010    
1011     =item aio_move $srcpath, $dstpath, $callback->($status)
1012    
1013     Try to move the I<file> (directories not supported as either source or
1014     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1015 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1016 root 1.82
1017 root 1.137 This is a composite request that tries to rename(2) the file first; if
1018     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1019     that is successful, unlinks the C<$srcpath>.
1020 root 1.82
1021     =cut
1022    
1023     sub aio_move($$;$) {
1024 root 1.123 my ($src, $dst, $cb) = @_;
1025 root 1.82
1026 root 1.123 my $pri = aioreq_pri;
1027     my $grp = aio_group $cb;
1028 root 1.82
1029 root 1.123 aioreq_pri $pri;
1030     add $grp aio_rename $src, $dst, sub {
1031     if ($_[0] && $! == EXDEV) {
1032     aioreq_pri $pri;
1033     add $grp aio_copy $src, $dst, sub {
1034     $grp->result ($_[0]);
1035 root 1.95
1036 root 1.196 unless ($_[0]) {
1037 root 1.123 aioreq_pri $pri;
1038     add $grp aio_unlink $src;
1039     }
1040     };
1041     } else {
1042     $grp->result ($_[0]);
1043     }
1044     };
1045 root 1.82
1046 root 1.123 $grp
1047 root 1.82 }
1048    
1049 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1050 root 1.40
1051 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1052 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1053     names, directories you can recurse into (directories), and ones you cannot
1054     recurse into (everything else, including symlinks to directories).
1055 root 1.52
1056 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1057     C<$maxreq> specifies the maximum number of outstanding aio requests that
1058     this function generates. If it is C<< <= 0 >>, then a suitable default
1059 root 1.81 will be chosen (currently 4).
1060 root 1.40
1061     On error, the callback is called without arguments, otherwise it receives
1062     two array-refs with path-relative entry names.
1063    
1064     Example:
1065    
1066     aio_scandir $dir, 0, sub {
1067     my ($dirs, $nondirs) = @_;
1068     print "real directories: @$dirs\n";
1069     print "everything else: @$nondirs\n";
1070     };
1071    
1072     Implementation notes.
1073    
1074     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1075    
1076 root 1.149 If readdir returns file type information, then this is used directly to
1077     find directories.
1078    
1079     Otherwise, after reading the directory, the modification time, size etc.
1080     of the directory before and after the readdir is checked, and if they
1081     match (and isn't the current time), the link count will be used to decide
1082     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1083     number of subdirectories will be assumed.
1084    
1085     Then entries will be sorted into likely directories a non-initial dot
1086     currently) and likely non-directories (see C<aio_readdirx>). Then every
1087     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1088     in order of their inode numbers. If that succeeds, it assumes that the
1089     entry is a directory or a symlink to directory (which will be checked
1090 root 1.207 separately). This is often faster than stat'ing the entry itself because
1091 root 1.52 filesystems might detect the type of the entry without reading the inode
1092 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1093     the filetype information on readdir.
1094 root 1.52
1095     If the known number of directories (link count - 2) has been reached, the
1096     rest of the entries is assumed to be non-directories.
1097    
1098     This only works with certainty on POSIX (= UNIX) filesystems, which
1099     fortunately are the vast majority of filesystems around.
1100    
1101     It will also likely work on non-POSIX filesystems with reduced efficiency
1102     as those tend to return 0 or 1 as link counts, which disables the
1103     directory counting heuristic.
1104 root 1.40
1105     =cut
1106    
1107 root 1.100 sub aio_scandir($$;$) {
1108 root 1.123 my ($path, $maxreq, $cb) = @_;
1109    
1110     my $pri = aioreq_pri;
1111 root 1.40
1112 root 1.123 my $grp = aio_group $cb;
1113 root 1.80
1114 root 1.123 $maxreq = 4 if $maxreq <= 0;
1115 root 1.55
1116 root 1.210 # get a wd object
1117 root 1.123 aioreq_pri $pri;
1118 root 1.210 add $grp aio_wd $path, sub {
1119 root 1.212 $_[0]
1120     or return $grp->result ();
1121    
1122 root 1.210 my $wd = [shift, "."];
1123 root 1.40
1124 root 1.210 # stat once
1125 root 1.80 aioreq_pri $pri;
1126 root 1.210 add $grp aio_stat $wd, sub {
1127     return $grp->result () if $_[0];
1128     my $now = time;
1129     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1130 root 1.40
1131 root 1.210 # read the directory entries
1132 root 1.80 aioreq_pri $pri;
1133 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1134     my $entries = shift
1135     or return $grp->result ();
1136    
1137     # stat the dir another time
1138     aioreq_pri $pri;
1139     add $grp aio_stat $wd, sub {
1140     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1141 root 1.95
1142 root 1.210 my $ndirs;
1143 root 1.95
1144 root 1.210 # take the slow route if anything looks fishy
1145     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1146     $ndirs = -1;
1147     } else {
1148     # if nlink == 2, we are finished
1149     # for non-posix-fs's, we rely on nlink < 2
1150     $ndirs = (stat _)[3] - 2
1151     or return $grp->result ([], $entries);
1152     }
1153 root 1.123
1154 root 1.210 my (@dirs, @nondirs);
1155 root 1.40
1156 root 1.210 my $statgrp = add $grp aio_group sub {
1157     $grp->result (\@dirs, \@nondirs);
1158     };
1159 root 1.40
1160 root 1.210 limit $statgrp $maxreq;
1161     feed $statgrp sub {
1162     return unless @$entries;
1163     my $entry = shift @$entries;
1164    
1165     aioreq_pri $pri;
1166     $wd->[1] = "$entry/.";
1167     add $statgrp aio_stat $wd, sub {
1168     if ($_[0] < 0) {
1169     push @nondirs, $entry;
1170     } else {
1171     # need to check for real directory
1172     aioreq_pri $pri;
1173     $wd->[1] = $entry;
1174     add $statgrp aio_lstat $wd, sub {
1175     if (-d _) {
1176     push @dirs, $entry;
1177    
1178     unless (--$ndirs) {
1179     push @nondirs, @$entries;
1180     feed $statgrp;
1181     }
1182     } else {
1183     push @nondirs, $entry;
1184 root 1.74 }
1185 root 1.40 }
1186     }
1187 root 1.210 };
1188 root 1.74 };
1189 root 1.40 };
1190     };
1191     };
1192 root 1.123 };
1193 root 1.55
1194 root 1.123 $grp
1195 root 1.40 }
1196    
1197 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1198 root 1.99
1199 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1200 root 1.239 status of the final C<rmdir> only. This is a composite request that
1201 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1202     everything else.
