ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.272
Committed: Fri Jun 23 22:09:50 2017 UTC (6 years, 10 months ago) by root
Branch: MAIN
Changes since 1.271: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
239 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
240     aio_rmdir $pathname, $callback->($status)
241     aio_readdir $pathname, $callback->($entries)
242     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
243     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
244     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
245 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
246 root 1.209 aio_load $pathname, $data, $callback->($status)
247 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
248     aio_move $srcpath, $dstpath, $callback->($status)
249 root 1.209 aio_rmtree $pathname, $callback->($status)
250 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
251     aio_ioctl $fh, $request, $buf, $callback->($status)
252 root 1.175 aio_sync $callback->($status)
253 root 1.206 aio_syncfs $fh, $callback->($status)
254 root 1.175 aio_fsync $fh, $callback->($status)
255     aio_fdatasync $fh, $callback->($status)
256     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
257 root 1.209 aio_pathsync $pathname, $callback->($status)
258 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
259 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
260 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
261     aio_mlockall $flags, $callback->($status)
262 root 1.175 aio_group $callback->(...)
263     aio_nop $callback->()
264    
265     $prev_pri = aioreq_pri [$pri]
266     aioreq_nice $pri_adjust
267    
268     IO::AIO::poll_wait
269     IO::AIO::poll_cb
270     IO::AIO::poll
271     IO::AIO::flush
272     IO::AIO::max_poll_reqs $nreqs
273     IO::AIO::max_poll_time $seconds
274     IO::AIO::min_parallel $nthreads
275     IO::AIO::max_parallel $nthreads
276     IO::AIO::max_idle $nthreads
277 root 1.188 IO::AIO::idle_timeout $seconds
278 root 1.175 IO::AIO::max_outstanding $maxreqs
279     IO::AIO::nreqs
280     IO::AIO::nready
281     IO::AIO::npending
282    
283     IO::AIO::sendfile $ofh, $ifh, $offset, $count
284     IO::AIO::fadvise $fh, $offset, $len, $advice
285 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
286     IO::AIO::munmap $scalar
287 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
288     IO::AIO::mprotect $scalar, $offset, $length, $protect
289 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
290 root 1.175 IO::AIO::munlockall
291    
292 root 1.219 =head2 API NOTES
293 root 1.1
294 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
295     with the same name (sans C<aio_>). The arguments are similar or identical,
296 root 1.14 and they all accept an additional (and optional) C<$callback> argument
297 root 1.212 which must be a code reference. This code reference will be called after
298     the syscall has been executed in an asynchronous fashion. The results
299     of the request will be passed as arguments to the callback (and, if an
300     error occured, in C<$!>) - for most requests the syscall return code (e.g.
301     most syscalls return C<-1> on error, unlike perl, which usually delivers
302     "false").
303    
304     Some requests (such as C<aio_readdir>) pass the actual results and
305     communicate failures by passing C<undef>.
306 root 1.1
307 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
308     internally until the request has finished.
309 root 1.1
310 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
311     further manipulation of those requests while they are in-flight.
312 root 1.52
313 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
314     reason for this is that at the time the request is being executed, the
315 root 1.212 current working directory could have changed. Alternatively, you can
316     make sure that you never change the current working directory anywhere
317     in the program and then use relative paths. You can also take advantage
318     of IO::AIOs working directory abstraction, that lets you specify paths
319     relative to some previously-opened "working directory object" - see the
320     description of the C<IO::AIO::WD> class later in this document.
321 root 1.28
322 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
323     in filenames you got from outside (command line, readdir etc.) without
324 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
325     module and encode your pathnames to the locale (or other) encoding in
326     effect in the user environment, d) use Glib::filename_from_unicode on
327     unicode filenames or e) use something else to ensure your scalar has the
328     correct contents.
329 root 1.87
330     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
331 root 1.136 handles correctly whether it is set or not.
332 root 1.1
333 root 1.219 =head2 AIO REQUEST FUNCTIONS
334    
335 root 1.5 =over 4
336 root 1.1
337 root 1.80 =item $prev_pri = aioreq_pri [$pri]
338 root 1.68
339 root 1.80 Returns the priority value that would be used for the next request and, if
340     C<$pri> is given, sets the priority for the next aio request.
341 root 1.68
342 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
343     and C<4>, respectively. Requests with higher priority will be serviced
344     first.
345    
346     The priority will be reset to C<0> after each call to one of the C<aio_*>
347 root 1.68 functions.
348    
349 root 1.69 Example: open a file with low priority, then read something from it with
350     higher priority so the read request is serviced before other low priority
351     open requests (potentially spamming the cache):
352    
353     aioreq_pri -3;
354     aio_open ..., sub {
355     return unless $_[0];
356    
357     aioreq_pri -2;
358     aio_read $_[0], ..., sub {
359     ...
360     };
361     };
362    
363 root 1.106
364 root 1.69 =item aioreq_nice $pri_adjust
365    
366     Similar to C<aioreq_pri>, but subtracts the given value from the current
367 root 1.87 priority, so the effect is cumulative.
368 root 1.69
369 root 1.106
370 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
371 root 1.1
372 root 1.2 Asynchronously open or create a file and call the callback with a newly
373 root 1.233 created filehandle for the file (or C<undef> in case of an error).
374 root 1.1
375     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
376     for an explanation.
377    
378 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
379     list. They are the same as used by C<sysopen>.
380    
381     Likewise, C<$mode> specifies the mode of the newly created file, if it
382     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
383     except that it is mandatory (i.e. use C<0> if you don't create new files,
384 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
385     by the umask in effect then the request is being executed, so better never
386     change the umask.
387 root 1.1
388     Example:
389    
390 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
391 root 1.2 if ($_[0]) {
392     print "open successful, fh is $_[0]\n";
393 root 1.1 ...
394     } else {
395     die "open failed: $!\n";
396     }
397     };
398    
399 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
400     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
401     following POSIX and non-POSIX constants are available (missing ones on
402     your system are, as usual, C<0>):
403    
404     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
405     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
406 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
407 root 1.194
408 root 1.106
409 root 1.40 =item aio_close $fh, $callback->($status)
410 root 1.1
411 root 1.2 Asynchronously close a file and call the callback with the result
412 root 1.116 code.
413    
414 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
415 root 1.121 closing the file descriptor associated with the filehandle itself.
416 root 1.117
417 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
418     use dup2 to overwrite the file descriptor with the write-end of a pipe
419     (the pipe fd will be created on demand and will be cached).
420 root 1.117
421 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
422     free for reuse until the perl filehandle is closed.
423 root 1.117
424     =cut
425    
426 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
427    
428 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
429 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
430     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
431     C<IO::AIO::SEEK_END>).
432    
433     The resulting absolute offset will be passed to the callback, or C<-1> in
434     case of an error.
435    
436     In theory, the C<$whence> constants could be different than the
437     corresponding values from L<Fcntl>, but perl guarantees they are the same,
438     so don't panic.
439    
440 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
441     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
442     could be found. No guarantees about suitability for use in C<aio_seek> or
443     Perl's C<sysseek> can be made though, although I would naively assume they
444     "just work".
445    
446 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
447 root 1.1
448 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
449 root 1.1
450 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
451 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
452     calls the callback with the actual number of bytes transferred (or -1 on
453 root 1.145 error, just like the syscall).
454 root 1.109
455 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
456     offset plus the actual number of bytes read.
457    
458 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
459     be used (and updated), otherwise the file descriptor offset will not be
460     changed by these calls.
461 root 1.109
462 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
463     C<$data>.
464 root 1.109
465     If C<$dataoffset> is less than zero, it will be counted from the end of
466     C<$data>.
467 root 1.1
468 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
469 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
470     the necessary/optional hardware is installed).
471 root 1.31
472 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
473 root 1.1 offset C<0> within the scalar:
474    
475     aio_read $fh, 7, 15, $buffer, 0, sub {
476 root 1.9 $_[0] > 0 or die "read error: $!";
477     print "read $_[0] bytes: <$buffer>\n";
478 root 1.1 };
479    
480 root 1.106
481 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
482 root 1.35
483     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
484     reading at byte offset C<$in_offset>, and starts writing at the current
485     file offset of C<$out_fh>. Because of that, it is not safe to issue more
486     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
487 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
488     move or use the file offset of C<$in_fh>.
