ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.276
Committed: Fri Sep 22 05:24:41 2017 UTC (6 years, 8 months ago) by root
Branch: MAIN
Changes since 1.275: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
239 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
240     aio_rmdir $pathname, $callback->($status)
241     aio_readdir $pathname, $callback->($entries)
242     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
243     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
244     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
245 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
246 root 1.209 aio_load $pathname, $data, $callback->($status)
247 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
248     aio_move $srcpath, $dstpath, $callback->($status)
249 root 1.209 aio_rmtree $pathname, $callback->($status)
250 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
251     aio_ioctl $fh, $request, $buf, $callback->($status)
252 root 1.175 aio_sync $callback->($status)
253 root 1.206 aio_syncfs $fh, $callback->($status)
254 root 1.175 aio_fsync $fh, $callback->($status)
255     aio_fdatasync $fh, $callback->($status)
256     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
257 root 1.209 aio_pathsync $pathname, $callback->($status)
258 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
259 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
260 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
261     aio_mlockall $flags, $callback->($status)
262 root 1.175 aio_group $callback->(...)
263     aio_nop $callback->()
264    
265     $prev_pri = aioreq_pri [$pri]
266     aioreq_nice $pri_adjust
267    
268     IO::AIO::poll_wait
269     IO::AIO::poll_cb
270     IO::AIO::poll
271     IO::AIO::flush
272     IO::AIO::max_poll_reqs $nreqs
273     IO::AIO::max_poll_time $seconds
274     IO::AIO::min_parallel $nthreads
275     IO::AIO::max_parallel $nthreads
276     IO::AIO::max_idle $nthreads
277 root 1.188 IO::AIO::idle_timeout $seconds
278 root 1.175 IO::AIO::max_outstanding $maxreqs
279     IO::AIO::nreqs
280     IO::AIO::nready
281     IO::AIO::npending
282 root 1.275 IO::AIO::min_fdlimit $nfd;
283 root 1.175
284     IO::AIO::sendfile $ofh, $ifh, $offset, $count
285     IO::AIO::fadvise $fh, $offset, $len, $advice
286 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
287     IO::AIO::munmap $scalar
288 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
289     IO::AIO::mprotect $scalar, $offset, $length, $protect
290 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
291 root 1.175 IO::AIO::munlockall
292    
293 root 1.219 =head2 API NOTES
294 root 1.1
295 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
296     with the same name (sans C<aio_>). The arguments are similar or identical,
297 root 1.14 and they all accept an additional (and optional) C<$callback> argument
298 root 1.212 which must be a code reference. This code reference will be called after
299     the syscall has been executed in an asynchronous fashion. The results
300     of the request will be passed as arguments to the callback (and, if an
301     error occured, in C<$!>) - for most requests the syscall return code (e.g.
302     most syscalls return C<-1> on error, unlike perl, which usually delivers
303     "false").
304    
305     Some requests (such as C<aio_readdir>) pass the actual results and
306     communicate failures by passing C<undef>.
307 root 1.1
308 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
309     internally until the request has finished.
310 root 1.1
311 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
312     further manipulation of those requests while they are in-flight.
313 root 1.52
314 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
315     reason for this is that at the time the request is being executed, the
316 root 1.212 current working directory could have changed. Alternatively, you can
317     make sure that you never change the current working directory anywhere
318     in the program and then use relative paths. You can also take advantage
319     of IO::AIOs working directory abstraction, that lets you specify paths
320     relative to some previously-opened "working directory object" - see the
321     description of the C<IO::AIO::WD> class later in this document.
322 root 1.28
323 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
324     in filenames you got from outside (command line, readdir etc.) without
325 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
326     module and encode your pathnames to the locale (or other) encoding in
327     effect in the user environment, d) use Glib::filename_from_unicode on
328     unicode filenames or e) use something else to ensure your scalar has the
329     correct contents.
330 root 1.87
331     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
332 root 1.136 handles correctly whether it is set or not.