1203 root 1.99
1204     =cut
1205    
1206     sub aio_rmtree;
1207 root 1.100 sub aio_rmtree($;$) {
1208 root 1.123 my ($path, $cb) = @_;
1209 root 1.99
1210 root 1.123 my $pri = aioreq_pri;
1211     my $grp = aio_group $cb;
1212 root 1.99
1213 root 1.123 aioreq_pri $pri;
1214     add $grp aio_scandir $path, 0, sub {
1215     my ($dirs, $nondirs) = @_;
1216 root 1.99
1217 root 1.123 my $dirgrp = aio_group sub {
1218     add $grp aio_rmdir $path, sub {
1219     $grp->result ($_[0]);
1220 root 1.99 };
1221 root 1.123 };
1222 root 1.99
1223 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1224     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1225 root 1.99
1226 root 1.123 add $grp $dirgrp;
1227     };
1228 root 1.99
1229 root 1.123 $grp
1230 root 1.99 }
1231    
1232 root 1.119 =item aio_sync $callback->($status)
1233    
1234     Asynchronously call sync and call the callback when finished.
1235    
1236 root 1.40 =item aio_fsync $fh, $callback->($status)
1237 root 1.1
1238     Asynchronously call fsync on the given filehandle and call the callback
1239     with the fsync result code.
1240    
1241 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1242 root 1.1
1243     Asynchronously call fdatasync on the given filehandle and call the
1244 root 1.26 callback with the fdatasync result code.
1245    
1246     If this call isn't available because your OS lacks it or it couldn't be
1247     detected, it will be emulated by calling C<fsync> instead.
1248 root 1.1
1249 root 1.206 =item aio_syncfs $fh, $callback->($status)
1250    
1251     Asynchronously call the syncfs syscall to sync the filesystem associated
1252     to the given filehandle and call the callback with the syncfs result
1253     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1254     errno to C<ENOSYS> nevertheless.
1255    
1256 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1257    
1258     Sync the data portion of the file specified by C<$offset> and C<$length>
1259     to disk (but NOT the metadata), by calling the Linux-specific
1260     sync_file_range call. If sync_file_range is not available or it returns
1261     ENOSYS, then fdatasync or fsync is being substituted.
1262    
1263     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1264     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1265     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1266     manpage for details.
1267    
1268 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1269 root 1.120
1270     This request tries to open, fsync and close the given path. This is a
1271 root 1.135 composite request intended to sync directories after directory operations
1272 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1273     specific effect, but usually it makes sure that directory changes get
1274     written to disc. It works for anything that can be opened for read-only,
1275     not just directories.
1276    
1277 root 1.162 Future versions of this function might fall back to other methods when
1278     C<fsync> on the directory fails (such as calling C<sync>).
1279    
1280 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1281    
1282     =cut
1283    
1284     sub aio_pathsync($;$) {
1285 root 1.123 my ($path, $cb) = @_;
1286    
1287     my $pri = aioreq_pri;
1288     my $grp = aio_group $cb;
1289 root 1.120
1290 root 1.123 aioreq_pri $pri;
1291     add $grp aio_open $path, O_RDONLY, 0, sub {
1292     my ($fh) = @_;
1293     if ($fh) {
1294     aioreq_pri $pri;
1295     add $grp aio_fsync $fh, sub {
1296     $grp->result ($_[0]);
1297 root 1.120
1298     aioreq_pri $pri;
1299 root 1.123 add $grp aio_close $fh;
1300     };
1301     } else {
1302     $grp->result (-1);
1303     }
1304     };
1305 root 1.120
1306 root 1.123 $grp
1307 root 1.120 }
1308    
1309 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1310    
1311     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1312 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1313     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1314     scalar must only be modified in-place while an aio operation is pending on
1315     it).