489 root 1.35
490 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
491 root 1.196 are written, and there is no way to find out how many more bytes have been
492     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
493     number of bytes written to C<$out_fh>. Only if the result value equals
494     C<$length> one can assume that C<$length> bytes have been read.
495 root 1.185
496     Unlike with other C<aio_> functions, it makes a lot of sense to use
497     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
498     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
499 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
500     into a trap where C<aio_sendfile> reads some data with readahead, then
501     fails to write all data, and when the socket is ready the next time, the
502     data in the cache is already lost, forcing C<aio_sendfile> to again hit
503     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
504     resource usage.
505    
506     This call tries to make use of a native C<sendfile>-like syscall to
507     provide zero-copy operation. For this to work, C<$out_fh> should refer to
508     a socket, and C<$in_fh> should refer to an mmap'able file.
509 root 1.35
510 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
511 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
512     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
513     type of filehandle regardless of the limitations of the operating system.
514    
515     As native sendfile syscalls (as practically any non-POSIX interface hacked
516     together in a hurry to improve benchmark numbers) tend to be rather buggy
517     on many systems, this implementation tries to work around some known bugs
518     in Linux and FreeBSD kernels (probably others, too), but that might fail,
519     so you really really should check the return value of C<aio_sendfile> -
520 root 1.262 fewer bytes than expected might have been transferred.
521 root 1.35
522 root 1.106
523 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
524 root 1.1
525 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
526 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
527     argument specifies the starting point from which data is to be read and
528     C<$length> specifies the number of bytes to be read. I/O is performed in
529     whole pages, so that offset is effectively rounded down to a page boundary
530     and bytes are read up to the next page boundary greater than or equal to
531 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
532 root 1.1 file. The current file offset of the file is left unchanged.
533    
534 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
535     be emulated by simply reading the data, which would have a similar effect.
536 root 1.26
537 root 1.106
538 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
539 root 1.1
540 root 1.40 =item aio_lstat $fh, $callback->($status)
541 root 1.1
542     Works like perl's C<stat> or C<lstat> in void context. The callback will
543     be called after the stat and the results will be available using C<stat _>
544     or C<-s _> etc...
545    
546     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
547     for an explanation.
548    
549     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
550     error when stat'ing a large file, the results will be silently truncated
551     unless perl itself is compiled with large file support.
552    
553 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
554     following constants and functions (if not implemented, the constants will
555     be C<0> and the functions will either C<croak> or fall back on traditional
556     behaviour).
557    
558     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
559     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
560     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
561    
562 root 1.1 Example: Print the length of F</etc/passwd>:
563    
564     aio_stat "/etc/passwd", sub {
565     $_[0] and die "stat failed: $!";
566     print "size is ", -s _, "\n";
567     };
568    
569 root 1.106
570 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
571 root 1.172
572     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
573     whether a file handle or path was passed.
574    
575     On success, the callback is passed a hash reference with the following
576     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
577     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
578     is passed.
579    
580     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
581     C<ST_NOSUID>.
582    
583     The following non-POSIX IO::AIO::ST_* flag masks are defined to
584     their correct value when available, or to C<0> on systems that do
585     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
586     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
587     C<ST_NODIRATIME> and C<ST_RELATIME>.
588    
589     Example: stat C</wd> and dump out the data if successful.
590    
591     aio_statvfs "/wd", sub {
592     my $f = $_[0]
593     or die "statvfs: $!";
594    
595     use Data::Dumper;
596     say Dumper $f;
597     };
598    
599     # result:
600     {
601     bsize => 1024,
602     bfree => 4333064312,
603     blocks => 10253828096,
604     files => 2050765568,
605     flag => 4096,
606     favail => 2042092649,
607     bavail => 4333064312,
608     ffree => 2042092649,
609     namemax => 255,
610     frsize => 1024,
611     fsid => 1810
612     }
613    
614 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
615     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
616 root 1.235
617     0x0000adf5 adfs
618     0x0000adff affs
619     0x5346414f afs
620     0x09041934 anon-inode filesystem
621     0x00000187 autofs
622     0x42465331 befs
623     0x1badface bfs
624     0x42494e4d binfmt_misc
625     0x9123683e btrfs
626     0x0027e0eb cgroupfs
627     0xff534d42 cifs
628     0x73757245 coda
629     0x012ff7b7 coh
630     0x28cd3d45 cramfs
631     0x453dcd28 cramfs-wend (wrong endianness)
632     0x64626720 debugfs
633     0x00001373 devfs
634     0x00001cd1 devpts
635     0x0000f15f ecryptfs
636     0x00414a53 efs
637     0x0000137d ext
638 root 1.257 0x0000ef53 ext2/ext3/ext4
639 root 1.235 0x0000ef51 ext2
640 root 1.257 0xf2f52010 f2fs
641 root 1.235 0x00004006 fat
642     0x65735546 fuseblk
643     0x65735543 fusectl
644     0x0bad1dea futexfs
645     0x01161970 gfs2
646     0x47504653 gpfs
647     0x00004244 hfs
648     0xf995e849 hpfs
649 root 1.257 0x00c0ffee hostfs
650 root 1.235 0x958458f6 hugetlbfs
651     0x2bad1dea inotifyfs
652     0x00009660 isofs
653     0x000072b6 jffs2
654     0x3153464a jfs
655     0x6b414653 k-afs
656     0x0bd00bd0 lustre
657     0x0000137f minix
658     0x0000138f minix 30 char names
659     0x00002468 minix v2
660     0x00002478 minix v2 30 char names
661     0x00004d5a minix v3
662     0x19800202 mqueue
663     0x00004d44 msdos
664     0x0000564c novell
665     0x00006969 nfs
666     0x6e667364 nfsd
667     0x00003434 nilfs
668     0x5346544e ntfs
669     0x00009fa1 openprom
670     0x7461636F ocfs2
671     0x00009fa0 proc
672     0x6165676c pstorefs
673     0x0000002f qnx4
674 root 1.257 0x68191122 qnx6
675 root 1.235 0x858458f6 ramfs
676     0x52654973 reiserfs
677     0x00007275 romfs
678     0x67596969 rpc_pipefs
679     0x73636673 securityfs
680     0xf97cff8c selinux
681     0x0000517b smb
682     0x534f434b sockfs
683     0x73717368 squashfs
684     0x62656572 sysfs
685     0x012ff7b6 sysv2
686     0x012ff7b5 sysv4
687     0x01021994 tmpfs
688     0x15013346 udf
689     0x00011954 ufs
690     0x54190100 ufs byteswapped
691     0x00009fa2 usbdevfs
692     0x01021997 v9fs
693     0xa501fcf5 vxfs
694     0xabba1974 xenfs
695     0x012ff7b4 xenix
696     0x58465342 xfs
697     0x012fd16d xia
698 root 1.172
699 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
700    
701     Works like perl's C<utime> function (including the special case of $atime
702     and $mtime being undef). Fractional times are supported if the underlying
703     syscalls support them.
704    
705     When called with a pathname, uses utimes(2) if available, otherwise
706     utime(2). If called on a file descriptor, uses futimes(2) if available,
707     otherwise returns ENOSYS, so this is not portable.
708    
709     Examples:
710    
711 root 1.107 # set atime and mtime to current time (basically touch(1)):
712 root 1.106 aio_utime "path", undef, undef;
713     # set atime to current time and mtime to beginning of the epoch:
714     aio_utime "path", time, undef; # undef==0
715    
716    
717     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
718    
719     Works like perl's C<chown> function, except that C<undef> for either $uid
720     or $gid is being interpreted as "do not change" (but -1 can also be used).
721    
722     Examples:
723    
724     # same as "chown root path" in the shell:
725     aio_chown "path", 0, -1;
726     # same as above:
727     aio_chown "path", 0, undef;
728    
729    
730 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
731    
732     Works like truncate(2) or ftruncate(2).
733    
734    
735 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
736    
737 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
738     linux C<fallocate> documentation for details.
739 root 1.229
740 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
741     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
742     to deallocate a file range.
743    
744     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
745     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
746     your L<fallocate(2)> manpage).
747 root 1.229
748     The file system block size used by C<fallocate> is presumably the
749     C<f_bsize> returned by C<statvfs>.
750    
751     If C<fallocate> isn't available or cannot be emulated (currently no
752     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
753    
754    
755 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
756    
757     Works like perl's C<chmod> function.
758    
759    
760 root 1.40 =item aio_unlink $pathname, $callback->($status)
761 root 1.1
762     Asynchronously unlink (delete) a file and call the callback with the
763     result code.
