ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.269
Committed: Tue Jun 6 04:29:35 2017 UTC (6 years, 11 months ago) by root
Branch: MAIN
Changes since 1.268: +8 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
184     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238     aio_mkdir $pathname, $mode, $callback->($status)
239     aio_rmdir $pathname, $callback->($status)
240     aio_readdir $pathname, $callback->($entries)
241     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
242     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
243     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
244 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
245 root 1.209 aio_load $pathname, $data, $callback->($status)
246 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
247     aio_move $srcpath, $dstpath, $callback->($status)
248 root 1.209 aio_rmtree $pathname, $callback->($status)
249 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
250     aio_ioctl $fh, $request, $buf, $callback->($status)
251 root 1.175 aio_sync $callback->($status)
252 root 1.206 aio_syncfs $fh, $callback->($status)
253 root 1.175 aio_fsync $fh, $callback->($status)
254     aio_fdatasync $fh, $callback->($status)
255     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
256 root 1.209 aio_pathsync $pathname, $callback->($status)
257 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
258 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
259 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
260     aio_mlockall $flags, $callback->($status)
261 root 1.175 aio_group $callback->(...)
262     aio_nop $callback->()
263    
264     $prev_pri = aioreq_pri [$pri]
265     aioreq_nice $pri_adjust
266    
267     IO::AIO::poll_wait
268     IO::AIO::poll_cb
269     IO::AIO::poll
270     IO::AIO::flush
271     IO::AIO::max_poll_reqs $nreqs
272     IO::AIO::max_poll_time $seconds
273     IO::AIO::min_parallel $nthreads
274     IO::AIO::max_parallel $nthreads
275     IO::AIO::max_idle $nthreads
276 root 1.188 IO::AIO::idle_timeout $seconds
277 root 1.175 IO::AIO::max_outstanding $maxreqs
278     IO::AIO::nreqs
279     IO::AIO::nready
280     IO::AIO::npending
281    
282     IO::AIO::sendfile $ofh, $ifh, $offset, $count
283     IO::AIO::fadvise $fh, $offset, $len, $advice
284 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
285     IO::AIO::munmap $scalar
286 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
287     IO::AIO::mprotect $scalar, $offset, $length, $protect
288 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
289 root 1.175 IO::AIO::munlockall
290    
291 root 1.219 =head2 API NOTES
292 root 1.1
293 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
294     with the same name (sans C<aio_>). The arguments are similar or identical,
295 root 1.14 and they all accept an additional (and optional) C<$callback> argument
296 root 1.212 which must be a code reference. This code reference will be called after
297     the syscall has been executed in an asynchronous fashion. The results
298     of the request will be passed as arguments to the callback (and, if an
299     error occured, in C<$!>) - for most requests the syscall return code (e.g.
300     most syscalls return C<-1> on error, unlike perl, which usually delivers
301     "false").
302    
303     Some requests (such as C<aio_readdir>) pass the actual results and
304     communicate failures by passing C<undef>.
305 root 1.1
306 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
307     internally until the request has finished.
308 root 1.1
309 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
310     further manipulation of those requests while they are in-flight.
311 root 1.52
312 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
313     reason for this is that at the time the request is being executed, the
314 root 1.212 current working directory could have changed. Alternatively, you can
315     make sure that you never change the current working directory anywhere
316     in the program and then use relative paths. You can also take advantage
317     of IO::AIOs working directory abstraction, that lets you specify paths
318     relative to some previously-opened "working directory object" - see the
319     description of the C<IO::AIO::WD> class later in this document.
320 root 1.28
321 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
322     in filenames you got from outside (command line, readdir etc.) without
323 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
324     module and encode your pathnames to the locale (or other) encoding in
325     effect in the user environment, d) use Glib::filename_from_unicode on
326     unicode filenames or e) use something else to ensure your scalar has the
327     correct contents.
328 root 1.87
329     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
330 root 1.136 handles correctly whether it is set or not.
331 root 1.1
332 root 1.219 =head2 AIO REQUEST FUNCTIONS
333    
334 root 1.5 =over 4
335 root 1.1
336 root 1.80 =item $prev_pri = aioreq_pri [$pri]
337 root 1.68
338 root 1.80 Returns the priority value that would be used for the next request and, if
339     C<$pri> is given, sets the priority for the next aio request.
340 root 1.68
341 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
342     and C<4>, respectively. Requests with higher priority will be serviced
343     first.
344    
345     The priority will be reset to C<0> after each call to one of the C<aio_*>
346 root 1.68 functions.
347    
348 root 1.69 Example: open a file with low priority, then read something from it with
349     higher priority so the read request is serviced before other low priority
350     open requests (potentially spamming the cache):
351    
352     aioreq_pri -3;
353     aio_open ..., sub {
354     return unless $_[0];
355    
356     aioreq_pri -2;
357     aio_read $_[0], ..., sub {
358     ...
359     };
360     };
361    
362 root 1.106
363 root 1.69 =item aioreq_nice $pri_adjust
364    
365     Similar to C<aioreq_pri>, but subtracts the given value from the current
366 root 1.87 priority, so the effect is cumulative.
367 root 1.69
368 root 1.106
369 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
370 root 1.1
371 root 1.2 Asynchronously open or create a file and call the callback with a newly
372 root 1.233 created filehandle for the file (or C<undef> in case of an error).
373 root 1.1
374     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
375     for an explanation.
376    
377 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
378     list. They are the same as used by C<sysopen>.
379    
380     Likewise, C<$mode> specifies the mode of the newly created file, if it
381     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
382     except that it is mandatory (i.e. use C<0> if you don't create new files,
383 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
384     by the umask in effect then the request is being executed, so better never
385     change the umask.
386 root 1.1
387     Example:
388    
389 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
390 root 1.2 if ($_[0]) {
391     print "open successful, fh is $_[0]\n";
392 root 1.1 ...
393     } else {
394     die "open failed: $!\n";
395     }
396     };
397    
398 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
399     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
400     following POSIX and non-POSIX constants are available (missing ones on
401     your system are, as usual, C<0>):
402    
403     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
404     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
405 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
406 root 1.194
407 root 1.106
408 root 1.40 =item aio_close $fh, $callback->($status)
409 root 1.1
410 root 1.2 Asynchronously close a file and call the callback with the result
411 root 1.116 code.
412    
413 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
414 root 1.121 closing the file descriptor associated with the filehandle itself.
415 root 1.117
416 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
417     use dup2 to overwrite the file descriptor with the write-end of a pipe
418     (the pipe fd will be created on demand and will be cached).
419 root 1.117
420 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
421     free for reuse until the perl filehandle is closed.
422 root 1.117
423     =cut
424    
425 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
426    
427 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
428 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
429     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
430     C<IO::AIO::SEEK_END>).
431    
432     The resulting absolute offset will be passed to the callback, or C<-1> in
433     case of an error.
434    
435     In theory, the C<$whence> constants could be different than the
436     corresponding values from L<Fcntl>, but perl guarantees they are the same,
437     so don't panic.
438    
439 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
440     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
441     could be found. No guarantees about suitability for use in C<aio_seek> or
442     Perl's C<sysseek> can be made though, although I would naively assume they
443     "just work".
444    
445 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
446 root 1.1
447 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
448 root 1.1
449 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
450 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
451     calls the callback with the actual number of bytes transferred (or -1 on
452 root 1.145 error, just like the syscall).
453 root 1.109
454 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
455     offset plus the actual number of bytes read.
456    
457 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
458     be used (and updated), otherwise the file descriptor offset will not be
459     changed by these calls.
460 root 1.109
461 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
462     C<$data>.
463 root 1.109
464     If C<$dataoffset> is less than zero, it will be counted from the end of
465     C<$data>.
466 root 1.1
467 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
468 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
469     the necessary/optional hardware is installed).
470 root 1.31
471 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
472 root 1.1 offset C<0> within the scalar:
473    
474     aio_read $fh, 7, 15, $buffer, 0, sub {
475 root 1.9 $_[0] > 0 or die "read error: $!";
476     print "read $_[0] bytes: <$buffer>\n";
477 root 1.1 };
478    
479 root 1.106
480 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
481 root 1.35
482     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
483     reading at byte offset C<$in_offset>, and starts writing at the current
484     file offset of C<$out_fh>. Because of that, it is not safe to issue more
485     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
486 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
487     move or use the file offset of C<$in_fh>.