1316 root 1.170
1317     It calls the C<msync> function of your OS, if available, with the memory
1318     area starting at C<$offset> in the string and ending C<$length> bytes
1319     later. If C<$length> is negative, counts from the end, and if C<$length>
1320     is C<undef>, then it goes till the end of the string. The flags can be
1321     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1322     C<IO::AIO::MS_SYNC>.
1323    
1324     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1325    
1326     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1327     scalars.
1328    
1329     It touches (reads or writes) all memory pages in the specified
1330 root 1.239 range inside the scalar. All caveats and parameters are the same
1331 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1332     C<0> (which reads all pages and ensures they are instantiated) or
1333 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1334 root 1.170 writing an octet from it, which dirties the page).
1335    
1336 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1337    
1338     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1339     scalars.
1340    
1341     It reads in all the pages of the underlying storage into memory (if any)
1342     and locks them, so they are not getting swapped/paged out or removed.
1343    
1344     If C<$length> is undefined, then the scalar will be locked till the end.
1345    
1346     On systems that do not implement C<mlock>, this function returns C<-1>
1347     and sets errno to C<ENOSYS>.
1348    
1349     Note that the corresponding C<munlock> is synchronous and is
1350     documented under L<MISCELLANEOUS FUNCTIONS>.
1351    
1352 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1353     C<$data> gets destroyed.
1354    
1355     open my $fh, "<", $path or die "$path: $!";
1356     my $data;
1357     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1358     aio_mlock $data; # mlock in background
1359    
1360 root 1.182 =item aio_mlockall $flags, $callback->($status)
1361    
1362     Calls the C<mlockall> function with the given C<$flags> (a combination of
1363     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1364    
1365     On systems that do not implement C<mlockall>, this function returns C<-1>
1366     and sets errno to C<ENOSYS>.
1367    
1368     Note that the corresponding C<munlockall> is synchronous and is
1369     documented under L<MISCELLANEOUS FUNCTIONS>.
1370    
1371 root 1.183 Example: asynchronously lock all current and future pages into memory.
1372    
1373     aio_mlockall IO::AIO::MCL_FUTURE;
1374    
1375 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1376    
1377 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1378     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1379     the ioctl is not available on your OS, then this request will fail with
1380 root 1.223 C<ENOSYS>.
1381    
1382     C<$start> is the starting offset to query extents for, C<$length> is the
1383     size of the range to query - if it is C<undef>, then the whole file will
1384     be queried.
1385    
1386     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1387     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1388     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1389     the data portion.
1390    
1391     C<$count> is the maximum number of extent records to return. If it is
1392 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1393 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1394 root 1.232 instead of the extents themselves (which is unreliable, see below).
1395 root 1.223
1396     If an error occurs, the callback receives no arguments. The special
1397     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1398    
1399     Otherwise, the callback receives an array reference with extent
1400     structures. Each extent structure is an array reference itself, with the
1401     following members:
1402    
1403     [$logical, $physical, $length, $flags]
1404    
1405     Flags is any combination of the following flag values (typically either C<0>
1406 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1407 root 1.223
1408     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1409     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1410     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1411     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1412     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1413     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1414    
1415 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1416     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1417     it to return all extents of a range for files with large number of
1418     extents. The code works around all these issues if C<$count> is undef.
1419    
1420 root 1.58 =item aio_group $callback->(...)
1421 root 1.54
1422 root 1.55 This is a very special aio request: Instead of doing something, it is a
1423     container for other aio requests, which is useful if you want to bundle
1424 root 1.71 many requests into a single, composite, request with a definite callback
1425     and the ability to cancel the whole request with its subrequests.
1426 root 1.55
1427     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1428     for more info.
1429    
1430     Example:
1431    
1432     my $grp = aio_group sub {
1433     print "all stats done\n";
1434     };
1435    
1436     add $grp
1437     (aio_stat ...),
1438     (aio_stat ...),
1439     ...;
1440    
1441 root 1.63 =item aio_nop $callback->()
1442    
1443     This is a special request - it does nothing in itself and is only used for
1444     side effects, such as when you want to add a dummy request to a group so
1445     that finishing the requests in the group depends on executing the given
1446     code.
1447    
1448 root 1.64 While this request does nothing, it still goes through the execution
1449     phase and still requires a worker thread. Thus, the callback will not
1450     be executed immediately but only after other requests in the queue have
1451     entered their execution phase. This can be used to measure request
1452     latency.
1453    
1454 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1455 root 1.54
1456     Mainly used for debugging and benchmarking, this aio request puts one of
1457     the request workers to sleep for the given time.
1458    
1459 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1460 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1461     immense (it blocks a thread for a long time) so do not use this function
1462     except to put your application under artificial I/O pressure.
1463 root 1.56
1464 root 1.5 =back
1465    
1466 root 1.209
1467     =head2 IO::AIO::WD - multiple working directories
1468    
1469     Your process only has one current working directory, which is used by all
1470     threads. This makes it hard to use relative paths (some other component
1471     could call C<chdir> at any time, and it is hard to control when the path
1472     will be used by IO::AIO).
1473    
1474     One solution for this is to always use absolute paths. This usually works,
1475     but can be quite slow (the kernel has to walk the whole path on every
1476     access), and can also be a hassle to implement.
1477    
1478     Newer POSIX systems have a number of functions (openat, fdopendir,
1479     futimensat and so on) that make it possible to specify working directories
1480     per operation.