333 root 1.1
334 root 1.219 =head2 AIO REQUEST FUNCTIONS
335    
336 root 1.5 =over 4
337 root 1.1
338 root 1.80 =item $prev_pri = aioreq_pri [$pri]
339 root 1.68
340 root 1.80 Returns the priority value that would be used for the next request and, if
341     C<$pri> is given, sets the priority for the next aio request.
342 root 1.68
343 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
344     and C<4>, respectively. Requests with higher priority will be serviced
345     first.
346    
347     The priority will be reset to C<0> after each call to one of the C<aio_*>
348 root 1.68 functions.
349    
350 root 1.69 Example: open a file with low priority, then read something from it with
351     higher priority so the read request is serviced before other low priority
352     open requests (potentially spamming the cache):
353    
354     aioreq_pri -3;
355     aio_open ..., sub {
356     return unless $_[0];
357    
358     aioreq_pri -2;
359     aio_read $_[0], ..., sub {
360     ...
361     };
362     };
363    
364 root 1.106
365 root 1.69 =item aioreq_nice $pri_adjust
366    
367     Similar to C<aioreq_pri>, but subtracts the given value from the current
368 root 1.87 priority, so the effect is cumulative.
369 root 1.69
370 root 1.106
371 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
372 root 1.1
373 root 1.2 Asynchronously open or create a file and call the callback with a newly
374 root 1.233 created filehandle for the file (or C<undef> in case of an error).
375 root 1.1
376     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
377     for an explanation.
378    
379 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
380     list. They are the same as used by C<sysopen>.
381    
382     Likewise, C<$mode> specifies the mode of the newly created file, if it
383     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
384     except that it is mandatory (i.e. use C<0> if you don't create new files,
385 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
386     by the umask in effect then the request is being executed, so better never
387     change the umask.
388 root 1.1
389     Example:
390    
391 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
392 root 1.2 if ($_[0]) {
393     print "open successful, fh is $_[0]\n";
394 root 1.1 ...
395     } else {
396     die "open failed: $!\n";
397     }
398     };
399    
400 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
401     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
402     following POSIX and non-POSIX constants are available (missing ones on
403     your system are, as usual, C<0>):
404    
405     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
406     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
407 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
408 root 1.194
409 root 1.106
410 root 1.40 =item aio_close $fh, $callback->($status)
411 root 1.1
412 root 1.2 Asynchronously close a file and call the callback with the result
413 root 1.116 code.
414    
415 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
416 root 1.121 closing the file descriptor associated with the filehandle itself.
417 root 1.117
418 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
419     use dup2 to overwrite the file descriptor with the write-end of a pipe
420     (the pipe fd will be created on demand and will be cached).
421 root 1.117
422 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
423     free for reuse until the perl filehandle is closed.
424 root 1.117
425     =cut
426    
427 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
428    
429 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
430 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
431     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
432     C<IO::AIO::SEEK_END>).
433    
434     The resulting absolute offset will be passed to the callback, or C<-1> in
435     case of an error.
436    
437     In theory, the C<$whence> constants could be different than the
438     corresponding values from L<Fcntl>, but perl guarantees they are the same,
439     so don't panic.
440    
441 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
442     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
443     could be found. No guarantees about suitability for use in C<aio_seek> or
444     Perl's C<sysseek> can be made though, although I would naively assume they
445     "just work".
446    
447 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
448 root 1.1
449 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
450 root 1.1
451 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
452 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
453     calls the callback with the actual number of bytes transferred (or -1 on
454 root 1.145 error, just like the syscall).
455 root 1.109
456 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
457     offset plus the actual number of bytes read.
458    
459 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
460     be used (and updated), otherwise the file descriptor offset will not be
461     changed by these calls.
462 root 1.109
463 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
464     C<$data>.
465 root 1.109
466     If C<$dataoffset> is less than zero, it will be counted from the end of
467     C<$data>.
468 root 1.1
469 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
470 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
471     the necessary/optional hardware is installed).