764    
765 root 1.106
766 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
767 root 1.82
768 root 1.86 [EXPERIMENTAL]
769    
770 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
771    
772 root 1.86 The only (POSIX-) portable way of calling this function is:
773 root 1.83
774 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
775 root 1.82
776 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
777     and functions.
778 root 1.106
779 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
780    
781     Asynchronously create a new link to the existing object at C<$srcpath> at
782     the path C<$dstpath> and call the callback with the result code.
783    
784 root 1.106
785 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
786    
787     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
788     the path C<$dstpath> and call the callback with the result code.
789    
790 root 1.106
791 root 1.209 =item aio_readlink $pathname, $callback->($link)
792 root 1.90
793     Asynchronously read the symlink specified by C<$path> and pass it to
794     the callback. If an error occurs, nothing or undef gets passed to the
795     callback.
796    
797 root 1.106
798 root 1.209 =item aio_realpath $pathname, $callback->($path)
799 root 1.201
800     Asynchronously make the path absolute and resolve any symlinks in
801 root 1.239 C<$path>. The resulting path only consists of directories (same as
802 root 1.202 L<Cwd::realpath>).
803 root 1.201
804     This request can be used to get the absolute path of the current working
805     directory by passing it a path of F<.> (a single dot).
806    
807    
808 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
809    
810     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
811     rename(2) and call the callback with the result code.
812    
813 root 1.241 On systems that support the AIO::WD working directory abstraction
814     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
815     of failing, C<rename> is called on the absolute path of C<$wd>.
816    
817 root 1.106
818 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
819    
820     Basically a version of C<aio_rename> with an additional C<$flags>
821     argument. Calling this with C<$flags=0> is the same as calling
822     C<aio_rename>.
823    
824     Non-zero flags are currently only supported on GNU/Linux systems that
825     support renameat2. Other systems fail with C<ENOSYS> in this case.
826    
827     The following constants are available (missing ones are, as usual C<0>),
828     see renameat2(2) for details:
829    
830     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
831     and C<IO::AIO::RENAME_WHITEOUT>.
832    
833    
834 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
835    
836     Asynchronously mkdir (create) a directory and call the callback with
837     the result code. C<$mode> will be modified by the umask at the time the
838     request is executed, so do not change your umask.
839    
840 root 1.106
841 root 1.40 =item aio_rmdir $pathname, $callback->($status)
842 root 1.27
843     Asynchronously rmdir (delete) a directory and call the callback with the
844     result code.
845    
846 root 1.241 On systems that support the AIO::WD working directory abstraction
847     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
848     C<rmdir> is called on the absolute path of C<$wd>.
849    
850 root 1.106
851 root 1.46 =item aio_readdir $pathname, $callback->($entries)
852 root 1.37
853     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
854     directory (i.e. opendir + readdir + closedir). The entries will not be
855     sorted, and will B<NOT> include the C<.> and C<..> entries.
856    
857 root 1.148 The callback is passed a single argument which is either C<undef> or an
858     array-ref with the filenames.
859    
860    
861     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
862    
863 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
864     tune behaviour and output format. In case of an error, C<$entries> will be
865 root 1.148 C<undef>.
866    
867     The flags are a combination of the following constants, ORed together (the
868     flags will also be passed to the callback, possibly modified):
869    
870     =over 4
871    
872 root 1.150 =item IO::AIO::READDIR_DENTS
873 root 1.148
874 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
875     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
876 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
877 root 1.148 entry in more detail.
878    
879     C<$name> is the name of the entry.
880    
881 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
882 root 1.148
883 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
884     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
885     C<IO::AIO::DT_WHT>.
886 root 1.148
887 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
888 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
889     scalars are read-only: you can not modify them.
890    
891 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
892 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
893     systems that do not deliver the inode information.
894 root 1.150
895     =item IO::AIO::READDIR_DIRS_FIRST
896 root 1.148
897     When this flag is set, then the names will be returned in an order where
898 root 1.193 likely directories come first, in optimal stat order. This is useful when
899     you need to quickly find directories, or you want to find all directories
900     while avoiding to stat() each entry.
901 root 1.148
902 root 1.149 If the system returns type information in readdir, then this is used
903 root 1.193 to find directories directly. Otherwise, likely directories are names
904     beginning with ".", or otherwise names with no dots, of which names with
905 root 1.149 short names are tried first.
906    
907 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
908 root 1.148
909     When this flag is set, then the names will be returned in an order
910     suitable for stat()'ing each one. That is, when you plan to stat()
911     all files in the given directory, then the returned order will likely
912     be fastest.
913    
914 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
915     the likely dirs come first, resulting in a less optimal stat order.
916 root 1.148
917 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
918 root 1.148
919     This flag should not be set when calling C<aio_readdirx>. Instead, it
920     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
921 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
922 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
923    
924     =back
925 root 1.37
926 root 1.106
927 root 1.209 =item aio_load $pathname, $data, $callback->($status)
928 root 1.98
929     This is a composite request that tries to fully load the given file into
930     memory. Status is the same as with aio_read.
931    
932     =cut
933    
934     sub aio_load($$;$) {
935 root 1.123 my ($path, undef, $cb) = @_;
936     my $data = \$_[1];
937 root 1.98
938 root 1.123 my $pri = aioreq_pri;
939     my $grp = aio_group $cb;
940    
941     aioreq_pri $pri;
942     add $grp aio_open $path, O_RDONLY, 0, sub {
943     my $fh = shift
944     or return $grp->result (-1);
945 root 1.98
946     aioreq_pri $pri;
947 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
948     $grp->result ($_[0]);
949 root 1.98 };
950 root 1.123 };
951 root 1.98
952 root 1.123 $grp
953 root 1.98 }
954    
955 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
956    
957     Try to copy the I<file> (directories not supported as either source or
958     destination) from C<$srcpath> to C<$dstpath> and call the callback with
959 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
960 root 1.82
961 root 1.134 This is a composite request that creates the destination file with
962 root 1.82 mode 0200 and copies the contents of the source file into it using
963     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
964     uid/gid, in that order.
965    
966     If an error occurs, the partial destination file will be unlinked, if
967     possible, except when setting atime, mtime, access mode and uid/gid, where
968     errors are being ignored.
969    
970     =cut
971    
972     sub aio_copy($$;$) {
973 root 1.123 my ($src, $dst, $cb) = @_;
974 root 1.82
975 root 1.123 my $pri = aioreq_pri;
976     my $grp = aio_group $cb;
977 root 1.82
978 root 1.123 aioreq_pri $pri;
979     add $grp aio_open $src, O_RDONLY, 0, sub {
980     if (my $src_fh = $_[0]) {
981 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
982 root 1.95
983 root 1.123 aioreq_pri $pri;
984     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
985     if (my $dst_fh = $_[0]) {
986     aioreq_pri $pri;
987     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
988     if ($_[0] == $stat[7]) {
989     $grp->result (0);
990     close $src_fh;
991    
992 root 1.147 my $ch = sub {
993     aioreq_pri $pri;
994     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
995     aioreq_pri $pri;
996     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
997     aioreq_pri $pri;
998     add $grp aio_close $dst_fh;
999     }
1000     };
1001     };
1002 root 1.123
1003     aioreq_pri $pri;
1004 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1005     if ($_[0] < 0 && $! == ENOSYS) {
1006     aioreq_pri $pri;
1007     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1008     } else {
1009     $ch->();
1010     }
1011     };
1012 root 1.123 } else {
1013     $grp->result (-1);
1014     close $src_fh;
1015     close $dst_fh;
1016    
1017     aioreq $pri;
1018     add $grp aio_unlink $dst;
1019     }
1020     };
1021     } else {
1022     $grp->result (-1);
1023     }
1024     },
1025 root 1.82
1026 root 1.123 } else {
1027     $grp->result (-1);
1028     }
1029     };
1030 root 1.82
1031 root 1.123 $grp
1032 root 1.82 }
1033    
1034     =item aio_move $srcpath, $dstpath, $callback->($status)
1035    
1036     Try to move the I<file> (directories not supported as either source or
1037     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1038 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1039 root 1.82
1040 root 1.137 This is a composite request that tries to rename(2) the file first; if
1041     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1042     that is successful, unlinks the C<$srcpath>.