1481    
1482     For portability, and because the clowns who "designed", or shall I write,
1483     perpetrated this new interface were obviously half-drunk, this abstraction
1484     cannot be perfect, though.
1485    
1486     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1487     object. This object stores the canonicalised, absolute version of the
1488     path, and on systems that allow it, also a directory file descriptor.
1489    
1490     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1491     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1492 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1493     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1494 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1495 root 1.209 to that IO::AIO::WD object.
1496    
1497     For example, to get a wd object for F</etc> and then stat F<passwd>
1498     inside, you would write:
1499    
1500     aio_wd "/etc", sub {
1501     my $etcdir = shift;
1502    
1503     # although $etcdir can be undef on error, there is generally no reason
1504     # to check for errors here, as aio_stat will fail with ENOENT
1505     # when $etcdir is undef.
1506    
1507     aio_stat [$etcdir, "passwd"], sub {
1508     # yay
1509     };
1510     };
1511    
1512 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1513     creating an IO::AIO::WD object is itself a potentially blocking operation,
1514     which is why it is done asynchronously.
1515 root 1.214
1516     To stat the directory obtained with C<aio_wd> above, one could write
1517     either of the following three request calls:
1518    
1519     aio_lstat "/etc" , sub { ... # pathname as normal string
1520     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1521     aio_lstat $wd , sub { ... # shorthand for the previous
1522 root 1.209
1523     As with normal pathnames, IO::AIO keeps a copy of the working directory
1524     object and the pathname string, so you could write the following without
1525     causing any issues due to C<$path> getting reused:
1526    
1527     my $path = [$wd, undef];
1528    
1529     for my $name (qw(abc def ghi)) {
1530     $path->[1] = $name;
1531     aio_stat $path, sub {
1532     # ...
1533     };
1534     }
1535    
1536     There are some caveats: when directories get renamed (or deleted), the
1537     pathname string doesn't change, so will point to the new directory (or
1538     nowhere at all), while the directory fd, if available on the system,
1539     will still point to the original directory. Most functions accepting a
1540     pathname will use the directory fd on newer systems, and the string on
1541     older systems. Some functions (such as realpath) will always rely on the
1542     string form of the pathname.
1543    
1544 root 1.239 So this functionality is mainly useful to get some protection against
1545 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1546     reference, and to speed up doing many operations in the same directory
1547     (e.g. when stat'ing all files in a directory).
1548    
1549     The following functions implement this working directory abstraction:
1550    
1551     =over 4
1552    
1553     =item aio_wd $pathname, $callback->($wd)
1554    
1555     Asynchonously canonicalise the given pathname and convert it to an
1556     IO::AIO::WD object representing it. If possible and supported on the
1557     system, also open a directory fd to speed up pathname resolution relative
1558     to this working directory.
1559    
1560     If something goes wrong, then C<undef> is passwd to the callback instead
1561     of a working directory object and C<$!> is set appropriately. Since
1562     passing C<undef> as working directory component of a pathname fails the
1563     request with C<ENOENT>, there is often no need for error checking in the
1564     C<aio_wd> callback, as future requests using the value will fail in the
1565     expected way.
1566    
1567     =item IO::AIO::CWD
1568    
1569     This is a compiletime constant (object) that represents the process
1570     current working directory.
1571    
1572 root 1.239 Specifying this object as working directory object for a pathname is as if
1573     the pathname would be specified directly, without a directory object. For
1574     example, these calls are functionally identical:
1575 root 1.209
1576     aio_stat "somefile", sub { ... };
1577     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1578    
1579     =back
1580    
1581 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1582     C<aio_realpath>:
1583    
1584     aio_realpath $wd, sub {
1585     warn "path is $_[0]\n";
1586     };
1587    
1588 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1589     sometimes, fall back to using an absolue path.
1590 root 1.209
1591 root 1.53 =head2 IO::AIO::REQ CLASS
1592 root 1.52
1593     All non-aggregate C<aio_*> functions return an object of this class when
1594     called in non-void context.
1595    
1596     =over 4
1597    
1598 root 1.65 =item cancel $req
1599 root 1.52
1600     Cancels the request, if possible. Has the effect of skipping execution
1601     when entering the B<execute> state and skipping calling the callback when
1602     entering the the B<result> state, but will leave the request otherwise
1603 root 1.151 untouched (with the exception of readdir). That means that requests that
1604     currently execute will not be stopped and resources held by the request
1605     will not be freed prematurely.
1606 root 1.52
1607 root 1.65 =item cb $req $callback->(...)
1608    
1609     Replace (or simply set) the callback registered to the request.
1610    
1611 root 1.52 =back
1612    
1613 root 1.55 =head2 IO::AIO::GRP CLASS
1614    
1615     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1616     objects of this class, too.
1617    
1618     A IO::AIO::GRP object is a special request that can contain multiple other
1619     aio requests.