472 root 1.31
473 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
474 root 1.1 offset C<0> within the scalar:
475    
476     aio_read $fh, 7, 15, $buffer, 0, sub {
477 root 1.9 $_[0] > 0 or die "read error: $!";
478     print "read $_[0] bytes: <$buffer>\n";
479 root 1.1 };
480    
481 root 1.106
482 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
483 root 1.35
484     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
485     reading at byte offset C<$in_offset>, and starts writing at the current
486     file offset of C<$out_fh>. Because of that, it is not safe to issue more
487     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
488 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
489     move or use the file offset of C<$in_fh>.
490 root 1.35
491 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
492 root 1.196 are written, and there is no way to find out how many more bytes have been
493     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
494     number of bytes written to C<$out_fh>. Only if the result value equals
495     C<$length> one can assume that C<$length> bytes have been read.
496 root 1.185
497     Unlike with other C<aio_> functions, it makes a lot of sense to use
498     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
499     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
500 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
501     into a trap where C<aio_sendfile> reads some data with readahead, then
502     fails to write all data, and when the socket is ready the next time, the
503     data in the cache is already lost, forcing C<aio_sendfile> to again hit
504     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
505     resource usage.
506    
507     This call tries to make use of a native C<sendfile>-like syscall to
508     provide zero-copy operation. For this to work, C<$out_fh> should refer to
509     a socket, and C<$in_fh> should refer to an mmap'able file.
510 root 1.35
511 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
512 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
513     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
514     type of filehandle regardless of the limitations of the operating system.
515    
516     As native sendfile syscalls (as practically any non-POSIX interface hacked
517     together in a hurry to improve benchmark numbers) tend to be rather buggy
518     on many systems, this implementation tries to work around some known bugs
519     in Linux and FreeBSD kernels (probably others, too), but that might fail,
520     so you really really should check the return value of C<aio_sendfile> -
521 root 1.262 fewer bytes than expected might have been transferred.
522 root 1.35
523 root 1.106
524 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
525 root 1.1
526 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
527 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
528     argument specifies the starting point from which data is to be read and
529     C<$length> specifies the number of bytes to be read. I/O is performed in
530     whole pages, so that offset is effectively rounded down to a page boundary
531     and bytes are read up to the next page boundary greater than or equal to
532 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
533 root 1.1 file. The current file offset of the file is left unchanged.
534    
535 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
536     be emulated by simply reading the data, which would have a similar effect.
537 root 1.26
538 root 1.106
539 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
540 root 1.1
541 root 1.40 =item aio_lstat $fh, $callback->($status)
542 root 1.1
543     Works like perl's C<stat> or C<lstat> in void context. The callback will
544     be called after the stat and the results will be available using C<stat _>
545     or C<-s _> etc...
546    
547     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
548     for an explanation.
549    
550     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
551     error when stat'ing a large file, the results will be silently truncated
552     unless perl itself is compiled with large file support.
553    
554 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
555     following constants and functions (if not implemented, the constants will
556     be C<0> and the functions will either C<croak> or fall back on traditional
557     behaviour).
558    
559     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
560     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
561     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
562    
563 root 1.1 Example: Print the length of F</etc/passwd>:
564    
565     aio_stat "/etc/passwd", sub {
566     $_[0] and die "stat failed: $!";
567     print "size is ", -s _, "\n";
568     };
569    
570 root 1.106
571 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
572 root 1.172
573     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
574     whether a file handle or path was passed.
575    
576     On success, the callback is passed a hash reference with the following
577     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
578     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
579     is passed.