1043 root 1.82
1044     =cut
1045    
1046     sub aio_move($$;$) {
1047 root 1.123 my ($src, $dst, $cb) = @_;
1048 root 1.82
1049 root 1.123 my $pri = aioreq_pri;
1050     my $grp = aio_group $cb;
1051 root 1.82
1052 root 1.123 aioreq_pri $pri;
1053     add $grp aio_rename $src, $dst, sub {
1054     if ($_[0] && $! == EXDEV) {
1055     aioreq_pri $pri;
1056     add $grp aio_copy $src, $dst, sub {
1057     $grp->result ($_[0]);
1058 root 1.95
1059 root 1.196 unless ($_[0]) {
1060 root 1.123 aioreq_pri $pri;
1061     add $grp aio_unlink $src;
1062     }
1063     };
1064     } else {
1065     $grp->result ($_[0]);
1066     }
1067     };
1068 root 1.82
1069 root 1.123 $grp
1070 root 1.82 }
1071    
1072 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1073 root 1.40
1074 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1075 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1076     names, directories you can recurse into (directories), and ones you cannot
1077     recurse into (everything else, including symlinks to directories).
1078 root 1.52
1079 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1080     C<$maxreq> specifies the maximum number of outstanding aio requests that
1081     this function generates. If it is C<< <= 0 >>, then a suitable default
1082 root 1.81 will be chosen (currently 4).
1083 root 1.40
1084     On error, the callback is called without arguments, otherwise it receives
1085     two array-refs with path-relative entry names.
1086    
1087     Example:
1088    
1089     aio_scandir $dir, 0, sub {
1090     my ($dirs, $nondirs) = @_;
1091     print "real directories: @$dirs\n";
1092     print "everything else: @$nondirs\n";
1093     };
1094    
1095     Implementation notes.
1096    
1097     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1098    
1099 root 1.149 If readdir returns file type information, then this is used directly to
1100     find directories.
1101    
1102     Otherwise, after reading the directory, the modification time, size etc.
1103     of the directory before and after the readdir is checked, and if they
1104     match (and isn't the current time), the link count will be used to decide
1105     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1106     number of subdirectories will be assumed.
1107    
1108     Then entries will be sorted into likely directories a non-initial dot
1109     currently) and likely non-directories (see C<aio_readdirx>). Then every
1110     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1111     in order of their inode numbers. If that succeeds, it assumes that the
1112     entry is a directory or a symlink to directory (which will be checked
1113 root 1.207 separately). This is often faster than stat'ing the entry itself because
1114 root 1.52 filesystems might detect the type of the entry without reading the inode
1115 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1116     the filetype information on readdir.
1117 root 1.52
1118     If the known number of directories (link count - 2) has been reached, the
1119     rest of the entries is assumed to be non-directories.
1120    
1121     This only works with certainty on POSIX (= UNIX) filesystems, which
1122     fortunately are the vast majority of filesystems around.
1123    
1124     It will also likely work on non-POSIX filesystems with reduced efficiency
1125     as those tend to return 0 or 1 as link counts, which disables the
1126     directory counting heuristic.
1127 root 1.40
1128     =cut
1129    
1130 root 1.100 sub aio_scandir($$;$) {
1131 root 1.123 my ($path, $maxreq, $cb) = @_;
1132    
1133     my $pri = aioreq_pri;
1134 root 1.40
1135 root 1.123 my $grp = aio_group $cb;
1136 root 1.80
1137 root 1.123 $maxreq = 4 if $maxreq <= 0;
1138 root 1.55
1139 root 1.210 # get a wd object
1140 root 1.123 aioreq_pri $pri;
1141 root 1.210 add $grp aio_wd $path, sub {
1142 root 1.212 $_[0]
1143     or return $grp->result ();
1144    
1145 root 1.210 my $wd = [shift, "."];
1146 root 1.40
1147 root 1.210 # stat once
1148 root 1.80 aioreq_pri $pri;
1149 root 1.210 add $grp aio_stat $wd, sub {
1150     return $grp->result () if $_[0];
1151     my $now = time;
1152     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1153 root 1.40
1154 root 1.210 # read the directory entries
1155 root 1.80 aioreq_pri $pri;
1156 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1157     my $entries = shift
1158     or return $grp->result ();
1159    
1160     # stat the dir another time
1161     aioreq_pri $pri;
1162     add $grp aio_stat $wd, sub {
1163     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1164 root 1.95
1165 root 1.210 my $ndirs;
1166 root 1.95
1167 root 1.210 # take the slow route if anything looks fishy
1168     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1169     $ndirs = -1;
1170     } else {
1171     # if nlink == 2, we are finished
1172     # for non-posix-fs's, we rely on nlink < 2
1173     $ndirs = (stat _)[3] - 2
1174     or return $grp->result ([], $entries);
1175     }
1176 root 1.123
1177 root 1.210 my (@dirs, @nondirs);
1178 root 1.40
1179 root 1.210 my $statgrp = add $grp aio_group sub {
1180     $grp->result (\@dirs, \@nondirs);
1181     };
1182 root 1.40
1183 root 1.210 limit $statgrp $maxreq;
1184     feed $statgrp sub {
1185     return unless @$entries;
1186     my $entry = shift @$entries;
1187    
1188     aioreq_pri $pri;
1189     $wd->[1] = "$entry/.";
1190     add $statgrp aio_stat $wd, sub {
1191     if ($_[0] < 0) {
1192     push @nondirs, $entry;
1193     } else {
1194     # need to check for real directory
1195     aioreq_pri $pri;
1196     $wd->[1] = $entry;
1197     add $statgrp aio_lstat $wd, sub {
1198     if (-d _) {
1199     push @dirs, $entry;
1200    
1201     unless (--$ndirs) {
1202     push @nondirs, @$entries;
1203     feed $statgrp;
1204     }
1205     } else {
1206     push @nondirs, $entry;
1207 root 1.74 }
1208 root 1.40 }
1209     }
1210 root 1.210 };
1211 root 1.74 };
1212 root 1.40 };
1213     };
1214     };
1215 root 1.123 };
1216 root 1.55
1217 root 1.123 $grp
1218 root 1.40 }
1219    
1220 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1221 root 1.99
1222 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1223 root 1.239 status of the final C<rmdir> only. This is a composite request that
1224 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1225     everything else.
1226 root 1.99
1227     =cut
1228    
1229     sub aio_rmtree;
1230 root 1.100 sub aio_rmtree($;$) {
1231 root 1.123 my ($path, $cb) = @_;
1232 root 1.99
1233 root 1.123 my $pri = aioreq_pri;
1234     my $grp = aio_group $cb;
1235 root 1.99
1236 root 1.123 aioreq_pri $pri;
1237     add $grp aio_scandir $path, 0, sub {
1238     my ($dirs, $nondirs) = @_;
1239 root 1.99
1240 root 1.123 my $dirgrp = aio_group sub {
1241     add $grp aio_rmdir $path, sub {
1242     $grp->result ($_[0]);
1243 root 1.99 };
1244 root 1.123 };
1245 root 1.99
1246 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1247     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1248 root 1.99
1249 root 1.123 add $grp $dirgrp;
1250     };
1251 root 1.99
1252 root 1.123 $grp
1253 root 1.99 }
1254    
1255 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1256    
1257     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1258    
1259     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1260     they execute asynchronously and pass the return value to the callback.
1261    
1262     Both calls can be used for a lot of things, some of which make more sense
1263     to run asynchronously in their own thread, while some others make less
1264     sense. For example, calls that block waiting for external events, such
1265     as locking, will also lock down an I/O thread while it is waiting, which
1266     can deadlock the whole I/O system. At the same time, there might be no
1267     alternative to using a thread to wait.
1268    
1269     So in general, you should only use these calls for things that do
1270     (filesystem) I/O, not for things that wait for other events (network,
1271     other processes), although if you are careful and know what you are doing,
1272     you still can.
1273    
1274 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1275    
1276 root 1.271 C<F_DUPFD_CLOEXEC>,
1277    
1278     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1279    
1280 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1281    
1282     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1283     C<FS_IOC_FIEMAP>.
1284    
1285     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1286     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1287    
1288     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1289     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1290     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1291     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1292     C<FS_FL_USER_MODIFIABLE>.
1293    
1294     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1295     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1296     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1297     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1298    
1299 root 1.119 =item aio_sync $callback->($status)
1300    
1301     Asynchronously call sync and call the callback when finished.
1302    
1303 root 1.40 =item aio_fsync $fh, $callback->($status)
1304 root 1.1
1305     Asynchronously call fsync on the given filehandle and call the callback
1306     with the fsync result code.
1307    
1308 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1309 root 1.1
1310     Asynchronously call fdatasync on the given filehandle and call the
1311 root 1.26 callback with the fdatasync result code.
1312    
1313     If this call isn't available because your OS lacks it or it couldn't be
1314     detected, it will be emulated by calling C<fsync> instead.