1620    
1621     You create one by calling the C<aio_group> constructing function with a
1622     callback that will be called when all contained requests have entered the
1623     C<done> state:
1624    
1625     my $grp = aio_group sub {
1626     print "all requests are done\n";
1627     };
1628    
1629     You add requests by calling the C<add> method with one or more
1630     C<IO::AIO::REQ> objects:
1631    
1632     $grp->add (aio_unlink "...");
1633    
1634 root 1.58 add $grp aio_stat "...", sub {
1635     $_[0] or return $grp->result ("error");
1636    
1637     # add another request dynamically, if first succeeded
1638     add $grp aio_open "...", sub {
1639     $grp->result ("ok");
1640     };
1641     };
1642 root 1.55
1643     This makes it very easy to create composite requests (see the source of
1644     C<aio_move> for an application) that work and feel like simple requests.
1645    
1646 root 1.62 =over 4
1647    
1648     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1649 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1650    
1651 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1652 root 1.59 only the request itself, but also all requests it contains.
1653 root 1.55
1654 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1655 root 1.55
1656 root 1.62 =item * You must not add requests to a group from within the group callback (or
1657 root 1.60 any later time).
1658    
1659 root 1.62 =back
1660    
1661 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1662     will finish very quickly. If they contain only requests that are in the
1663     C<done> state, they will also finish. Otherwise they will continue to
1664     exist.
1665    
1666 root 1.133 That means after creating a group you have some time to add requests
1667     (precisely before the callback has been invoked, which is only done within
1668     the C<poll_cb>). And in the callbacks of those requests, you can add
1669     further requests to the group. And only when all those requests have
1670     finished will the the group itself finish.
1671 root 1.57
1672 root 1.55 =over 4
1673    
1674 root 1.65 =item add $grp ...
1675    
1676 root 1.55 =item $grp->add (...)
1677    
1678 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1679     be added, including other groups, as long as you do not create circular
1680     dependencies.
1681    
1682     Returns all its arguments.
1683 root 1.55
1684 root 1.74 =item $grp->cancel_subs
1685    
1686     Cancel all subrequests and clears any feeder, but not the group request
1687     itself. Useful when you queued a lot of events but got a result early.
1688    
1689 root 1.168 The group request will finish normally (you cannot add requests to the
1690     group).
1691    
1692 root 1.58 =item $grp->result (...)
1693    
1694     Set the result value(s) that will be passed to the group callback when all
1695 root 1.120 subrequests have finished and set the groups errno to the current value
1696 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1697     no argument will be passed and errno is zero.
1698    
1699     =item $grp->errno ([$errno])
1700    
1701     Sets the group errno value to C<$errno>, or the current value of errno
1702     when the argument is missing.
1703    
1704     Every aio request has an associated errno value that is restored when
1705     the callback is invoked. This method lets you change this value from its
1706     default (0).
1707    
1708     Calling C<result> will also set errno, so make sure you either set C<$!>
1709     before the call to C<result>, or call c<errno> after it.
1710 root 1.58
1711 root 1.65 =item feed $grp $callback->($grp)
1712 root 1.60
1713     Sets a feeder/generator on this group: every group can have an attached
1714     generator that generates requests if idle. The idea behind this is that,
1715     although you could just queue as many requests as you want in a group,
1716 root 1.139 this might starve other requests for a potentially long time. For example,
1717 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1718     requests, delaying any later requests for a long time.
1719 root 1.60
1720     To avoid this, and allow incremental generation of requests, you can
1721     instead a group and set a feeder on it that generates those requests. The
1722 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1723 root 1.60 below) requests active in the group itself and is expected to queue more
1724     requests.
1725    
1726 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1727     not impose any limits).
1728 root 1.60
1729 root 1.65 If the feed does not queue more requests when called, it will be
1730 root 1.60 automatically removed from the group.
1731    
1732 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1733     C<2> automatically.
1734 root 1.60
1735     Example:
1736    
1737     # stat all files in @files, but only ever use four aio requests concurrently:
1738    
1739     my $grp = aio_group sub { print "finished\n" };
1740 root 1.68 limit $grp 4;
1741 root 1.65 feed $grp sub {
1742 root 1.60 my $file = pop @files
1743     or return;
1744    
1745     add $grp aio_stat $file, sub { ... };
1746 root 1.65 };
1747 root 1.60
1748 root 1.68 =item limit $grp $num
1749 root 1.60
1750     Sets the feeder limit for the group: The feeder will be called whenever
1751     the group contains less than this many requests.
1752    
1753     Setting the limit to C<0> will pause the feeding process.
1754    
1755 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1756     automatically bumps it up to C<2>.
1757    
1758 root 1.55 =back
1759    
1760 root 1.5 =head2 SUPPORT FUNCTIONS
1761    
1762 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1763    
1764 root 1.5 =over 4
1765    
1766     =item $fileno = IO::AIO::poll_fileno
1767    
1768 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1769 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1770     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1771     you have to call C<poll_cb> to check the results.
1772 root 1.5
1773     See C<poll_cb> for an example.
1774    
1775     =item IO::AIO::poll_cb
1776    
1777 root 1.240 Process some requests that have reached the result phase (i.e. they have
1778     been executed but the results are not yet reported). You have to call
1779     this "regularly" to finish outstanding requests.
1780    
1781     Returns C<0> if all events could be processed (or there were no
1782     events to process), or C<-1> if it returned earlier for whatever
1783     reason. Returns immediately when no events are outstanding. The amount
1784     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1785     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1786    
1787     If not all requests were processed for whatever reason, the poll file
1788     descriptor will still be ready when C<poll_cb> returns, so normally you
1789     don't have to do anything special to have it called later.