488 root 1.35
489 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
490 root 1.196 are written, and there is no way to find out how many more bytes have been
491     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
492     number of bytes written to C<$out_fh>. Only if the result value equals
493     C<$length> one can assume that C<$length> bytes have been read.
494 root 1.185
495     Unlike with other C<aio_> functions, it makes a lot of sense to use
496     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
497     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
498 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
499     into a trap where C<aio_sendfile> reads some data with readahead, then
500     fails to write all data, and when the socket is ready the next time, the
501     data in the cache is already lost, forcing C<aio_sendfile> to again hit
502     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
503     resource usage.
504    
505     This call tries to make use of a native C<sendfile>-like syscall to
506     provide zero-copy operation. For this to work, C<$out_fh> should refer to
507     a socket, and C<$in_fh> should refer to an mmap'able file.
508 root 1.35
509 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
510 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
511     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
512     type of filehandle regardless of the limitations of the operating system.
513    
514     As native sendfile syscalls (as practically any non-POSIX interface hacked
515     together in a hurry to improve benchmark numbers) tend to be rather buggy
516     on many systems, this implementation tries to work around some known bugs
517     in Linux and FreeBSD kernels (probably others, too), but that might fail,
518     so you really really should check the return value of C<aio_sendfile> -
519 root 1.262 fewer bytes than expected might have been transferred.
520 root 1.35
521 root 1.106
522 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
523 root 1.1
524 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
525 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
526     argument specifies the starting point from which data is to be read and
527     C<$length> specifies the number of bytes to be read. I/O is performed in
528     whole pages, so that offset is effectively rounded down to a page boundary
529     and bytes are read up to the next page boundary greater than or equal to
530 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
531 root 1.1 file. The current file offset of the file is left unchanged.
532    
533 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
534     be emulated by simply reading the data, which would have a similar effect.
535 root 1.26
536 root 1.106
537 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
538 root 1.1
539 root 1.40 =item aio_lstat $fh, $callback->($status)
540 root 1.1
541     Works like perl's C<stat> or C<lstat> in void context. The callback will
542     be called after the stat and the results will be available using C<stat _>
543     or C<-s _> etc...
544    
545     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
546     for an explanation.
547    
548     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
549     error when stat'ing a large file, the results will be silently truncated
550     unless perl itself is compiled with large file support.
551    
552 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
553     following constants and functions (if not implemented, the constants will
554     be C<0> and the functions will either C<croak> or fall back on traditional
555     behaviour).
556    
557     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
558     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
559     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
560    
561 root 1.1 Example: Print the length of F</etc/passwd>:
562    
563     aio_stat "/etc/passwd", sub {
564     $_[0] and die "stat failed: $!";
565     print "size is ", -s _, "\n";
566     };
567    
568 root 1.106
569 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
570 root 1.172
571     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
572     whether a file handle or path was passed.
573    
574     On success, the callback is passed a hash reference with the following
575     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
576     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
577     is passed.
578    
579     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
580     C<ST_NOSUID>.
581    
582     The following non-POSIX IO::AIO::ST_* flag masks are defined to
583     their correct value when available, or to C<0> on systems that do
584     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
585     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
586     C<ST_NODIRATIME> and C<ST_RELATIME>.
587    
588     Example: stat C</wd> and dump out the data if successful.
589    
590     aio_statvfs "/wd", sub {
591     my $f = $_[0]
592     or die "statvfs: $!";
593    
594     use Data::Dumper;
595     say Dumper $f;
596     };
597    
598     # result:
599     {
600     bsize => 1024,
601     bfree => 4333064312,
602     blocks => 10253828096,
603     files => 2050765568,
604     flag => 4096,
605     favail => 2042092649,
606     bavail => 4333064312,
607     ffree => 2042092649,
608     namemax => 255,
609     frsize => 1024,
610     fsid => 1810
611     }
612    
613 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
614     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
615 root 1.235
616     0x0000adf5 adfs
617     0x0000adff affs
618     0x5346414f afs
619     0x09041934 anon-inode filesystem
620     0x00000187 autofs
621     0x42465331 befs
622     0x1badface bfs
623     0x42494e4d binfmt_misc
624     0x9123683e btrfs
625     0x0027e0eb cgroupfs
626     0xff534d42 cifs
627     0x73757245 coda
628     0x012ff7b7 coh
629     0x28cd3d45 cramfs
630     0x453dcd28 cramfs-wend (wrong endianness)
631     0x64626720 debugfs
632     0x00001373 devfs
633     0x00001cd1 devpts
634     0x0000f15f ecryptfs
635     0x00414a53 efs
636     0x0000137d ext
637 root 1.257 0x0000ef53 ext2/ext3/ext4
638 root 1.235 0x0000ef51 ext2
639 root 1.257 0xf2f52010 f2fs
640 root 1.235 0x00004006 fat
641     0x65735546 fuseblk
642     0x65735543 fusectl
643     0x0bad1dea futexfs
644     0x01161970 gfs2
645     0x47504653 gpfs
646     0x00004244 hfs
647     0xf995e849 hpfs
648 root 1.257 0x00c0ffee hostfs
649 root 1.235 0x958458f6 hugetlbfs
650     0x2bad1dea inotifyfs
651     0x00009660 isofs
652     0x000072b6 jffs2
653     0x3153464a jfs
654     0x6b414653 k-afs
655     0x0bd00bd0 lustre
656     0x0000137f minix
657     0x0000138f minix 30 char names
658     0x00002468 minix v2
659     0x00002478 minix v2 30 char names
660     0x00004d5a minix v3
661     0x19800202 mqueue
662     0x00004d44 msdos
663     0x0000564c novell
664     0x00006969 nfs
665     0x6e667364 nfsd
666     0x00003434 nilfs
667     0x5346544e ntfs
668     0x00009fa1 openprom
669     0x7461636F ocfs2
670     0x00009fa0 proc
671     0x6165676c pstorefs
672     0x0000002f qnx4
673 root 1.257 0x68191122 qnx6
674 root 1.235 0x858458f6 ramfs
675     0x52654973 reiserfs
676     0x00007275 romfs
677     0x67596969 rpc_pipefs
678     0x73636673 securityfs
679     0xf97cff8c selinux
680     0x0000517b smb
681     0x534f434b sockfs
682     0x73717368 squashfs
683     0x62656572 sysfs
684     0x012ff7b6 sysv2
685     0x012ff7b5 sysv4
686     0x01021994 tmpfs
687     0x15013346 udf
688     0x00011954 ufs
689     0x54190100 ufs byteswapped
690     0x00009fa2 usbdevfs
691     0x01021997 v9fs
692     0xa501fcf5 vxfs
693     0xabba1974 xenfs
694     0x012ff7b4 xenix
695     0x58465342 xfs
696     0x012fd16d xia
697 root 1.172
698 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
699    
700     Works like perl's C<utime> function (including the special case of $atime
701     and $mtime being undef). Fractional times are supported if the underlying
702     syscalls support them.
703    
704     When called with a pathname, uses utimes(2) if available, otherwise
705     utime(2). If called on a file descriptor, uses futimes(2) if available,
706     otherwise returns ENOSYS, so this is not portable.
707    
708     Examples:
709    
710 root 1.107 # set atime and mtime to current time (basically touch(1)):
711 root 1.106 aio_utime "path", undef, undef;
712     # set atime to current time and mtime to beginning of the epoch:
713     aio_utime "path", time, undef; # undef==0
714    
715    
716     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
717    
718     Works like perl's C<chown> function, except that C<undef> for either $uid
719     or $gid is being interpreted as "do not change" (but -1 can also be used).
720    
721     Examples:
722    
723     # same as "chown root path" in the shell:
724     aio_chown "path", 0, -1;
725     # same as above:
726     aio_chown "path", 0, undef;
727    
728    
729 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
730    
731     Works like truncate(2) or ftruncate(2).
732    
733    
734 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
735    
736 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
737     linux C<fallocate> documentation for details.
738 root 1.229
739 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
740     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
741     to deallocate a file range.
742    
743     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
744     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
745     your L<fallocate(2)> manpage).
746 root 1.229
747     The file system block size used by C<fallocate> is presumably the
748     C<f_bsize> returned by C<statvfs>.
749    
750     If C<fallocate> isn't available or cannot be emulated (currently no
751     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
752    
753    
754 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
755    
756     Works like perl's C<chmod> function.
757    
758    
759 root 1.40 =item aio_unlink $pathname, $callback->($status)
760 root 1.1
761     Asynchronously unlink (delete) a file and call the callback with the
762     result code.