1315 root 1.1
1316 root 1.206 =item aio_syncfs $fh, $callback->($status)
1317    
1318     Asynchronously call the syncfs syscall to sync the filesystem associated
1319     to the given filehandle and call the callback with the syncfs result
1320     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1321     errno to C<ENOSYS> nevertheless.
1322    
1323 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1324    
1325     Sync the data portion of the file specified by C<$offset> and C<$length>
1326     to disk (but NOT the metadata), by calling the Linux-specific
1327     sync_file_range call. If sync_file_range is not available or it returns
1328     ENOSYS, then fdatasync or fsync is being substituted.
1329    
1330     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1331     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1332     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1333     manpage for details.
1334    
1335 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1336 root 1.120
1337     This request tries to open, fsync and close the given path. This is a
1338 root 1.135 composite request intended to sync directories after directory operations
1339 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1340     specific effect, but usually it makes sure that directory changes get
1341     written to disc. It works for anything that can be opened for read-only,
1342     not just directories.
1343    
1344 root 1.162 Future versions of this function might fall back to other methods when
1345     C<fsync> on the directory fails (such as calling C<sync>).
1346    
1347 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1348    
1349     =cut
1350    
1351     sub aio_pathsync($;$) {
1352 root 1.123 my ($path, $cb) = @_;
1353    
1354     my $pri = aioreq_pri;
1355     my $grp = aio_group $cb;
1356 root 1.120
1357 root 1.123 aioreq_pri $pri;
1358     add $grp aio_open $path, O_RDONLY, 0, sub {
1359     my ($fh) = @_;
1360     if ($fh) {
1361     aioreq_pri $pri;
1362     add $grp aio_fsync $fh, sub {
1363     $grp->result ($_[0]);
1364 root 1.120
1365     aioreq_pri $pri;
1366 root 1.123 add $grp aio_close $fh;
1367     };
1368     } else {
1369     $grp->result (-1);
1370     }
1371     };
1372 root 1.120
1373 root 1.123 $grp
1374 root 1.120 }
1375    
1376 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1377 root 1.170
1378     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1379 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1380     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1381     scalar must only be modified in-place while an aio operation is pending on
1382     it).
1383 root 1.170
1384     It calls the C<msync> function of your OS, if available, with the memory
1385     area starting at C<$offset> in the string and ending C<$length> bytes
1386     later. If C<$length> is negative, counts from the end, and if C<$length>
1387     is C<undef>, then it goes till the end of the string. The flags can be
1388 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1389     C<IO::AIO::MS_INVALIDATE>.
1390 root 1.170
1391     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1392    
1393     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1394     scalars.
1395    
1396     It touches (reads or writes) all memory pages in the specified
1397 root 1.239 range inside the scalar. All caveats and parameters are the same
1398 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1399     C<0> (which reads all pages and ensures they are instantiated) or
1400 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1401 root 1.170 writing an octet from it, which dirties the page).
1402    
1403 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1404    
1405     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1406     scalars.
1407    
1408     It reads in all the pages of the underlying storage into memory (if any)
1409     and locks them, so they are not getting swapped/paged out or removed.
1410    
1411     If C<$length> is undefined, then the scalar will be locked till the end.
1412    
1413     On systems that do not implement C<mlock>, this function returns C<-1>
1414     and sets errno to C<ENOSYS>.
1415    
1416     Note that the corresponding C<munlock> is synchronous and is
1417     documented under L<MISCELLANEOUS FUNCTIONS>.
1418    
1419 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1420     C<$data> gets destroyed.
1421    
1422     open my $fh, "<", $path or die "$path: $!";
1423     my $data;
1424     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1425     aio_mlock $data; # mlock in background
1426    
1427 root 1.182 =item aio_mlockall $flags, $callback->($status)
1428    
1429     Calls the C<mlockall> function with the given C<$flags> (a combination of
1430     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1431    
1432     On systems that do not implement C<mlockall>, this function returns C<-1>
1433     and sets errno to C<ENOSYS>.
1434    
1435     Note that the corresponding C<munlockall> is synchronous and is
1436     documented under L<MISCELLANEOUS FUNCTIONS>.
1437    
1438 root 1.183 Example: asynchronously lock all current and future pages into memory.
1439    
1440     aio_mlockall IO::AIO::MCL_FUTURE;
1441    
1442 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1443    
1444 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1445     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1446     the ioctl is not available on your OS, then this request will fail with
1447 root 1.223 C<ENOSYS>.
1448    
1449     C<$start> is the starting offset to query extents for, C<$length> is the
1450     size of the range to query - if it is C<undef>, then the whole file will
1451     be queried.
1452    
1453     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1454     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1455     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1456     the data portion.
1457    
1458     C<$count> is the maximum number of extent records to return. If it is
1459 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1460 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1461 root 1.232 instead of the extents themselves (which is unreliable, see below).
1462 root 1.223
1463     If an error occurs, the callback receives no arguments. The special
1464     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1465    
1466     Otherwise, the callback receives an array reference with extent
1467     structures. Each extent structure is an array reference itself, with the
1468     following members:
1469    
1470     [$logical, $physical, $length, $flags]
1471    
1472     Flags is any combination of the following flag values (typically either C<0>
1473 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1474 root 1.223
1475     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1476     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1477     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1478     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1479     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1480     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1481    
1482 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1483     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1484     it to return all extents of a range for files with large number of
1485     extents. The code works around all these issues if C<$count> is undef.
1486    
1487 root 1.58 =item aio_group $callback->(...)
1488 root 1.54
1489 root 1.55 This is a very special aio request: Instead of doing something, it is a
1490     container for other aio requests, which is useful if you want to bundle
1491 root 1.71 many requests into a single, composite, request with a definite callback
1492     and the ability to cancel the whole request with its subrequests.
1493 root 1.55
1494     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1495     for more info.
1496    
1497     Example:
1498    
1499     my $grp = aio_group sub {
1500     print "all stats done\n";
1501     };
1502    
1503     add $grp
1504     (aio_stat ...),
1505     (aio_stat ...),
1506     ...;
1507    
1508 root 1.63 =item aio_nop $callback->()
1509    
1510     This is a special request - it does nothing in itself and is only used for
1511     side effects, such as when you want to add a dummy request to a group so
1512     that finishing the requests in the group depends on executing the given
1513     code.
1514    
1515 root 1.64 While this request does nothing, it still goes through the execution
1516     phase and still requires a worker thread. Thus, the callback will not
1517     be executed immediately but only after other requests in the queue have
1518     entered their execution phase. This can be used to measure request
1519     latency.
1520    
1521 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1522 root 1.54
1523     Mainly used for debugging and benchmarking, this aio request puts one of
1524     the request workers to sleep for the given time.
1525    
1526 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1527 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1528     immense (it blocks a thread for a long time) so do not use this function
1529     except to put your application under artificial I/O pressure.
1530 root 1.56
1531 root 1.5 =back
1532    
1533 root 1.209
1534     =head2 IO::AIO::WD - multiple working directories
1535    
1536     Your process only has one current working directory, which is used by all
1537     threads. This makes it hard to use relative paths (some other component
1538     could call C<chdir> at any time, and it is hard to control when the path
1539     will be used by IO::AIO).
1540    
1541     One solution for this is to always use absolute paths. This usually works,
1542     but can be quite slow (the kernel has to walk the whole path on every
1543     access), and can also be a hassle to implement.
1544    
1545     Newer POSIX systems have a number of functions (openat, fdopendir,
1546     futimensat and so on) that make it possible to specify working directories
1547     per operation.
1548    
1549     For portability, and because the clowns who "designed", or shall I write,
1550     perpetrated this new interface were obviously half-drunk, this abstraction
1551     cannot be perfect, though.
1552    
1553     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1554     object. This object stores the canonicalised, absolute version of the
1555     path, and on systems that allow it, also a directory file descriptor.
1556    
1557     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1558     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1559 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1560     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1561 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1562 root 1.209 to that IO::AIO::WD object.
1563    
1564     For example, to get a wd object for F</etc> and then stat F<passwd>
1565     inside, you would write:
1566    
1567     aio_wd "/etc", sub {
1568     my $etcdir = shift;
1569    
1570     # although $etcdir can be undef on error, there is generally no reason
1571     # to check for errors here, as aio_stat will fail with ENOENT
1572     # when $etcdir is undef.