580    
581     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
582     C<ST_NOSUID>.
583    
584     The following non-POSIX IO::AIO::ST_* flag masks are defined to
585     their correct value when available, or to C<0> on systems that do
586     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
587     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
588     C<ST_NODIRATIME> and C<ST_RELATIME>.
589    
590     Example: stat C</wd> and dump out the data if successful.
591    
592     aio_statvfs "/wd", sub {
593     my $f = $_[0]
594     or die "statvfs: $!";
595    
596     use Data::Dumper;
597     say Dumper $f;
598     };
599    
600     # result:
601     {
602     bsize => 1024,
603     bfree => 4333064312,
604     blocks => 10253828096,
605     files => 2050765568,
606     flag => 4096,
607     favail => 2042092649,
608     bavail => 4333064312,
609     ffree => 2042092649,
610     namemax => 255,
611     frsize => 1024,
612     fsid => 1810
613     }
614    
615 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
616     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
617 root 1.235
618     0x0000adf5 adfs
619     0x0000adff affs
620     0x5346414f afs
621     0x09041934 anon-inode filesystem
622     0x00000187 autofs
623     0x42465331 befs
624     0x1badface bfs
625     0x42494e4d binfmt_misc
626     0x9123683e btrfs
627     0x0027e0eb cgroupfs
628     0xff534d42 cifs
629     0x73757245 coda
630     0x012ff7b7 coh
631     0x28cd3d45 cramfs
632     0x453dcd28 cramfs-wend (wrong endianness)
633     0x64626720 debugfs
634     0x00001373 devfs
635     0x00001cd1 devpts
636     0x0000f15f ecryptfs
637     0x00414a53 efs
638     0x0000137d ext
639 root 1.257 0x0000ef53 ext2/ext3/ext4
640 root 1.235 0x0000ef51 ext2
641 root 1.257 0xf2f52010 f2fs
642 root 1.235 0x00004006 fat
643     0x65735546 fuseblk
644     0x65735543 fusectl
645     0x0bad1dea futexfs
646     0x01161970 gfs2
647     0x47504653 gpfs
648     0x00004244 hfs
649     0xf995e849 hpfs
650 root 1.257 0x00c0ffee hostfs
651 root 1.235 0x958458f6 hugetlbfs
652     0x2bad1dea inotifyfs
653     0x00009660 isofs
654     0x000072b6 jffs2
655     0x3153464a jfs
656     0x6b414653 k-afs
657     0x0bd00bd0 lustre
658     0x0000137f minix
659     0x0000138f minix 30 char names
660     0x00002468 minix v2
661     0x00002478 minix v2 30 char names
662     0x00004d5a minix v3
663     0x19800202 mqueue
664     0x00004d44 msdos
665     0x0000564c novell
666     0x00006969 nfs
667     0x6e667364 nfsd
668     0x00003434 nilfs
669     0x5346544e ntfs
670     0x00009fa1 openprom
671     0x7461636F ocfs2
672     0x00009fa0 proc
673     0x6165676c pstorefs
674     0x0000002f qnx4
675 root 1.257 0x68191122 qnx6
676 root 1.235 0x858458f6 ramfs
677     0x52654973 reiserfs
678     0x00007275 romfs
679     0x67596969 rpc_pipefs
680     0x73636673 securityfs
681     0xf97cff8c selinux
682     0x0000517b smb
683     0x534f434b sockfs
684     0x73717368 squashfs
685     0x62656572 sysfs
686     0x012ff7b6 sysv2
687     0x012ff7b5 sysv4
688     0x01021994 tmpfs
689     0x15013346 udf
690     0x00011954 ufs
691     0x54190100 ufs byteswapped
692     0x00009fa2 usbdevfs
693     0x01021997 v9fs
694     0xa501fcf5 vxfs
695     0xabba1974 xenfs
696     0x012ff7b4 xenix
697     0x58465342 xfs
698     0x012fd16d xia
699 root 1.172
700 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
701    
702     Works like perl's C<utime> function (including the special case of $atime
703     and $mtime being undef). Fractional times are supported if the underlying
704     syscalls support them.
705    
706     When called with a pathname, uses utimes(2) if available, otherwise
707     utime(2). If called on a file descriptor, uses futimes(2) if available,
708     otherwise returns ENOSYS, so this is not portable.