763    
764 root 1.106
765 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
766 root 1.82
767 root 1.86 [EXPERIMENTAL]
768    
769 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
770    
771 root 1.86 The only (POSIX-) portable way of calling this function is:
772 root 1.83
773 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
774 root 1.82
775 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
776     and functions.
777 root 1.106
778 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
779    
780     Asynchronously create a new link to the existing object at C<$srcpath> at
781     the path C<$dstpath> and call the callback with the result code.
782    
783 root 1.106
784 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
785    
786     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
787     the path C<$dstpath> and call the callback with the result code.
788    
789 root 1.106
790 root 1.209 =item aio_readlink $pathname, $callback->($link)
791 root 1.90
792     Asynchronously read the symlink specified by C<$path> and pass it to
793     the callback. If an error occurs, nothing or undef gets passed to the
794     callback.
795    
796 root 1.106
797 root 1.209 =item aio_realpath $pathname, $callback->($path)
798 root 1.201
799     Asynchronously make the path absolute and resolve any symlinks in
800 root 1.239 C<$path>. The resulting path only consists of directories (same as
801 root 1.202 L<Cwd::realpath>).
802 root 1.201
803     This request can be used to get the absolute path of the current working
804     directory by passing it a path of F<.> (a single dot).
805    
806    
807 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
808    
809     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
810     rename(2) and call the callback with the result code.
811    
812 root 1.241 On systems that support the AIO::WD working directory abstraction
813     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
814     of failing, C<rename> is called on the absolute path of C<$wd>.
815    
816 root 1.106
817 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
818    
819     Asynchronously mkdir (create) a directory and call the callback with
820     the result code. C<$mode> will be modified by the umask at the time the
821     request is executed, so do not change your umask.
822    
823 root 1.106
824 root 1.40 =item aio_rmdir $pathname, $callback->($status)
825 root 1.27
826     Asynchronously rmdir (delete) a directory and call the callback with the
827     result code.
828    
829 root 1.241 On systems that support the AIO::WD working directory abstraction
830     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
831     C<rmdir> is called on the absolute path of C<$wd>.
832    
833 root 1.106
834 root 1.46 =item aio_readdir $pathname, $callback->($entries)
835 root 1.37
836     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
837     directory (i.e. opendir + readdir + closedir). The entries will not be
838     sorted, and will B<NOT> include the C<.> and C<..> entries.
839    
840 root 1.148 The callback is passed a single argument which is either C<undef> or an
841     array-ref with the filenames.
842    
843    
844     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
845    
846 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
847     tune behaviour and output format. In case of an error, C<$entries> will be
848 root 1.148 C<undef>.
849    
850     The flags are a combination of the following constants, ORed together (the
851     flags will also be passed to the callback, possibly modified):
852    
853     =over 4
854    
855 root 1.150 =item IO::AIO::READDIR_DENTS
856 root 1.148
857 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
858     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
859 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
860 root 1.148 entry in more detail.
861    
862     C<$name> is the name of the entry.
863    
864 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
865 root 1.148
866 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
867     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
868     C<IO::AIO::DT_WHT>.
869 root 1.148
870 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
871 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
872     scalars are read-only: you can not modify them.
873    
874 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
875 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
876     systems that do not deliver the inode information.
877 root 1.150
878     =item IO::AIO::READDIR_DIRS_FIRST
879 root 1.148
880     When this flag is set, then the names will be returned in an order where
881 root 1.193 likely directories come first, in optimal stat order. This is useful when
882     you need to quickly find directories, or you want to find all directories
883     while avoiding to stat() each entry.
884 root 1.148
885 root 1.149 If the system returns type information in readdir, then this is used
886 root 1.193 to find directories directly. Otherwise, likely directories are names
887     beginning with ".", or otherwise names with no dots, of which names with
888 root 1.149 short names are tried first.
889    
890 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
891 root 1.148
892     When this flag is set, then the names will be returned in an order
893     suitable for stat()'ing each one. That is, when you plan to stat()
894     all files in the given directory, then the returned order will likely
895     be fastest.
896    
897 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
898     the likely dirs come first, resulting in a less optimal stat order.
899 root 1.148
900 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
901 root 1.148
902     This flag should not be set when calling C<aio_readdirx>. Instead, it
903     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
904 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
905 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
906    
907     =back
908 root 1.37
909 root 1.106
910 root 1.209 =item aio_load $pathname, $data, $callback->($status)
911 root 1.98
912     This is a composite request that tries to fully load the given file into
913     memory. Status is the same as with aio_read.
914    
915     =cut
916    
917     sub aio_load($$;$) {
918 root 1.123 my ($path, undef, $cb) = @_;
919     my $data = \$_[1];
920 root 1.98
921 root 1.123 my $pri = aioreq_pri;
922     my $grp = aio_group $cb;
923    
924     aioreq_pri $pri;
925     add $grp aio_open $path, O_RDONLY, 0, sub {
926     my $fh = shift
927     or return $grp->result (-1);
928 root 1.98
929     aioreq_pri $pri;
930 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
931     $grp->result ($_[0]);
932 root 1.98 };
933 root 1.123 };
934 root 1.98
935 root 1.123 $grp
936 root 1.98 }
937    
938 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
939    
940     Try to copy the I<file> (directories not supported as either source or
941     destination) from C<$srcpath> to C<$dstpath> and call the callback with
942 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
943 root 1.82
944 root 1.134 This is a composite request that creates the destination file with
945 root 1.82 mode 0200 and copies the contents of the source file into it using
946     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
947     uid/gid, in that order.
948    
949     If an error occurs, the partial destination file will be unlinked, if
950     possible, except when setting atime, mtime, access mode and uid/gid, where
951     errors are being ignored.
952    
953     =cut
954    
955     sub aio_copy($$;$) {
956 root 1.123 my ($src, $dst, $cb) = @_;
957 root 1.82
958 root 1.123 my $pri = aioreq_pri;
959     my $grp = aio_group $cb;
960 root 1.82
961 root 1.123 aioreq_pri $pri;
962     add $grp aio_open $src, O_RDONLY, 0, sub {
963     if (my $src_fh = $_[0]) {
964 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
965 root 1.95
966 root 1.123 aioreq_pri $pri;
967     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
968     if (my $dst_fh = $_[0]) {
969     aioreq_pri $pri;
970     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
971     if ($_[0] == $stat[7]) {
972     $grp->result (0);
973     close $src_fh;
974    
975 root 1.147 my $ch = sub {
976     aioreq_pri $pri;
977     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
978     aioreq_pri $pri;
979     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
980     aioreq_pri $pri;
981     add $grp aio_close $dst_fh;
982     }
983     };
984     };
985 root 1.123
986     aioreq_pri $pri;
987 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
988     if ($_[0] < 0 && $! == ENOSYS) {
989     aioreq_pri $pri;
990     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
991     } else {
992     $ch->();
993     }
994     };
995 root 1.123 } else {
996     $grp->result (-1);
997     close $src_fh;
998     close $dst_fh;
999    
1000     aioreq $pri;
1001     add $grp aio_unlink $dst;
1002     }
1003     };
1004     } else {
1005     $grp->result (-1);
1006     }
1007     },
1008 root 1.82
1009 root 1.123 } else {
1010     $grp->result (-1);
1011     }
1012     };
1013 root 1.82
1014 root 1.123 $grp
1015 root 1.82 }
1016    
1017     =item aio_move $srcpath, $dstpath, $callback->($status)
1018    
1019     Try to move the I<file> (directories not supported as either source or
1020     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1021 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1022 root 1.82
1023 root 1.137 This is a composite request that tries to rename(2) the file first; if
1024     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1025     that is successful, unlinks the C<$srcpath>.
1026 root 1.82
1027     =cut
1028    
1029     sub aio_move($$;$) {
1030 root 1.123 my ($src, $dst, $cb) = @_;
1031 root 1.82
1032 root 1.123 my $pri = aioreq_pri;
1033     my $grp = aio_group $cb;
1034 root 1.82
1035 root 1.123 aioreq_pri $pri;
1036     add $grp aio_rename $src, $dst, sub {
1037     if ($_[0] && $! == EXDEV) {
1038     aioreq_pri $pri;
1039     add $grp aio_copy $src, $dst, sub {
1040     $grp->result ($_[0]);
1041 root 1.95
1042 root 1.196 unless ($_[0]) {
1043 root 1.123 aioreq_pri $pri;
1044     add $grp aio_unlink $src;
1045     }
1046     };
1047     } else {
1048     $grp->result ($_[0]);
1049     }
1050     };
1051 root 1.82
1052 root 1.123 $grp
1053 root 1.82 }
1054    
1055 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1056 root 1.40
1057 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1058 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1059     names, directories you can recurse into (directories), and ones you cannot
1060     recurse into (everything else, including symlinks to directories).