1790 root 1.78
1791 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1792     ready, it can be beneficial to call this function from loops which submit
1793     a lot of requests, to make sure the results get processed when they become
1794     available and not just when the loop is finished and the event loop takes
1795     over again. This function returns very fast when there are no outstanding
1796     requests.
1797    
1798 root 1.20 Example: Install an Event watcher that automatically calls
1799 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1800     SYNOPSIS section, at the top of this document):
1801 root 1.5
1802     Event->io (fd => IO::AIO::poll_fileno,
1803     poll => 'r', async => 1,
1804     cb => \&IO::AIO::poll_cb);
1805    
1806 root 1.175 =item IO::AIO::poll_wait
1807    
1808 root 1.240 Wait until either at least one request is in the result phase or no
1809     requests are outstanding anymore.
1810    
1811     This is useful if you want to synchronously wait for some requests to
1812     become ready, without actually handling them.
1813 root 1.175
1814     See C<nreqs> for an example.
1815    
1816     =item IO::AIO::poll
1817    
1818     Waits until some requests have been handled.
1819    
1820     Returns the number of requests processed, but is otherwise strictly
1821     equivalent to:
1822    
1823     IO::AIO::poll_wait, IO::AIO::poll_cb
1824    
1825     =item IO::AIO::flush
1826    
1827     Wait till all outstanding AIO requests have been handled.
1828    
1829     Strictly equivalent to:
1830    
1831     IO::AIO::poll_wait, IO::AIO::poll_cb
1832     while IO::AIO::nreqs;
1833    
1834 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1835    
1836     =item IO::AIO::max_poll_time $seconds
1837    
1838     These set the maximum number of requests (default C<0>, meaning infinity)
1839     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1840     the maximum amount of time (default C<0>, meaning infinity) spent in
1841     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1842     of time C<poll_cb> is allowed to use).
1843 root 1.78
1844 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1845     syscall per request processed, which is not normally a problem unless your
1846     callbacks are really really fast or your OS is really really slow (I am
1847     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1848    
1849 root 1.86 Setting these is useful if you want to ensure some level of
1850     interactiveness when perl is not fast enough to process all requests in
1851     time.
1852 root 1.78
1853 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1854 root 1.78
1855     Example: Install an Event watcher that automatically calls
1856 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1857 root 1.78 program get the CPU sometimes even under high AIO load.
1858    
1859 root 1.86 # try not to spend much more than 0.1s in poll_cb
1860     IO::AIO::max_poll_time 0.1;
1861    
1862     # use a low priority so other tasks have priority
1863 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1864     poll => 'r', nice => 1,
1865 root 1.86 cb => &IO::AIO::poll_cb);
1866 root 1.78
1867 root 1.104 =back
1868    
1869 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1870 root 1.13
1871 root 1.105 =over
1872    
1873 root 1.5 =item IO::AIO::min_parallel $nthreads
1874    
1875 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1876     default is C<8>, which means eight asynchronous operations can execute
1877     concurrently at any one time (the number of outstanding requests,
1878     however, is unlimited).
1879 root 1.5
1880 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1881 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1882     create demand for a hundred threads, even if it turns out that everything
1883     is in the cache and could have been processed faster by a single thread.
1884 root 1.34
1885 root 1.61 It is recommended to keep the number of threads relatively low, as some
1886     Linux kernel versions will scale negatively with the number of threads
1887     (higher parallelity => MUCH higher latency). With current Linux 2.6
1888     versions, 4-32 threads should be fine.
1889 root 1.5
1890 root 1.34 Under most circumstances you don't need to call this function, as the
1891     module selects a default that is suitable for low to moderate load.
1892 root 1.5
1893     =item IO::AIO::max_parallel $nthreads
1894    
1895 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1896     specified number of threads are currently running, this function kills
1897     them. This function blocks until the limit is reached.
1898    
1899     While C<$nthreads> are zero, aio requests get queued but not executed
1900     until the number of threads has been increased again.
1901 root 1.5
1902     This module automatically runs C<max_parallel 0> at program end, to ensure
1903     that all threads are killed and that there are no outstanding requests.
1904    
1905     Under normal circumstances you don't need to call this function.
1906    
1907 root 1.86 =item IO::AIO::max_idle $nthreads
1908    
1909 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1910     (i.e., threads that did not get a request to process within the idle
1911     timeout (default: 10 seconds). That means if a thread becomes idle while
1912     C<$nthreads> other threads are also idle, it will free its resources and
1913     exit.
1914 root 1.86
1915     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1916     to allow for extremely high load situations, but want to free resources
1917     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1918    
1919     The default is probably ok in most situations, especially if thread
1920     creation is fast. If thread creation is very slow on your system you might
1921     want to use larger values.
1922    
1923 root 1.188 =item IO::AIO::idle_timeout $seconds
1924    
1925     Sets the minimum idle timeout (default 10) after which worker threads are
1926     allowed to exit. SEe C<IO::AIO::max_idle>.
1927    
1928 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1929 root 1.5
1930 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1931     you do queue up more than this number of requests, the next call to
1932     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1933     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1934     longer exceeded.
1935    
1936     In other words, this setting does not enforce a queue limit, but can be
1937     used to make poll functions block if the limit is exceeded.