709    
710     Examples:
711    
712 root 1.107 # set atime and mtime to current time (basically touch(1)):
713 root 1.106 aio_utime "path", undef, undef;
714     # set atime to current time and mtime to beginning of the epoch:
715     aio_utime "path", time, undef; # undef==0
716    
717    
718     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
719    
720     Works like perl's C<chown> function, except that C<undef> for either $uid
721     or $gid is being interpreted as "do not change" (but -1 can also be used).
722    
723     Examples:
724    
725     # same as "chown root path" in the shell:
726     aio_chown "path", 0, -1;
727     # same as above:
728     aio_chown "path", 0, undef;
729    
730    
731 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
732    
733     Works like truncate(2) or ftruncate(2).
734    
735    
736 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
737    
738 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
739     linux C<fallocate> documentation for details.
740 root 1.229
741 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
742     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
743     to deallocate a file range.
744    
745     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
746 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
747     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
748     to unshare shared blocks (see your L<fallocate(2)> manpage).
749 root 1.229
750     The file system block size used by C<fallocate> is presumably the
751 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
752     can dictate other limitations.
753 root 1.229
754     If C<fallocate> isn't available or cannot be emulated (currently no
755     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
756    
757    
758 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
759    
760     Works like perl's C<chmod> function.
761    
762    
763 root 1.40 =item aio_unlink $pathname, $callback->($status)
764 root 1.1
765     Asynchronously unlink (delete) a file and call the callback with the
766     result code.
767    
768 root 1.106
769 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
770 root 1.82
771 root 1.86 [EXPERIMENTAL]
772    
773 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
774    
775 root 1.86 The only (POSIX-) portable way of calling this function is:
776 root 1.83
777 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
778 root 1.82
779 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
780     and functions.
781 root 1.106
782 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
783    
784     Asynchronously create a new link to the existing object at C<$srcpath> at
785     the path C<$dstpath> and call the callback with the result code.
786    
787 root 1.106
788 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
789    
790     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
791     the path C<$dstpath> and call the callback with the result code.
792    
793 root 1.106
794 root 1.209 =item aio_readlink $pathname, $callback->($link)
795 root 1.90
796     Asynchronously read the symlink specified by C<$path> and pass it to
797     the callback. If an error occurs, nothing or undef gets passed to the
798     callback.
799    
800 root 1.106
801 root 1.209 =item aio_realpath $pathname, $callback->($path)
802 root 1.201
803     Asynchronously make the path absolute and resolve any symlinks in
804 root 1.239 C<$path>. The resulting path only consists of directories (same as
805 root 1.202 L<Cwd::realpath>).
806 root 1.201
807     This request can be used to get the absolute path of the current working
808     directory by passing it a path of F<.> (a single dot).
809    
810    
811 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
812    
813     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
814     rename(2) and call the callback with the result code.
815    
816 root 1.241 On systems that support the AIO::WD working directory abstraction
817     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
818     of failing, C<rename> is called on the absolute path of C<$wd>.
819    
820 root 1.106
821 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
822    
823     Basically a version of C<aio_rename> with an additional C<$flags>
824     argument. Calling this with C<$flags=0> is the same as calling
825     C<aio_rename>.
826    
827     Non-zero flags are currently only supported on GNU/Linux systems that
828     support renameat2. Other systems fail with C<ENOSYS> in this case.
829    
830     The following constants are available (missing ones are, as usual C<0>),
831     see renameat2(2) for details:
832    
833     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
834     and C<IO::AIO::RENAME_WHITEOUT>.
835    
836    
837 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
838    
839     Asynchronously mkdir (create) a directory and call the callback with
840     the result code. C<$mode> will be modified by the umask at the time the
841     request is executed, so do not change your umask.
842    
843 root 1.106
844 root 1.40 =item aio_rmdir $pathname, $callback->($status)
845 root 1.27
846     Asynchronously rmdir (delete) a directory and call the callback with the
847     result code.