1061 root 1.52
1062 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1063     C<$maxreq> specifies the maximum number of outstanding aio requests that
1064     this function generates. If it is C<< <= 0 >>, then a suitable default
1065 root 1.81 will be chosen (currently 4).
1066 root 1.40
1067     On error, the callback is called without arguments, otherwise it receives
1068     two array-refs with path-relative entry names.
1069    
1070     Example:
1071    
1072     aio_scandir $dir, 0, sub {
1073     my ($dirs, $nondirs) = @_;
1074     print "real directories: @$dirs\n";
1075     print "everything else: @$nondirs\n";
1076     };
1077    
1078     Implementation notes.
1079    
1080     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1081    
1082 root 1.149 If readdir returns file type information, then this is used directly to
1083     find directories.
1084    
1085     Otherwise, after reading the directory, the modification time, size etc.
1086     of the directory before and after the readdir is checked, and if they
1087     match (and isn't the current time), the link count will be used to decide
1088     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1089     number of subdirectories will be assumed.
1090    
1091     Then entries will be sorted into likely directories a non-initial dot
1092     currently) and likely non-directories (see C<aio_readdirx>). Then every
1093     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1094     in order of their inode numbers. If that succeeds, it assumes that the
1095     entry is a directory or a symlink to directory (which will be checked
1096 root 1.207 separately). This is often faster than stat'ing the entry itself because
1097 root 1.52 filesystems might detect the type of the entry without reading the inode
1098 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1099     the filetype information on readdir.
1100 root 1.52
1101     If the known number of directories (link count - 2) has been reached, the
1102     rest of the entries is assumed to be non-directories.
1103    
1104     This only works with certainty on POSIX (= UNIX) filesystems, which
1105     fortunately are the vast majority of filesystems around.
1106    
1107     It will also likely work on non-POSIX filesystems with reduced efficiency
1108     as those tend to return 0 or 1 as link counts, which disables the
1109     directory counting heuristic.
1110 root 1.40
1111     =cut
1112    
1113 root 1.100 sub aio_scandir($$;$) {
1114 root 1.123 my ($path, $maxreq, $cb) = @_;
1115    
1116     my $pri = aioreq_pri;
1117 root 1.40
1118 root 1.123 my $grp = aio_group $cb;
1119 root 1.80
1120 root 1.123 $maxreq = 4 if $maxreq <= 0;
1121 root 1.55
1122 root 1.210 # get a wd object
1123 root 1.123 aioreq_pri $pri;
1124 root 1.210 add $grp aio_wd $path, sub {
1125 root 1.212 $_[0]
1126     or return $grp->result ();
1127    
1128 root 1.210 my $wd = [shift, "."];
1129 root 1.40
1130 root 1.210 # stat once
1131 root 1.80 aioreq_pri $pri;
1132 root 1.210 add $grp aio_stat $wd, sub {
1133     return $grp->result () if $_[0];
1134     my $now = time;
1135     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1136 root 1.40
1137 root 1.210 # read the directory entries
1138 root 1.80 aioreq_pri $pri;
1139 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1140     my $entries = shift
1141     or return $grp->result ();
1142    
1143     # stat the dir another time
1144     aioreq_pri $pri;
1145     add $grp aio_stat $wd, sub {
1146     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1147 root 1.95
1148 root 1.210 my $ndirs;
1149 root 1.95
1150 root 1.210 # take the slow route if anything looks fishy
1151     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1152     $ndirs = -1;
1153     } else {
1154     # if nlink == 2, we are finished
1155     # for non-posix-fs's, we rely on nlink < 2
1156     $ndirs = (stat _)[3] - 2
1157     or return $grp->result ([], $entries);
1158     }
1159 root 1.123
1160 root 1.210 my (@dirs, @nondirs);
1161 root 1.40
1162 root 1.210 my $statgrp = add $grp aio_group sub {
1163     $grp->result (\@dirs, \@nondirs);
1164     };
1165 root 1.40
1166 root 1.210 limit $statgrp $maxreq;
1167     feed $statgrp sub {
1168     return unless @$entries;
1169     my $entry = shift @$entries;
1170    
1171     aioreq_pri $pri;
1172     $wd->[1] = "$entry/.";
1173     add $statgrp aio_stat $wd, sub {
1174     if ($_[0] < 0) {
1175     push @nondirs, $entry;
1176     } else {
1177     # need to check for real directory
1178     aioreq_pri $pri;
1179     $wd->[1] = $entry;
1180     add $statgrp aio_lstat $wd, sub {
1181     if (-d _) {
1182     push @dirs, $entry;
1183    
1184     unless (--$ndirs) {
1185     push @nondirs, @$entries;
1186     feed $statgrp;
1187     }
1188     } else {
1189     push @nondirs, $entry;
1190 root 1.74 }
1191 root 1.40 }
1192     }
1193 root 1.210 };
1194 root 1.74 };
1195 root 1.40 };
1196     };
1197     };
1198 root 1.123 };
1199 root 1.55
1200 root 1.123 $grp
1201 root 1.40 }
1202    
1203 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1204 root 1.99
1205 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1206 root 1.239 status of the final C<rmdir> only. This is a composite request that
1207 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1208     everything else.
1209 root 1.99
1210     =cut
1211    
1212     sub aio_rmtree;
1213 root 1.100 sub aio_rmtree($;$) {
1214 root 1.123 my ($path, $cb) = @_;
1215 root 1.99
1216 root 1.123 my $pri = aioreq_pri;
1217     my $grp = aio_group $cb;
1218 root 1.99
1219 root 1.123 aioreq_pri $pri;
1220     add $grp aio_scandir $path, 0, sub {
1221     my ($dirs, $nondirs) = @_;
1222 root 1.99
1223 root 1.123 my $dirgrp = aio_group sub {
1224     add $grp aio_rmdir $path, sub {
1225     $grp->result ($_[0]);
1226 root 1.99 };
1227 root 1.123 };
1228 root 1.99
1229 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1230     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1231 root 1.99
1232 root 1.123 add $grp $dirgrp;
1233     };
1234 root 1.99
1235 root 1.123 $grp
1236 root 1.99 }
1237    
1238 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1239    
1240     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1241    
1242     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1243     they execute asynchronously and pass the return value to the callback.
1244    
1245     Both calls can be used for a lot of things, some of which make more sense
1246     to run asynchronously in their own thread, while some others make less
1247     sense. For example, calls that block waiting for external events, such
1248     as locking, will also lock down an I/O thread while it is waiting, which
1249     can deadlock the whole I/O system. At the same time, there might be no
1250     alternative to using a thread to wait.
1251    
1252     So in general, you should only use these calls for things that do
1253     (filesystem) I/O, not for things that wait for other events (network,
1254     other processes), although if you are careful and know what you are doing,
1255     you still can.
1256    
1257 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1258    
1259     C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1260    
1261     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1262     C<FS_IOC_FIEMAP>.
1263    
1264     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1265     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1266    
1267     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1268     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1269     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1270     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1271     C<FS_FL_USER_MODIFIABLE>.
1272    
1273     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1274     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1275     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1276     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1277    
1278 root 1.119 =item aio_sync $callback->($status)
1279    
1280     Asynchronously call sync and call the callback when finished.
1281    
1282 root 1.40 =item aio_fsync $fh, $callback->($status)
1283 root 1.1
1284     Asynchronously call fsync on the given filehandle and call the callback
1285     with the fsync result code.
1286    
1287 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1288 root 1.1
1289     Asynchronously call fdatasync on the given filehandle and call the
1290 root 1.26 callback with the fdatasync result code.
1291    
1292     If this call isn't available because your OS lacks it or it couldn't be
1293     detected, it will be emulated by calling C<fsync> instead.
1294 root 1.1
1295 root 1.206 =item aio_syncfs $fh, $callback->($status)
1296    
1297     Asynchronously call the syncfs syscall to sync the filesystem associated
1298     to the given filehandle and call the callback with the syncfs result
1299     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1300     errno to C<ENOSYS> nevertheless.