1573    
1574     aio_stat [$etcdir, "passwd"], sub {
1575     # yay
1576     };
1577     };
1578    
1579 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1580     creating an IO::AIO::WD object is itself a potentially blocking operation,
1581     which is why it is done asynchronously.
1582 root 1.214
1583     To stat the directory obtained with C<aio_wd> above, one could write
1584     either of the following three request calls:
1585    
1586     aio_lstat "/etc" , sub { ... # pathname as normal string
1587     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1588     aio_lstat $wd , sub { ... # shorthand for the previous
1589 root 1.209
1590     As with normal pathnames, IO::AIO keeps a copy of the working directory
1591     object and the pathname string, so you could write the following without
1592     causing any issues due to C<$path> getting reused:
1593    
1594     my $path = [$wd, undef];
1595    
1596     for my $name (qw(abc def ghi)) {
1597     $path->[1] = $name;
1598     aio_stat $path, sub {
1599     # ...
1600     };
1601     }
1602    
1603     There are some caveats: when directories get renamed (or deleted), the
1604     pathname string doesn't change, so will point to the new directory (or
1605     nowhere at all), while the directory fd, if available on the system,
1606     will still point to the original directory. Most functions accepting a
1607     pathname will use the directory fd on newer systems, and the string on
1608     older systems. Some functions (such as realpath) will always rely on the
1609     string form of the pathname.
1610    
1611 root 1.239 So this functionality is mainly useful to get some protection against
1612 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1613     reference, and to speed up doing many operations in the same directory
1614     (e.g. when stat'ing all files in a directory).
1615    
1616     The following functions implement this working directory abstraction:
1617    
1618     =over 4
1619    
1620     =item aio_wd $pathname, $callback->($wd)
1621    
1622     Asynchonously canonicalise the given pathname and convert it to an
1623     IO::AIO::WD object representing it. If possible and supported on the
1624     system, also open a directory fd to speed up pathname resolution relative
1625     to this working directory.
1626    
1627     If something goes wrong, then C<undef> is passwd to the callback instead
1628     of a working directory object and C<$!> is set appropriately. Since
1629     passing C<undef> as working directory component of a pathname fails the
1630     request with C<ENOENT>, there is often no need for error checking in the
1631     C<aio_wd> callback, as future requests using the value will fail in the
1632     expected way.
1633    
1634     =item IO::AIO::CWD
1635    
1636     This is a compiletime constant (object) that represents the process
1637     current working directory.
1638    
1639 root 1.239 Specifying this object as working directory object for a pathname is as if
1640     the pathname would be specified directly, without a directory object. For
1641     example, these calls are functionally identical:
1642 root 1.209
1643     aio_stat "somefile", sub { ... };
1644     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1645    
1646     =back
1647    
1648 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1649     C<aio_realpath>:
1650    
1651     aio_realpath $wd, sub {
1652     warn "path is $_[0]\n";
1653     };
1654    
1655 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1656     sometimes, fall back to using an absolue path.
1657 root 1.209
1658 root 1.53 =head2 IO::AIO::REQ CLASS
1659 root 1.52
1660     All non-aggregate C<aio_*> functions return an object of this class when
1661     called in non-void context.
1662    
1663     =over 4
1664    
1665 root 1.65 =item cancel $req
1666 root 1.52
1667     Cancels the request, if possible. Has the effect of skipping execution
1668     when entering the B<execute> state and skipping calling the callback when
1669     entering the the B<result> state, but will leave the request otherwise
1670 root 1.151 untouched (with the exception of readdir). That means that requests that
1671     currently execute will not be stopped and resources held by the request
1672     will not be freed prematurely.
1673 root 1.52
1674 root 1.65 =item cb $req $callback->(...)
1675    
1676     Replace (or simply set) the callback registered to the request.
1677    
1678 root 1.52 =back
1679    
1680 root 1.55 =head2 IO::AIO::GRP CLASS
1681    
1682     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1683     objects of this class, too.
1684    
1685     A IO::AIO::GRP object is a special request that can contain multiple other
1686     aio requests.
1687    
1688     You create one by calling the C<aio_group> constructing function with a
1689     callback that will be called when all contained requests have entered the
1690     C<done> state:
1691    
1692     my $grp = aio_group sub {
1693     print "all requests are done\n";
1694     };
1695    
1696     You add requests by calling the C<add> method with one or more
1697     C<IO::AIO::REQ> objects:
1698    
1699     $grp->add (aio_unlink "...");
1700    
1701 root 1.58 add $grp aio_stat "...", sub {
1702     $_[0] or return $grp->result ("error");
1703    
1704     # add another request dynamically, if first succeeded
1705     add $grp aio_open "...", sub {
1706     $grp->result ("ok");
1707     };
1708     };
1709 root 1.55
1710     This makes it very easy to create composite requests (see the source of
1711     C<aio_move> for an application) that work and feel like simple requests.
1712    
1713 root 1.62 =over 4
1714    
1715     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1716 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1717    
1718 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1719 root 1.59 only the request itself, but also all requests it contains.
1720 root 1.55
1721 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1722 root 1.55
1723 root 1.62 =item * You must not add requests to a group from within the group callback (or
1724 root 1.60 any later time).
1725    
1726 root 1.62 =back
1727    
1728 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1729     will finish very quickly. If they contain only requests that are in the
1730     C<done> state, they will also finish. Otherwise they will continue to
1731     exist.
1732    
1733 root 1.133 That means after creating a group you have some time to add requests
1734     (precisely before the callback has been invoked, which is only done within
1735     the C<poll_cb>). And in the callbacks of those requests, you can add
1736     further requests to the group. And only when all those requests have
1737     finished will the the group itself finish.
1738 root 1.57
1739 root 1.55 =over 4
1740    
1741 root 1.65 =item add $grp ...
1742    
1743 root 1.55 =item $grp->add (...)
1744    
1745 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1746     be added, including other groups, as long as you do not create circular
1747     dependencies.
1748    
1749     Returns all its arguments.
1750 root 1.55
1751 root 1.74 =item $grp->cancel_subs
1752    
1753     Cancel all subrequests and clears any feeder, but not the group request
1754     itself. Useful when you queued a lot of events but got a result early.
1755    
1756 root 1.168 The group request will finish normally (you cannot add requests to the
1757     group).
1758    
1759 root 1.58 =item $grp->result (...)
1760    
1761     Set the result value(s) that will be passed to the group callback when all
1762 root 1.120 subrequests have finished and set the groups errno to the current value
1763 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1764     no argument will be passed and errno is zero.
1765    
1766     =item $grp->errno ([$errno])
1767    
1768     Sets the group errno value to C<$errno>, or the current value of errno
1769     when the argument is missing.
1770    
1771     Every aio request has an associated errno value that is restored when
1772     the callback is invoked. This method lets you change this value from its
1773     default (0).
1774    
1775     Calling C<result> will also set errno, so make sure you either set C<$!>
1776     before the call to C<result>, or call c<errno> after it.
1777 root 1.58
1778 root 1.65 =item feed $grp $callback->($grp)
1779 root 1.60
1780     Sets a feeder/generator on this group: every group can have an attached
1781     generator that generates requests if idle. The idea behind this is that,
1782     although you could just queue as many requests as you want in a group,
1783 root 1.139 this might starve other requests for a potentially long time. For example,
1784 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1785     requests, delaying any later requests for a long time.
1786 root 1.60
1787     To avoid this, and allow incremental generation of requests, you can
1788     instead a group and set a feeder on it that generates those requests. The
1789 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1790 root 1.60 below) requests active in the group itself and is expected to queue more
1791     requests.
1792    
1793 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1794     not impose any limits).
1795 root 1.60
1796 root 1.65 If the feed does not queue more requests when called, it will be
1797 root 1.60 automatically removed from the group.
1798    
1799 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1800     C<2> automatically.
1801 root 1.60
1802     Example:
1803    
1804     # stat all files in @files, but only ever use four aio requests concurrently:
1805    
1806     my $grp = aio_group sub { print "finished\n" };
1807 root 1.68 limit $grp 4;
1808 root 1.65 feed $grp sub {
1809 root 1.60 my $file = pop @files
1810     or return;
1811    
1812     add $grp aio_stat $file, sub { ... };
1813 root 1.65 };
1814 root 1.60
1815 root 1.68 =item limit $grp $num
1816 root 1.60
1817     Sets the feeder limit for the group: The feeder will be called whenever
1818     the group contains less than this many requests.
1819    
1820     Setting the limit to C<0> will pause the feeding process.
1821    
1822 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1823     automatically bumps it up to C<2>.