1938    
1939 root 1.79 This is a very bad function to use in interactive programs because it
1940     blocks, and a bad way to reduce concurrency because it is inexact: Better
1941     use an C<aio_group> together with a feed callback.
1942    
1943 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1944 root 1.195 a lot of files, you can write somehting like this:
1945    
1946     IO::AIO::max_outstanding 32;
1947    
1948     for my $path (...) {
1949     aio_stat $path , ...;
1950     IO::AIO::poll_cb;
1951     }
1952    
1953     IO::AIO::flush;
1954    
1955     The call to C<poll_cb> inside the loop will normally return instantly, but
1956     as soon as more thna C<32> reqeusts are in-flight, it will block until
1957     some requests have been handled. This keeps the loop from pushing a large
1958     number of C<aio_stat> requests onto the queue.
1959    
1960     The default value for C<max_outstanding> is very large, so there is no
1961     practical limit on the number of outstanding requests.
1962 root 1.5
1963 root 1.104 =back
1964    
1965 root 1.86 =head3 STATISTICAL INFORMATION
1966    
1967 root 1.104 =over
1968    
1969 root 1.86 =item IO::AIO::nreqs
1970    
1971     Returns the number of requests currently in the ready, execute or pending
1972     states (i.e. for which their callback has not been invoked yet).
1973    
1974     Example: wait till there are no outstanding requests anymore:
1975    
1976     IO::AIO::poll_wait, IO::AIO::poll_cb
1977     while IO::AIO::nreqs;
1978    
1979     =item IO::AIO::nready
1980    
1981     Returns the number of requests currently in the ready state (not yet
1982     executed).
1983    
1984     =item IO::AIO::npending
1985    
1986     Returns the number of requests currently in the pending state (executed,
1987     but not yet processed by poll_cb).
1988    
1989 root 1.5 =back
1990    
1991 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1992    
1993 root 1.248 IO::AIO implements some functions that are useful when you want to use
1994     some "Advanced I/O" function not available to in Perl, without going the
1995     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
1996     counterpart.
1997 root 1.157
1998     =over 4
1999    
2000     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2001    
2002     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2003     but is blocking (this makes most sense if you know the input data is
2004     likely cached already and the output filehandle is set to non-blocking
2005     operations).
2006    
2007     Returns the number of bytes copied, or C<-1> on error.
2008    
2009     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2010    
2011 root 1.184 Simply calls the C<posix_fadvise> function (see its
2012 root 1.157 manpage for details). The following advice constants are
2013 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2014 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2015     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2016    
2017     On systems that do not implement C<posix_fadvise>, this function returns
2018     ENOSYS, otherwise the return value of C<posix_fadvise>.
2019    
2020 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2021    
2022     Simply calls the C<posix_madvise> function (see its
2023     manpage for details). The following advice constants are
2024 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2025 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
2026    
2027     On systems that do not implement C<posix_madvise>, this function returns
2028     ENOSYS, otherwise the return value of C<posix_madvise>.
2029    
2030     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2031    
2032     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2033     $scalar (see its manpage for details). The following protect
2034 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2035 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2036    
2037     On systems that do not implement C<mprotect>, this function returns
2038     ENOSYS, otherwise the return value of C<mprotect>.
2039    
2040 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2041    
2042     Memory-maps a file (or anonymous memory range) and attaches it to the
2043 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2044     success, and false otherwise.
2045 root 1.176
2046     The only operations allowed on the scalar are C<substr>/C<vec> that don't
2047     change the string length, and most read-only operations such as copying it
2048     or searching it with regexes and so on.
2049    
2050     Anything else is unsafe and will, at best, result in memory leaks.
2051    
2052     The memory map associated with the C<$scalar> is automatically removed
2053     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
2054     C<IO::AIO::munmap> functions are called.
2055    
2056     This calls the C<mmap>(2) function internally. See your system's manual
2057     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2058    
2059     The C<$length> must be larger than zero and smaller than the actual
2060     filesize.
2061    
2062     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2063     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2064    
2065 root 1.256 C<$flags> can be a combination of
2066     C<IO::AIO::MAP_SHARED> or
2067     C<IO::AIO::MAP_PRIVATE>,
2068     or a number of system-specific flags (when not available, the are C<0>):
2069     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2070     C<IO::AIO::MAP_HUGETLB>,
2071     C<IO::AIO::MAP_LOCKED>,
2072     C<IO::AIO::MAP_NORESERVE>,
2073     C<IO::AIO::MAP_POPULATE>,
2074     C<IO::AIO::MAP_NONBLOCK>,
2075     C<IO::AIO::MAP_FIXED>,
2076     C<IO::AIO::MAP_GROWSDOWN>,
2077     C<IO::AIO::MAP_32BIT>,
2078     C<IO::AIO::MAP_HUGETLB> or
2079     C<IO::AIO::MAP_STACK>.
2080 root 1.176
2081     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2082    
2083 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2084     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2085    
2086 root 1.177 Example:
2087    
2088     use Digest::MD5;
2089     use IO::AIO;
2090    
2091     open my $fh, "<verybigfile"
2092     or die "$!";
2093    
2094     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2095     or die "verybigfile: $!";
2096    
2097     my $fast_md5 = md5 $data;
2098    
2099 root 1.176 =item IO::AIO::munmap $scalar
2100    
2101     Removes a previous mmap and undefines the C<$scalar>.
2102    
2103 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2104 root 1.174
2105 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2106     C<aio_mlock> call (see its description for details).