1301    
1302 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1303    
1304     Sync the data portion of the file specified by C<$offset> and C<$length>
1305     to disk (but NOT the metadata), by calling the Linux-specific
1306     sync_file_range call. If sync_file_range is not available or it returns
1307     ENOSYS, then fdatasync or fsync is being substituted.
1308    
1309     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1310     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1311     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1312     manpage for details.
1313    
1314 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1315 root 1.120
1316     This request tries to open, fsync and close the given path. This is a
1317 root 1.135 composite request intended to sync directories after directory operations
1318 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1319     specific effect, but usually it makes sure that directory changes get
1320     written to disc. It works for anything that can be opened for read-only,
1321     not just directories.
1322    
1323 root 1.162 Future versions of this function might fall back to other methods when
1324     C<fsync> on the directory fails (such as calling C<sync>).
1325    
1326 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1327    
1328     =cut
1329    
1330     sub aio_pathsync($;$) {
1331 root 1.123 my ($path, $cb) = @_;
1332    
1333     my $pri = aioreq_pri;
1334     my $grp = aio_group $cb;
1335 root 1.120
1336 root 1.123 aioreq_pri $pri;
1337     add $grp aio_open $path, O_RDONLY, 0, sub {
1338     my ($fh) = @_;
1339     if ($fh) {
1340     aioreq_pri $pri;
1341     add $grp aio_fsync $fh, sub {
1342     $grp->result ($_[0]);
1343 root 1.120
1344     aioreq_pri $pri;
1345 root 1.123 add $grp aio_close $fh;
1346     };
1347     } else {
1348     $grp->result (-1);
1349     }
1350     };
1351 root 1.120
1352 root 1.123 $grp
1353 root 1.120 }
1354    
1355 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1356 root 1.170
1357     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1358 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1359     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1360     scalar must only be modified in-place while an aio operation is pending on
1361     it).
1362 root 1.170
1363     It calls the C<msync> function of your OS, if available, with the memory
1364     area starting at C<$offset> in the string and ending C<$length> bytes
1365     later. If C<$length> is negative, counts from the end, and if C<$length>
1366     is C<undef>, then it goes till the end of the string. The flags can be
1367 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1368     C<IO::AIO::MS_INVALIDATE>.
1369 root 1.170
1370     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1371    
1372     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1373     scalars.
1374    
1375     It touches (reads or writes) all memory pages in the specified
1376 root 1.239 range inside the scalar. All caveats and parameters are the same
1377 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1378     C<0> (which reads all pages and ensures they are instantiated) or
1379 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1380 root 1.170 writing an octet from it, which dirties the page).
1381    
1382 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1383    
1384     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1385     scalars.
1386    
1387     It reads in all the pages of the underlying storage into memory (if any)
1388     and locks them, so they are not getting swapped/paged out or removed.
1389    
1390     If C<$length> is undefined, then the scalar will be locked till the end.
1391    
1392     On systems that do not implement C<mlock>, this function returns C<-1>
1393     and sets errno to C<ENOSYS>.
1394    
1395     Note that the corresponding C<munlock> is synchronous and is
1396     documented under L<MISCELLANEOUS FUNCTIONS>.
1397    
1398 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1399     C<$data> gets destroyed.
1400    
1401     open my $fh, "<", $path or die "$path: $!";
1402     my $data;
1403     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1404     aio_mlock $data; # mlock in background
1405    
1406 root 1.182 =item aio_mlockall $flags, $callback->($status)
1407    
1408     Calls the C<mlockall> function with the given C<$flags> (a combination of
1409     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1410    
1411     On systems that do not implement C<mlockall>, this function returns C<-1>
1412     and sets errno to C<ENOSYS>.
1413    
1414     Note that the corresponding C<munlockall> is synchronous and is
1415     documented under L<MISCELLANEOUS FUNCTIONS>.
1416    
1417 root 1.183 Example: asynchronously lock all current and future pages into memory.
1418    
1419     aio_mlockall IO::AIO::MCL_FUTURE;
1420    
1421 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1422    
1423 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1424     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1425     the ioctl is not available on your OS, then this request will fail with
1426 root 1.223 C<ENOSYS>.
1427    
1428     C<$start> is the starting offset to query extents for, C<$length> is the
1429     size of the range to query - if it is C<undef>, then the whole file will
1430     be queried.
1431    
1432     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1433     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1434     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1435     the data portion.
1436    
1437     C<$count> is the maximum number of extent records to return. If it is
1438 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1439 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1440 root 1.232 instead of the extents themselves (which is unreliable, see below).
1441 root 1.223
1442     If an error occurs, the callback receives no arguments. The special
1443     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1444    
1445     Otherwise, the callback receives an array reference with extent
1446     structures. Each extent structure is an array reference itself, with the
1447     following members:
1448    
1449     [$logical, $physical, $length, $flags]
1450    
1451     Flags is any combination of the following flag values (typically either C<0>
1452 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1453 root 1.223
1454     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1455     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1456     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1457     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1458     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1459     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1460    
1461 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1462     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1463     it to return all extents of a range for files with large number of
1464     extents. The code works around all these issues if C<$count> is undef.
1465    
1466 root 1.58 =item aio_group $callback->(...)
1467 root 1.54
1468 root 1.55 This is a very special aio request: Instead of doing something, it is a
1469     container for other aio requests, which is useful if you want to bundle
1470 root 1.71 many requests into a single, composite, request with a definite callback
1471     and the ability to cancel the whole request with its subrequests.
1472 root 1.55
1473     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1474     for more info.
1475    
1476     Example:
1477    
1478     my $grp = aio_group sub {
1479     print "all stats done\n";
1480     };
1481    
1482     add $grp
1483     (aio_stat ...),
1484     (aio_stat ...),
1485     ...;
1486    
1487 root 1.63 =item aio_nop $callback->()
1488    
1489     This is a special request - it does nothing in itself and is only used for
1490     side effects, such as when you want to add a dummy request to a group so
1491     that finishing the requests in the group depends on executing the given
1492     code.
1493    
1494 root 1.64 While this request does nothing, it still goes through the execution
1495     phase and still requires a worker thread. Thus, the callback will not
1496     be executed immediately but only after other requests in the queue have
1497     entered their execution phase. This can be used to measure request
1498     latency.
1499    
1500 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1501 root 1.54
1502     Mainly used for debugging and benchmarking, this aio request puts one of
1503     the request workers to sleep for the given time.
1504    
1505 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1506 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1507     immense (it blocks a thread for a long time) so do not use this function
1508     except to put your application under artificial I/O pressure.
1509 root 1.56
1510 root 1.5 =back
1511    
1512 root 1.209
1513     =head2 IO::AIO::WD - multiple working directories
1514    
1515     Your process only has one current working directory, which is used by all
1516     threads. This makes it hard to use relative paths (some other component
1517     could call C<chdir> at any time, and it is hard to control when the path
1518     will be used by IO::AIO).
1519    
1520     One solution for this is to always use absolute paths. This usually works,
1521     but can be quite slow (the kernel has to walk the whole path on every
1522     access), and can also be a hassle to implement.
1523    
1524     Newer POSIX systems have a number of functions (openat, fdopendir,
1525     futimensat and so on) that make it possible to specify working directories
1526     per operation.
1527    
1528     For portability, and because the clowns who "designed", or shall I write,
1529     perpetrated this new interface were obviously half-drunk, this abstraction
1530     cannot be perfect, though.
1531    
1532     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1533     object. This object stores the canonicalised, absolute version of the
1534     path, and on systems that allow it, also a directory file descriptor.
1535    
1536     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1537     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1538 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1539     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1540 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1541 root 1.209 to that IO::AIO::WD object.
1542    
1543     For example, to get a wd object for F</etc> and then stat F<passwd>
1544     inside, you would write:
1545    
1546     aio_wd "/etc", sub {
1547     my $etcdir = shift;
1548    
1549     # although $etcdir can be undef on error, there is generally no reason
1550     # to check for errors here, as aio_stat will fail with ENOENT
1551     # when $etcdir is undef.
1552    
1553     aio_stat [$etcdir, "passwd"], sub {
1554     # yay
1555     };
1556     };
1557    
1558 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1559     creating an IO::AIO::WD object is itself a potentially blocking operation,
1560     which is why it is done asynchronously.