1824    
1825 root 1.55 =back
1826    
1827 root 1.5 =head2 SUPPORT FUNCTIONS
1828    
1829 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1830    
1831 root 1.5 =over 4
1832    
1833     =item $fileno = IO::AIO::poll_fileno
1834    
1835 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1836 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1837     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1838     you have to call C<poll_cb> to check the results.
1839 root 1.5
1840     See C<poll_cb> for an example.
1841    
1842     =item IO::AIO::poll_cb
1843    
1844 root 1.240 Process some requests that have reached the result phase (i.e. they have
1845     been executed but the results are not yet reported). You have to call
1846     this "regularly" to finish outstanding requests.
1847    
1848     Returns C<0> if all events could be processed (or there were no
1849     events to process), or C<-1> if it returned earlier for whatever
1850     reason. Returns immediately when no events are outstanding. The amount
1851     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1852     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1853    
1854     If not all requests were processed for whatever reason, the poll file
1855     descriptor will still be ready when C<poll_cb> returns, so normally you
1856     don't have to do anything special to have it called later.
1857 root 1.78
1858 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1859     ready, it can be beneficial to call this function from loops which submit
1860     a lot of requests, to make sure the results get processed when they become
1861     available and not just when the loop is finished and the event loop takes
1862     over again. This function returns very fast when there are no outstanding
1863     requests.
1864    
1865 root 1.20 Example: Install an Event watcher that automatically calls
1866 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1867     SYNOPSIS section, at the top of this document):
1868 root 1.5
1869     Event->io (fd => IO::AIO::poll_fileno,
1870     poll => 'r', async => 1,
1871     cb => \&IO::AIO::poll_cb);
1872    
1873 root 1.175 =item IO::AIO::poll_wait
1874    
1875 root 1.240 Wait until either at least one request is in the result phase or no
1876     requests are outstanding anymore.
1877    
1878     This is useful if you want to synchronously wait for some requests to
1879     become ready, without actually handling them.
1880 root 1.175
1881     See C<nreqs> for an example.
1882    
1883     =item IO::AIO::poll
1884    
1885     Waits until some requests have been handled.
1886    
1887     Returns the number of requests processed, but is otherwise strictly
1888     equivalent to:
1889    
1890     IO::AIO::poll_wait, IO::AIO::poll_cb
1891    
1892     =item IO::AIO::flush
1893    
1894     Wait till all outstanding AIO requests have been handled.
1895    
1896     Strictly equivalent to:
1897    
1898     IO::AIO::poll_wait, IO::AIO::poll_cb
1899     while IO::AIO::nreqs;
1900    
1901 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1902    
1903     =item IO::AIO::max_poll_time $seconds
1904    
1905     These set the maximum number of requests (default C<0>, meaning infinity)
1906     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1907     the maximum amount of time (default C<0>, meaning infinity) spent in
1908     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1909     of time C<poll_cb> is allowed to use).
1910 root 1.78
1911 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1912     syscall per request processed, which is not normally a problem unless your
1913     callbacks are really really fast or your OS is really really slow (I am
1914     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1915    
1916 root 1.86 Setting these is useful if you want to ensure some level of
1917     interactiveness when perl is not fast enough to process all requests in
1918     time.
1919 root 1.78
1920 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1921 root 1.78
1922     Example: Install an Event watcher that automatically calls
1923 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1924 root 1.78 program get the CPU sometimes even under high AIO load.
1925    
1926 root 1.86 # try not to spend much more than 0.1s in poll_cb
1927     IO::AIO::max_poll_time 0.1;
1928    
1929     # use a low priority so other tasks have priority
1930 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1931     poll => 'r', nice => 1,
1932 root 1.86 cb => &IO::AIO::poll_cb);
1933 root 1.78
1934 root 1.104 =back
1935    
1936 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1937 root 1.13
1938 root 1.105 =over
1939    
1940 root 1.5 =item IO::AIO::min_parallel $nthreads
1941    
1942 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1943     default is C<8>, which means eight asynchronous operations can execute
1944     concurrently at any one time (the number of outstanding requests,
1945     however, is unlimited).
1946 root 1.5
1947 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1948 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1949     create demand for a hundred threads, even if it turns out that everything
1950     is in the cache and could have been processed faster by a single thread.
1951 root 1.34
1952 root 1.61 It is recommended to keep the number of threads relatively low, as some
1953     Linux kernel versions will scale negatively with the number of threads
1954     (higher parallelity => MUCH higher latency). With current Linux 2.6
1955     versions, 4-32 threads should be fine.
1956 root 1.5
1957 root 1.34 Under most circumstances you don't need to call this function, as the
1958     module selects a default that is suitable for low to moderate load.
1959 root 1.5
1960     =item IO::AIO::max_parallel $nthreads
1961    
1962 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1963     specified number of threads are currently running, this function kills
1964     them. This function blocks until the limit is reached.
1965    
1966     While C<$nthreads> are zero, aio requests get queued but not executed
1967     until the number of threads has been increased again.
1968 root 1.5
1969     This module automatically runs C<max_parallel 0> at program end, to ensure
1970     that all threads are killed and that there are no outstanding requests.
1971    
1972     Under normal circumstances you don't need to call this function.
1973    
1974 root 1.86 =item IO::AIO::max_idle $nthreads
1975    
1976 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1977     (i.e., threads that did not get a request to process within the idle
1978     timeout (default: 10 seconds). That means if a thread becomes idle while
1979     C<$nthreads> other threads are also idle, it will free its resources and
1980     exit.
1981 root 1.86
1982     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1983     to allow for extremely high load situations, but want to free resources
1984     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1985    
1986     The default is probably ok in most situations, especially if thread
1987     creation is fast. If thread creation is very slow on your system you might
1988     want to use larger values.
1989    
1990 root 1.188 =item IO::AIO::idle_timeout $seconds
1991    
1992     Sets the minimum idle timeout (default 10) after which worker threads are
1993     allowed to exit. SEe C<IO::AIO::max_idle>.
1994    
1995 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1996 root 1.5
1997 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1998     you do queue up more than this number of requests, the next call to
1999     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2000     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2001     longer exceeded.
2002    
2003     In other words, this setting does not enforce a queue limit, but can be
2004     used to make poll functions block if the limit is exceeded.
2005    
2006 root 1.79 This is a very bad function to use in interactive programs because it
2007     blocks, and a bad way to reduce concurrency because it is inexact: Better
2008     use an C<aio_group> together with a feed callback.
2009    
2010 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2011 root 1.195 a lot of files, you can write somehting like this:
2012    
2013     IO::AIO::max_outstanding 32;
2014    
2015     for my $path (...) {
2016     aio_stat $path , ...;
2017     IO::AIO::poll_cb;
2018     }
2019    
2020     IO::AIO::flush;
2021    
2022     The call to C<poll_cb> inside the loop will normally return instantly, but
2023     as soon as more thna C<32> reqeusts are in-flight, it will block until
2024     some requests have been handled. This keeps the loop from pushing a large
2025     number of C<aio_stat> requests onto the queue.
2026    
2027     The default value for C<max_outstanding> is very large, so there is no
2028     practical limit on the number of outstanding requests.
2029 root 1.5
2030 root 1.104 =back
2031    
2032 root 1.86 =head3 STATISTICAL INFORMATION
2033    
2034 root 1.104 =over
2035    
2036 root 1.86 =item IO::AIO::nreqs
2037    
2038     Returns the number of requests currently in the ready, execute or pending
2039     states (i.e. for which their callback has not been invoked yet).
2040    
2041     Example: wait till there are no outstanding requests anymore:
2042    
2043     IO::AIO::poll_wait, IO::AIO::poll_cb
2044     while IO::AIO::nreqs;
2045    
2046     =item IO::AIO::nready
2047    
2048     Returns the number of requests currently in the ready state (not yet
2049     executed).
2050    
2051     =item IO::AIO::npending
2052    
2053     Returns the number of requests currently in the pending state (executed,
2054     but not yet processed by poll_cb).
2055    
2056 root 1.5 =back
2057    
2058 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2059    
2060 root 1.248 IO::AIO implements some functions that are useful when you want to use
2061     some "Advanced I/O" function not available to in Perl, without going the
2062     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2063     counterpart.
2064 root 1.157
2065     =over 4
2066    
2067     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2068    
2069     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2070     but is blocking (this makes most sense if you know the input data is
2071     likely cached already and the output filehandle is set to non-blocking
2072     operations).