2107 root 1.174
2108     =item IO::AIO::munlockall
2109    
2110     Calls the C<munlockall> function.
2111    
2112     On systems that do not implement C<munlockall>, this function returns
2113     ENOSYS, otherwise the return value of C<munlockall>.
2114    
2115 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2116    
2117     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2118     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2119     should be the file offset.
2120    
2121 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2122     silently corrupt the data in this case.
2123    
2124 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2125     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2126     C<IO::AIO::SPLICE_F_GIFT>.
2127    
2128     See the C<splice(2)> manpage for details.
2129    
2130     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2131    
2132 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2133 root 1.225 description for C<IO::AIO::splice> above for details.
2134    
2135 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2136    
2137     Attempts to query or change the pipe buffer size. Obviously works only
2138     on pipes, and currently works only on GNU/Linux systems, and fails with
2139     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2140     size on other systems, drop me a note.
2141    
2142 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2143    
2144     This is a direct interface to the Linux L<pipe2(2)> system call. If
2145     C<$flags> is missing or C<0>, then this should be the same as a call to
2146 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2147     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2148     (..., 4096, O_BINARY)>.
2149 root 1.253
2150     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2151     the given flags (Linux 2.6.27, glibc 2.9).
2152    
2153     On success, the read and write file handles are returned.
2154    
2155     On error, nothing will be returned. If the pipe2 syscall is missing and
2156     C<$flags> is non-zero, fails with C<ENOSYS>.
2157    
2158     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2159     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2160     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2161    
2162 root 1.157 =back
2163    
2164 root 1.1 =cut
2165    
2166 root 1.61 min_parallel 8;
2167 root 1.1
2168 root 1.95 END { flush }
2169 root 1.82
2170 root 1.1 1;
2171    
2172 root 1.175 =head1 EVENT LOOP INTEGRATION
2173    
2174     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2175     automatically into many event loops:
2176    
2177     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2178     use AnyEvent::AIO;
2179    
2180     You can also integrate IO::AIO manually into many event loops, here are
2181     some examples of how to do this:
2182    
2183     # EV integration
2184     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2185    
2186     # Event integration
2187     Event->io (fd => IO::AIO::poll_fileno,
2188     poll => 'r',
2189     cb => \&IO::AIO::poll_cb);
2190    
2191     # Glib/Gtk2 integration
2192     add_watch Glib::IO IO::AIO::poll_fileno,
2193     in => sub { IO::AIO::poll_cb; 1 };
2194    
2195     # Tk integration
2196     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2197     readable => \&IO::AIO::poll_cb);
2198    
2199     # Danga::Socket integration
2200     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2201     \&IO::AIO::poll_cb);
2202    
2203 root 1.27 =head2 FORK BEHAVIOUR
2204    
2205 root 1.197 Usage of pthreads in a program changes the semantics of fork
2206     considerably. Specifically, only async-safe functions can be called after
2207     fork. Perl doesn't know about this, so in general, you cannot call fork
2208 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2209     pthreads, so this applies, but many other extensions and (for inexplicable
2210     reasons) perl itself often is linked against pthreads, so this limitation
2211     applies to quite a lot of perls.
2212    
2213     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2214     only works in the process that loaded it. Forking is fully supported, but
2215     using IO::AIO in the child is not.
2216    
2217     You might get around by not I<using> IO::AIO before (or after)
2218     forking. You could also try to call the L<IO::AIO::reinit> function in the
2219     child:
2220    
2221     =over 4
2222    
2223     =item IO::AIO::reinit
2224    
2225 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2226     data structures. This is not an operation supported by any standards, but
2227 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2228    
2229     The only reasonable use for this function is to call it after forking, if
2230     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2231     the process will result in undefined behaviour. Calling it at any time
2232     will also result in any undefined (by POSIX) behaviour.
2233    
2234     =back
2235 root 1.52
2236 root 1.60 =head2 MEMORY USAGE
2237    
2238 root 1.72 Per-request usage:
2239    
2240     Each aio request uses - depending on your architecture - around 100-200
2241     bytes of memory. In addition, stat requests need a stat buffer (possibly
2242     a few hundred bytes), readdir requires a result buffer and so on. Perl
2243     scalars and other data passed into aio requests will also be locked and
2244     will consume memory till the request has entered the done state.
2245 root 1.60
2246 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2247 root 1.60 problem.
2248    
2249 root 1.72 Per-thread usage:
2250    
2251     In the execution phase, some aio requests require more memory for
2252     temporary buffers, and each thread requires a stack and other data
2253     structures (usually around 16k-128k, depending on the OS).
2254    
2255     =head1 KNOWN BUGS
2256    
2257 root 1.73 Known bugs will be fixed in the next release.
2258 root 1.60
2259 root 1.1 =head1 SEE ALSO
2260    
2261 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2262     more natural syntax.
2263 root 1.1
2264     =head1 AUTHOR
2265    
2266     Marc Lehmann <schmorp@schmorp.de>
2267     http://home.schmorp.de/
2268    
2269     =cut
2270