1561 root 1.214
1562     To stat the directory obtained with C<aio_wd> above, one could write
1563     either of the following three request calls:
1564    
1565     aio_lstat "/etc" , sub { ... # pathname as normal string
1566     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1567     aio_lstat $wd , sub { ... # shorthand for the previous
1568 root 1.209
1569     As with normal pathnames, IO::AIO keeps a copy of the working directory
1570     object and the pathname string, so you could write the following without
1571     causing any issues due to C<$path> getting reused:
1572    
1573     my $path = [$wd, undef];
1574    
1575     for my $name (qw(abc def ghi)) {
1576     $path->[1] = $name;
1577     aio_stat $path, sub {
1578     # ...
1579     };
1580     }
1581    
1582     There are some caveats: when directories get renamed (or deleted), the
1583     pathname string doesn't change, so will point to the new directory (or
1584     nowhere at all), while the directory fd, if available on the system,
1585     will still point to the original directory. Most functions accepting a
1586     pathname will use the directory fd on newer systems, and the string on
1587     older systems. Some functions (such as realpath) will always rely on the
1588     string form of the pathname.
1589    
1590 root 1.239 So this functionality is mainly useful to get some protection against
1591 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1592     reference, and to speed up doing many operations in the same directory
1593     (e.g. when stat'ing all files in a directory).
1594    
1595     The following functions implement this working directory abstraction:
1596    
1597     =over 4
1598    
1599     =item aio_wd $pathname, $callback->($wd)
1600    
1601     Asynchonously canonicalise the given pathname and convert it to an
1602     IO::AIO::WD object representing it. If possible and supported on the
1603     system, also open a directory fd to speed up pathname resolution relative
1604     to this working directory.
1605    
1606     If something goes wrong, then C<undef> is passwd to the callback instead
1607     of a working directory object and C<$!> is set appropriately. Since
1608     passing C<undef> as working directory component of a pathname fails the
1609     request with C<ENOENT>, there is often no need for error checking in the
1610     C<aio_wd> callback, as future requests using the value will fail in the
1611     expected way.
1612    
1613     =item IO::AIO::CWD
1614    
1615     This is a compiletime constant (object) that represents the process
1616     current working directory.
1617    
1618 root 1.239 Specifying this object as working directory object for a pathname is as if
1619     the pathname would be specified directly, without a directory object. For
1620     example, these calls are functionally identical:
1621 root 1.209
1622     aio_stat "somefile", sub { ... };
1623     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1624    
1625     =back
1626    
1627 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1628     C<aio_realpath>:
1629    
1630     aio_realpath $wd, sub {
1631     warn "path is $_[0]\n";
1632     };
1633    
1634 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1635     sometimes, fall back to using an absolue path.
1636 root 1.209
1637 root 1.53 =head2 IO::AIO::REQ CLASS
1638 root 1.52
1639     All non-aggregate C<aio_*> functions return an object of this class when
1640     called in non-void context.
1641    
1642     =over 4
1643    
1644 root 1.65 =item cancel $req
1645 root 1.52
1646     Cancels the request, if possible. Has the effect of skipping execution
1647     when entering the B<execute> state and skipping calling the callback when
1648     entering the the B<result> state, but will leave the request otherwise
1649 root 1.151 untouched (with the exception of readdir). That means that requests that
1650     currently execute will not be stopped and resources held by the request
1651     will not be freed prematurely.
1652 root 1.52
1653 root 1.65 =item cb $req $callback->(...)
1654    
1655     Replace (or simply set) the callback registered to the request.
1656    
1657 root 1.52 =back
1658    
1659 root 1.55 =head2 IO::AIO::GRP CLASS
1660    
1661     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1662     objects of this class, too.
1663    
1664     A IO::AIO::GRP object is a special request that can contain multiple other
1665     aio requests.
1666    
1667     You create one by calling the C<aio_group> constructing function with a
1668     callback that will be called when all contained requests have entered the
1669     C<done> state:
1670    
1671     my $grp = aio_group sub {
1672     print "all requests are done\n";
1673     };
1674    
1675     You add requests by calling the C<add> method with one or more
1676     C<IO::AIO::REQ> objects:
1677    
1678     $grp->add (aio_unlink "...");
1679    
1680 root 1.58 add $grp aio_stat "...", sub {
1681     $_[0] or return $grp->result ("error");
1682    
1683     # add another request dynamically, if first succeeded
1684     add $grp aio_open "...", sub {
1685     $grp->result ("ok");
1686     };
1687     };
1688 root 1.55
1689     This makes it very easy to create composite requests (see the source of
1690     C<aio_move> for an application) that work and feel like simple requests.
1691    
1692 root 1.62 =over 4
1693    
1694     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1695 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1696    
1697 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1698 root 1.59 only the request itself, but also all requests it contains.
1699 root 1.55
1700 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1701 root 1.55
1702 root 1.62 =item * You must not add requests to a group from within the group callback (or
1703 root 1.60 any later time).
1704    
1705 root 1.62 =back
1706    
1707 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1708     will finish very quickly. If they contain only requests that are in the
1709     C<done> state, they will also finish. Otherwise they will continue to
1710     exist.
1711    
1712 root 1.133 That means after creating a group you have some time to add requests
1713     (precisely before the callback has been invoked, which is only done within
1714     the C<poll_cb>). And in the callbacks of those requests, you can add
1715     further requests to the group. And only when all those requests have
1716     finished will the the group itself finish.
1717 root 1.57
1718 root 1.55 =over 4
1719    
1720 root 1.65 =item add $grp ...
1721    
1722 root 1.55 =item $grp->add (...)
1723    
1724 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1725     be added, including other groups, as long as you do not create circular
1726     dependencies.
1727    
1728     Returns all its arguments.
1729 root 1.55
1730 root 1.74 =item $grp->cancel_subs
1731    
1732     Cancel all subrequests and clears any feeder, but not the group request
1733     itself. Useful when you queued a lot of events but got a result early.
1734    
1735 root 1.168 The group request will finish normally (you cannot add requests to the
1736     group).
1737    
1738 root 1.58 =item $grp->result (...)
1739    
1740     Set the result value(s) that will be passed to the group callback when all
1741 root 1.120 subrequests have finished and set the groups errno to the current value
1742 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1743     no argument will be passed and errno is zero.
1744    
1745     =item $grp->errno ([$errno])
1746    
1747     Sets the group errno value to C<$errno>, or the current value of errno
1748     when the argument is missing.
1749    
1750     Every aio request has an associated errno value that is restored when
1751     the callback is invoked. This method lets you change this value from its
1752     default (0).
1753    
1754     Calling C<result> will also set errno, so make sure you either set C<$!>
1755     before the call to C<result>, or call c<errno> after it.
1756 root 1.58
1757 root 1.65 =item feed $grp $callback->($grp)
1758 root 1.60
1759     Sets a feeder/generator on this group: every group can have an attached
1760     generator that generates requests if idle. The idea behind this is that,
1761     although you could just queue as many requests as you want in a group,
1762 root 1.139 this might starve other requests for a potentially long time. For example,
1763 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1764     requests, delaying any later requests for a long time.
1765 root 1.60
1766     To avoid this, and allow incremental generation of requests, you can
1767     instead a group and set a feeder on it that generates those requests. The
1768 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1769 root 1.60 below) requests active in the group itself and is expected to queue more
1770     requests.
1771    
1772 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1773     not impose any limits).
1774 root 1.60
1775 root 1.65 If the feed does not queue more requests when called, it will be
1776 root 1.60 automatically removed from the group.
1777    
1778 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1779     C<2> automatically.
1780 root 1.60
1781     Example:
1782    
1783     # stat all files in @files, but only ever use four aio requests concurrently:
1784    
1785     my $grp = aio_group sub { print "finished\n" };
1786 root 1.68 limit $grp 4;
1787 root 1.65 feed $grp sub {
1788 root 1.60 my $file = pop @files
1789     or return;
1790    
1791     add $grp aio_stat $file, sub { ... };
1792 root 1.65 };
1793 root 1.60
1794 root 1.68 =item limit $grp $num
1795 root 1.60
1796     Sets the feeder limit for the group: The feeder will be called whenever
1797     the group contains less than this many requests.
1798    
1799     Setting the limit to C<0> will pause the feeding process.
1800    
1801 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1802     automatically bumps it up to C<2>.