2073    
2074     Returns the number of bytes copied, or C<-1> on error.
2075    
2076     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2077    
2078 root 1.184 Simply calls the C<posix_fadvise> function (see its
2079 root 1.157 manpage for details). The following advice constants are
2080 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2081 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2082     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2083    
2084     On systems that do not implement C<posix_fadvise>, this function returns
2085     ENOSYS, otherwise the return value of C<posix_fadvise>.
2086    
2087 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2088    
2089     Simply calls the C<posix_madvise> function (see its
2090     manpage for details). The following advice constants are
2091 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2092 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2093     C<IO::AIO::MADV_DONTNEED>.
2094 root 1.184
2095 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2096     the remaining length of the C<$scalar> is used. If possible, C<$length>
2097     will be reduced to fit into the C<$scalar>.
2098    
2099 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2100     ENOSYS, otherwise the return value of C<posix_madvise>.
2101    
2102     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2103    
2104     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2105     $scalar (see its manpage for details). The following protect
2106 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2107 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2108    
2109 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2110     the remaining length of the C<$scalar> is used. If possible, C<$length>
2111     will be reduced to fit into the C<$scalar>.
2112    
2113 root 1.184 On systems that do not implement C<mprotect>, this function returns
2114     ENOSYS, otherwise the return value of C<mprotect>.
2115    
2116 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2117    
2118     Memory-maps a file (or anonymous memory range) and attaches it to the
2119 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2120     success, and false otherwise.
2121 root 1.176
2122 root 1.268 The scalar must exist, but its contents do not matter - this means you
2123     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2124     the scalar first.
2125    
2126     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2127     which don't change the string length, and most read-only operations such
2128     as copying it or searching it with regexes and so on.
2129 root 1.176
2130     Anything else is unsafe and will, at best, result in memory leaks.
2131    
2132     The memory map associated with the C<$scalar> is automatically removed
2133 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2134     or C<IO::AIO::munmap> functions are called on it.
2135 root 1.176
2136     This calls the C<mmap>(2) function internally. See your system's manual
2137     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2138    
2139     The C<$length> must be larger than zero and smaller than the actual
2140     filesize.
2141    
2142     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2143     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2144    
2145 root 1.256 C<$flags> can be a combination of
2146     C<IO::AIO::MAP_SHARED> or
2147     C<IO::AIO::MAP_PRIVATE>,
2148     or a number of system-specific flags (when not available, the are C<0>):
2149     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2150     C<IO::AIO::MAP_LOCKED>,
2151     C<IO::AIO::MAP_NORESERVE>,
2152     C<IO::AIO::MAP_POPULATE>,
2153     C<IO::AIO::MAP_NONBLOCK>,
2154     C<IO::AIO::MAP_FIXED>,
2155     C<IO::AIO::MAP_GROWSDOWN>,
2156     C<IO::AIO::MAP_32BIT>,
2157     C<IO::AIO::MAP_HUGETLB> or
2158     C<IO::AIO::MAP_STACK>.
2159 root 1.176
2160     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2161    
2162 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2163     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2164    
2165 root 1.177 Example:
2166    
2167     use Digest::MD5;
2168     use IO::AIO;
2169    
2170     open my $fh, "<verybigfile"
2171     or die "$!";
2172    
2173     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2174     or die "verybigfile: $!";
2175    
2176     my $fast_md5 = md5 $data;
2177    
2178 root 1.176 =item IO::AIO::munmap $scalar
2179    
2180     Removes a previous mmap and undefines the C<$scalar>.
2181    
2182 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2183 root 1.174
2184 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2185     C<aio_mlock> call (see its description for details).
2186 root 1.174
2187     =item IO::AIO::munlockall
2188    
2189     Calls the C<munlockall> function.
2190    
2191     On systems that do not implement C<munlockall>, this function returns
2192     ENOSYS, otherwise the return value of C<munlockall>.
2193    
2194 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2195    
2196     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2197     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2198     should be the file offset.
2199    
2200 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2201     silently corrupt the data in this case.
2202    
2203 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2204     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2205     C<IO::AIO::SPLICE_F_GIFT>.
2206    
2207     See the C<splice(2)> manpage for details.
2208    
2209     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2210    
2211 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2212 root 1.225 description for C<IO::AIO::splice> above for details.
2213    
2214 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2215    
2216     Attempts to query or change the pipe buffer size. Obviously works only
2217     on pipes, and currently works only on GNU/Linux systems, and fails with
2218     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2219     size on other systems, drop me a note.
2220    
2221 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2222    
2223     This is a direct interface to the Linux L<pipe2(2)> system call. If
2224     C<$flags> is missing or C<0>, then this should be the same as a call to
2225 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2226     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2227     (..., 4096, O_BINARY)>.
2228 root 1.253
2229     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2230     the given flags (Linux 2.6.27, glibc 2.9).
2231    
2232     On success, the read and write file handles are returned.
2233    
2234     On error, nothing will be returned. If the pipe2 syscall is missing and
2235     C<$flags> is non-zero, fails with C<ENOSYS>.
2236    
2237     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2238     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2239     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2240    
2241 root 1.157 =back
2242    
2243 root 1.1 =cut
2244    
2245 root 1.61 min_parallel 8;
2246 root 1.1
2247 root 1.95 END { flush }
2248 root 1.82
2249 root 1.1 1;
2250    
2251 root 1.175 =head1 EVENT LOOP INTEGRATION
2252    
2253     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2254     automatically into many event loops:
2255    
2256     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2257     use AnyEvent::AIO;
2258    
2259     You can also integrate IO::AIO manually into many event loops, here are
2260     some examples of how to do this:
2261    
2262     # EV integration
2263     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2264    
2265     # Event integration
2266     Event->io (fd => IO::AIO::poll_fileno,
2267     poll => 'r',
2268     cb => \&IO::AIO::poll_cb);
2269    
2270     # Glib/Gtk2 integration
2271     add_watch Glib::IO IO::AIO::poll_fileno,
2272     in => sub { IO::AIO::poll_cb; 1 };
2273    
2274     # Tk integration
2275     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2276     readable => \&IO::AIO::poll_cb);
2277    
2278     # Danga::Socket integration
2279     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2280     \&IO::AIO::poll_cb);
2281    
2282 root 1.27 =head2 FORK BEHAVIOUR
2283    
2284 root 1.197 Usage of pthreads in a program changes the semantics of fork
2285     considerably. Specifically, only async-safe functions can be called after
2286     fork. Perl doesn't know about this, so in general, you cannot call fork
2287 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2288     pthreads, so this applies, but many other extensions and (for inexplicable
2289     reasons) perl itself often is linked against pthreads, so this limitation
2290     applies to quite a lot of perls.
2291    
2292     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2293     only works in the process that loaded it. Forking is fully supported, but
2294     using IO::AIO in the child is not.
2295    
2296     You might get around by not I<using> IO::AIO before (or after)
2297     forking. You could also try to call the L<IO::AIO::reinit> function in the
2298     child:
2299    
2300     =over 4
2301    
2302     =item IO::AIO::reinit
2303    
2304 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2305     data structures. This is not an operation supported by any standards, but
2306 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2307    
2308     The only reasonable use for this function is to call it after forking, if
2309     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2310     the process will result in undefined behaviour. Calling it at any time
2311     will also result in any undefined (by POSIX) behaviour.
2312    
2313     =back
2314 root 1.52
2315 root 1.60 =head2 MEMORY USAGE
2316    
2317 root 1.72 Per-request usage:
2318    
2319     Each aio request uses - depending on your architecture - around 100-200
2320     bytes of memory. In addition, stat requests need a stat buffer (possibly
2321     a few hundred bytes), readdir requires a result buffer and so on. Perl
2322     scalars and other data passed into aio requests will also be locked and
2323     will consume memory till the request has entered the done state.
2324 root 1.60
2325 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2326 root 1.60 problem.
2327    
2328 root 1.72 Per-thread usage:
2329    
2330     In the execution phase, some aio requests require more memory for
2331     temporary buffers, and each thread requires a stack and other data
2332     structures (usually around 16k-128k, depending on the OS).
2333    
2334     =head1 KNOWN BUGS
2335    
2336 root 1.73 Known bugs will be fixed in the next release.
2337 root 1.60
2338 root 1.1 =head1 SEE ALSO
2339    
2340 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2341     more natural syntax.
2342 root 1.1
2343     =head1 AUTHOR
2344    
2345     Marc Lehmann <schmorp@schmorp.de>
2346     http://home.schmorp.de/
2347    
2348     =cut
2349