1803    
1804 root 1.55 =back
1805    
1806 root 1.5 =head2 SUPPORT FUNCTIONS
1807    
1808 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1809    
1810 root 1.5 =over 4
1811    
1812     =item $fileno = IO::AIO::poll_fileno
1813    
1814 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1815 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1816     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1817     you have to call C<poll_cb> to check the results.
1818 root 1.5
1819     See C<poll_cb> for an example.
1820    
1821     =item IO::AIO::poll_cb
1822    
1823 root 1.240 Process some requests that have reached the result phase (i.e. they have
1824     been executed but the results are not yet reported). You have to call
1825     this "regularly" to finish outstanding requests.
1826    
1827     Returns C<0> if all events could be processed (or there were no
1828     events to process), or C<-1> if it returned earlier for whatever
1829     reason. Returns immediately when no events are outstanding. The amount
1830     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1831     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1832    
1833     If not all requests were processed for whatever reason, the poll file
1834     descriptor will still be ready when C<poll_cb> returns, so normally you
1835     don't have to do anything special to have it called later.
1836 root 1.78
1837 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1838     ready, it can be beneficial to call this function from loops which submit
1839     a lot of requests, to make sure the results get processed when they become
1840     available and not just when the loop is finished and the event loop takes
1841     over again. This function returns very fast when there are no outstanding
1842     requests.
1843    
1844 root 1.20 Example: Install an Event watcher that automatically calls
1845 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1846     SYNOPSIS section, at the top of this document):
1847 root 1.5
1848     Event->io (fd => IO::AIO::poll_fileno,
1849     poll => 'r', async => 1,
1850     cb => \&IO::AIO::poll_cb);
1851    
1852 root 1.175 =item IO::AIO::poll_wait
1853    
1854 root 1.240 Wait until either at least one request is in the result phase or no
1855     requests are outstanding anymore.
1856    
1857     This is useful if you want to synchronously wait for some requests to
1858     become ready, without actually handling them.
1859 root 1.175
1860     See C<nreqs> for an example.
1861    
1862     =item IO::AIO::poll
1863    
1864     Waits until some requests have been handled.
1865    
1866     Returns the number of requests processed, but is otherwise strictly
1867     equivalent to:
1868    
1869     IO::AIO::poll_wait, IO::AIO::poll_cb
1870    
1871     =item IO::AIO::flush
1872    
1873     Wait till all outstanding AIO requests have been handled.
1874    
1875     Strictly equivalent to:
1876    
1877     IO::AIO::poll_wait, IO::AIO::poll_cb
1878     while IO::AIO::nreqs;
1879    
1880 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1881    
1882     =item IO::AIO::max_poll_time $seconds
1883    
1884     These set the maximum number of requests (default C<0>, meaning infinity)
1885     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1886     the maximum amount of time (default C<0>, meaning infinity) spent in
1887     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1888     of time C<poll_cb> is allowed to use).
1889 root 1.78
1890 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1891     syscall per request processed, which is not normally a problem unless your
1892     callbacks are really really fast or your OS is really really slow (I am
1893     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1894    
1895 root 1.86 Setting these is useful if you want to ensure some level of
1896     interactiveness when perl is not fast enough to process all requests in
1897     time.
1898 root 1.78
1899 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1900 root 1.78
1901     Example: Install an Event watcher that automatically calls
1902 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1903 root 1.78 program get the CPU sometimes even under high AIO load.
1904    
1905 root 1.86 # try not to spend much more than 0.1s in poll_cb
1906     IO::AIO::max_poll_time 0.1;
1907    
1908     # use a low priority so other tasks have priority
1909 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1910     poll => 'r', nice => 1,
1911 root 1.86 cb => &IO::AIO::poll_cb);
1912 root 1.78
1913 root 1.104 =back
1914    
1915 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1916 root 1.13
1917 root 1.105 =over
1918    
1919 root 1.5 =item IO::AIO::min_parallel $nthreads
1920    
1921 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1922     default is C<8>, which means eight asynchronous operations can execute
1923     concurrently at any one time (the number of outstanding requests,
1924     however, is unlimited).
1925 root 1.5
1926 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1927 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1928     create demand for a hundred threads, even if it turns out that everything
1929     is in the cache and could have been processed faster by a single thread.
1930 root 1.34
1931 root 1.61 It is recommended to keep the number of threads relatively low, as some
1932     Linux kernel versions will scale negatively with the number of threads
1933     (higher parallelity => MUCH higher latency). With current Linux 2.6
1934     versions, 4-32 threads should be fine.
1935 root 1.5
1936 root 1.34 Under most circumstances you don't need to call this function, as the
1937     module selects a default that is suitable for low to moderate load.
1938 root 1.5
1939     =item IO::AIO::max_parallel $nthreads
1940    
1941 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1942     specified number of threads are currently running, this function kills
1943     them. This function blocks until the limit is reached.
1944    
1945     While C<$nthreads> are zero, aio requests get queued but not executed
1946     until the number of threads has been increased again.
1947 root 1.5
1948     This module automatically runs C<max_parallel 0> at program end, to ensure
1949     that all threads are killed and that there are no outstanding requests.
1950    
1951     Under normal circumstances you don't need to call this function.
1952    
1953 root 1.86 =item IO::AIO::max_idle $nthreads
1954    
1955 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1956     (i.e., threads that did not get a request to process within the idle
1957     timeout (default: 10 seconds). That means if a thread becomes idle while
1958     C<$nthreads> other threads are also idle, it will free its resources and
1959     exit.
1960 root 1.86
1961     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1962     to allow for extremely high load situations, but want to free resources
1963     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1964    
1965     The default is probably ok in most situations, especially if thread
1966     creation is fast. If thread creation is very slow on your system you might
1967     want to use larger values.
1968    
1969 root 1.188 =item IO::AIO::idle_timeout $seconds
1970    
1971     Sets the minimum idle timeout (default 10) after which worker threads are
1972     allowed to exit. SEe C<IO::AIO::max_idle>.
1973    
1974 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1975 root 1.5
1976 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1977     you do queue up more than this number of requests, the next call to
1978     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1979     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1980     longer exceeded.
1981    
1982     In other words, this setting does not enforce a queue limit, but can be
1983     used to make poll functions block if the limit is exceeded.
1984    
1985 root 1.79 This is a very bad function to use in interactive programs because it
1986     blocks, and a bad way to reduce concurrency because it is inexact: Better
1987     use an C<aio_group> together with a feed callback.
1988    
1989 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1990 root 1.195 a lot of files, you can write somehting like this:
1991    
1992     IO::AIO::max_outstanding 32;
1993    
1994     for my $path (...) {
1995     aio_stat $path , ...;
1996     IO::AIO::poll_cb;
1997     }
1998    
1999     IO::AIO::flush;
2000    
2001     The call to C<poll_cb> inside the loop will normally return instantly, but
2002     as soon as more thna C<32> reqeusts are in-flight, it will block until
2003     some requests have been handled. This keeps the loop from pushing a large
2004     number of C<aio_stat> requests onto the queue.
2005    
2006     The default value for C<max_outstanding> is very large, so there is no
2007     practical limit on the number of outstanding requests.
2008 root 1.5
2009 root 1.104 =back
2010    
2011 root 1.86 =head3 STATISTICAL INFORMATION
2012    
2013 root 1.104 =over
2014    
2015 root 1.86 =item IO::AIO::nreqs
2016    
2017     Returns the number of requests currently in the ready, execute or pending
2018     states (i.e. for which their callback has not been invoked yet).
2019    
2020     Example: wait till there are no outstanding requests anymore:
2021    
2022     IO::AIO::poll_wait, IO::AIO::poll_cb
2023     while IO::AIO::nreqs;
2024    
2025     =item IO::AIO::nready
2026    
2027     Returns the number of requests currently in the ready state (not yet
2028     executed).
2029    
2030     =item IO::AIO::npending
2031    
2032     Returns the number of requests currently in the pending state (executed,
2033     but not yet processed by poll_cb).
2034    
2035 root 1.5 =back
2036    
2037 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2038    
2039 root 1.248 IO::AIO implements some functions that are useful when you want to use
2040     some "Advanced I/O" function not available to in Perl, without going the
2041     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2042     counterpart.
2043 root 1.157
2044     =over 4
2045    
2046     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2047    
2048     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2049     but is blocking (this makes most sense if you know the input data is
2050     likely cached already and the output filehandle is set to non-blocking
2051     operations).
2052    
2053     Returns the number of bytes copied, or C<-1> on error.
2054    
2055     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2056    
2057 root 1.184 Simply calls the C<posix_fadvise> function (see its
2058 root 1.157 manpage for details). The following advice constants are
2059 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2060 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2061     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2062    
2063     On systems that do not implement C<posix_fadvise>, this function returns
2064     ENOSYS, otherwise the return value of C<posix_fadvise>.
2065    
2066 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2067    
2068     Simply calls the C<posix_madvise> function (see its
2069     manpage for details). The following advice constants are
2070 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2071 root 1.263 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>,
2072     C<IO::AIO::MADV_FREE>.
2073 root 1.184
2074 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2075     the remaining length of the C<$scalar> is used. If possible, C<$length>
2076     will be reduced to fit into the C<$scalar>.
2077    
2078 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2079     ENOSYS, otherwise the return value of C<posix_madvise>.
2080    
2081     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2082    
2083     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2084     $scalar (see its manpage for details). The following protect
2085 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2086 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2087    
2088 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2089     the remaining length of the C<$scalar> is used. If possible, C<$length>
2090     will be reduced to fit into the C<$scalar>.
2091    
2092 root 1.184 On systems that do not implement C<mprotect>, this function returns
2093     ENOSYS, otherwise the return value of C<mprotect>.
2094    
2095 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2096    
2097     Memory-maps a file (or anonymous memory range) and attaches it to the
2098 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2099     success, and false otherwise.
2100 root 1.176
2101 root 1.268 The scalar must exist, but its contents do not matter - this means you
2102     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2103     the scalar first.
2104    
2105     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2106     which don't change the string length, and most read-only operations such
2107     as copying it or searching it with regexes and so on.
2108 root 1.176
2109     Anything else is unsafe and will, at best, result in memory leaks.
2110    
2111     The memory map associated with the C<$scalar> is automatically removed
2112 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2113     or C<IO::AIO::munmap> functions are called on it.
2114 root 1.176
2115     This calls the C<mmap>(2) function internally. See your system's manual
2116     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2117    
2118     The C<$length> must be larger than zero and smaller than the actual
2119     filesize.
2120    
2121     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2122     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2123    
2124 root 1.256 C<$flags> can be a combination of
2125     C<IO::AIO::MAP_SHARED> or
2126     C<IO::AIO::MAP_PRIVATE>,
2127     or a number of system-specific flags (when not available, the are C<0>):
2128     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2129     C<IO::AIO::MAP_LOCKED>,
2130     C<IO::AIO::MAP_NORESERVE>,
2131     C<IO::AIO::MAP_POPULATE>,
2132     C<IO::AIO::MAP_NONBLOCK>,
2133     C<IO::AIO::MAP_FIXED>,
2134     C<IO::AIO::MAP_GROWSDOWN>,
2135     C<IO::AIO::MAP_32BIT>,
2136     C<IO::AIO::MAP_HUGETLB> or
2137     C<IO::AIO::MAP_STACK>.
2138 root 1.176
2139     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2140    
2141 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2142     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2143    
2144 root 1.177 Example:
2145    
2146     use Digest::MD5;
2147     use IO::AIO;
2148    
2149     open my $fh, "<verybigfile"
2150     or die "$!";
2151    
2152     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2153     or die "verybigfile: $!";
2154    
2155     my $fast_md5 = md5 $data;
2156    
2157 root 1.176 =item IO::AIO::munmap $scalar
2158    
2159     Removes a previous mmap and undefines the C<$scalar>.
2160    
2161 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2162 root 1.174
2163 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2164     C<aio_mlock> call (see its description for details).
2165 root 1.174
2166     =item IO::AIO::munlockall
2167    
2168     Calls the C<munlockall> function.
2169    
2170     On systems that do not implement C<munlockall>, this function returns
2171     ENOSYS, otherwise the return value of C<munlockall>.
2172    
2173 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2174    
2175     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2176     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2177     should be the file offset.
2178    
2179 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2180     silently corrupt the data in this case.
2181    
2182 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2183     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2184     C<IO::AIO::SPLICE_F_GIFT>.
2185    
2186     See the C<splice(2)> manpage for details.
2187    
2188     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2189    
2190 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2191 root 1.225 description for C<IO::AIO::splice> above for details.
2192    
2193 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2194    
2195     Attempts to query or change the pipe buffer size. Obviously works only
2196     on pipes, and currently works only on GNU/Linux systems, and fails with
2197     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2198     size on other systems, drop me a note.
2199    
2200 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2201    
2202     This is a direct interface to the Linux L<pipe2(2)> system call. If
2203     C<$flags> is missing or C<0>, then this should be the same as a call to
2204 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2205     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2206     (..., 4096, O_BINARY)>.
2207 root 1.253
2208     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2209     the given flags (Linux 2.6.27, glibc 2.9).
2210    
2211     On success, the read and write file handles are returned.
2212    
2213     On error, nothing will be returned. If the pipe2 syscall is missing and
2214     C<$flags> is non-zero, fails with C<ENOSYS>.
2215    
2216     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2217     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2218     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2219    
2220 root 1.157 =back
2221    
2222 root 1.1 =cut
2223    
2224 root 1.61 min_parallel 8;
2225 root 1.1
2226 root 1.95 END { flush }
2227 root 1.82
2228 root 1.1 1;
2229    
2230 root 1.175 =head1 EVENT LOOP INTEGRATION
2231    
2232     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2233     automatically into many event loops:
2234    
2235     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2236     use AnyEvent::AIO;
2237    
2238     You can also integrate IO::AIO manually into many event loops, here are
2239     some examples of how to do this:
2240    
2241     # EV integration
2242     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2243    
2244     # Event integration
2245     Event->io (fd => IO::AIO::poll_fileno,
2246     poll => 'r',
2247     cb => \&IO::AIO::poll_cb);
2248    
2249     # Glib/Gtk2 integration
2250     add_watch Glib::IO IO::AIO::poll_fileno,
2251     in => sub { IO::AIO::poll_cb; 1 };
2252    
2253     # Tk integration
2254     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2255     readable => \&IO::AIO::poll_cb);
2256    
2257     # Danga::Socket integration
2258     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2259     \&IO::AIO::poll_cb);
2260    
2261 root 1.27 =head2 FORK BEHAVIOUR
2262    
2263 root 1.197 Usage of pthreads in a program changes the semantics of fork
2264     considerably. Specifically, only async-safe functions can be called after
2265     fork. Perl doesn't know about this, so in general, you cannot call fork
2266 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2267     pthreads, so this applies, but many other extensions and (for inexplicable
2268     reasons) perl itself often is linked against pthreads, so this limitation
2269     applies to quite a lot of perls.
2270    
2271     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2272     only works in the process that loaded it. Forking is fully supported, but
2273     using IO::AIO in the child is not.
2274    
2275     You might get around by not I<using> IO::AIO before (or after)
2276     forking. You could also try to call the L<IO::AIO::reinit> function in the
2277     child:
2278    
2279     =over 4
2280    
2281     =item IO::AIO::reinit
2282    
2283 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2284     data structures. This is not an operation supported by any standards, but
2285 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2286    
2287     The only reasonable use for this function is to call it after forking, if
2288     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2289     the process will result in undefined behaviour. Calling it at any time
2290     will also result in any undefined (by POSIX) behaviour.
2291    
2292     =back
2293 root 1.52
2294 root 1.60 =head2 MEMORY USAGE
2295    
2296 root 1.72 Per-request usage:
2297    
2298     Each aio request uses - depending on your architecture - around 100-200
2299     bytes of memory. In addition, stat requests need a stat buffer (possibly
2300     a few hundred bytes), readdir requires a result buffer and so on. Perl
2301     scalars and other data passed into aio requests will also be locked and
2302     will consume memory till the request has entered the done state.
2303 root 1.60
2304 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2305 root 1.60 problem.
2306    
2307 root 1.72 Per-thread usage:
2308    
2309     In the execution phase, some aio requests require more memory for
2310     temporary buffers, and each thread requires a stack and other data
2311     structures (usually around 16k-128k, depending on the OS).
2312    
2313     =head1 KNOWN BUGS
2314    
2315 root 1.73 Known bugs will be fixed in the next release.
2316 root 1.60
2317 root 1.1 =head1 SEE ALSO
2318    
2319 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2320     more natural syntax.
2321 root 1.1
2322     =head1 AUTHOR
2323    
2324     Marc Lehmann <schmorp@schmorp.de>
2325     http://home.schmorp.de/
2326    
2327     =cut
2328