848    
849 root 1.241 On systems that support the AIO::WD working directory abstraction
850     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
851     C<rmdir> is called on the absolute path of C<$wd>.
852    
853 root 1.106
854 root 1.46 =item aio_readdir $pathname, $callback->($entries)
855 root 1.37
856     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
857     directory (i.e. opendir + readdir + closedir). The entries will not be
858     sorted, and will B<NOT> include the C<.> and C<..> entries.
859    
860 root 1.148 The callback is passed a single argument which is either C<undef> or an
861     array-ref with the filenames.
862    
863    
864     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
865    
866 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
867     tune behaviour and output format. In case of an error, C<$entries> will be
868 root 1.148 C<undef>.
869    
870     The flags are a combination of the following constants, ORed together (the
871     flags will also be passed to the callback, possibly modified):
872    
873     =over 4
874    
875 root 1.150 =item IO::AIO::READDIR_DENTS
876 root 1.148
877 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
878     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
879 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
880 root 1.148 entry in more detail.
881    
882     C<$name> is the name of the entry.
883    
884 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
885 root 1.148
886 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
887     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
888     C<IO::AIO::DT_WHT>.
889 root 1.148
890 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
891 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
892     scalars are read-only: you can not modify them.
893    
894 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
895 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
896     systems that do not deliver the inode information.
897 root 1.150
898     =item IO::AIO::READDIR_DIRS_FIRST
899 root 1.148
900     When this flag is set, then the names will be returned in an order where
901 root 1.193 likely directories come first, in optimal stat order. This is useful when
902     you need to quickly find directories, or you want to find all directories
903     while avoiding to stat() each entry.
904 root 1.148
905 root 1.149 If the system returns type information in readdir, then this is used
906 root 1.193 to find directories directly. Otherwise, likely directories are names
907     beginning with ".", or otherwise names with no dots, of which names with
908 root 1.149 short names are tried first.
909    
910 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
911 root 1.148
912     When this flag is set, then the names will be returned in an order
913     suitable for stat()'ing each one. That is, when you plan to stat()
914     all files in the given directory, then the returned order will likely
915     be fastest.
916    
917 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
918     the likely dirs come first, resulting in a less optimal stat order.
919 root 1.148
920 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
921 root 1.148
922     This flag should not be set when calling C<aio_readdirx>. Instead, it
923     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
924 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
925 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
926    
927     =back
928 root 1.37
929 root 1.106
930 root 1.209 =item aio_load $pathname, $data, $callback->($status)
931 root 1.98
932     This is a composite request that tries to fully load the given file into
933     memory. Status is the same as with aio_read.
934    
935     =cut
936    
937     sub aio_load($$;$) {
938 root 1.123 my ($path, undef, $cb) = @_;
939     my $data = \$_[1];
940 root 1.98
941 root 1.123 my $pri = aioreq_pri;
942     my $grp = aio_group $cb;
943    
944     aioreq_pri $pri;
945     add $grp aio_open $path, O_RDONLY, 0, sub {
946     my $fh = shift
947     or return $grp->result (-1);
948 root 1.98
949     aioreq_pri $pri;
950 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
951     $grp->result ($_[0]);
952 root 1.98 };
953 root 1.123 };
954 root 1.98
955 root 1.123 $grp
956 root 1.98 }
957    
958 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
959    
960     Try to copy the I<file> (directories not supported as either source or
961     destination) from C<$srcpath> to C<$dstpath> and call the callback with
962 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
963 root 1.82
964 root 1.275 Existing destination files will be truncated.
965    
966 root 1.134 This is a composite request that creates the destination file with
967 root 1.82 mode 0200 and copies the contents of the source file into it using
968     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
969     uid/gid, in that order.
970    
971     If an error occurs, the partial destination file will be unlinked, if
972     possible, except when setting atime, mtime, access mode and uid/gid, where
973     errors are being ignored.
974    
975     =cut
976    
977     sub aio_copy($$;$) {
978 root 1.123 my ($src, $dst, $cb) = @_;
979 root 1.82
980 root 1.123 my $pri = aioreq_pri;
981     my $grp = aio_group $cb;
982 root 1.82
983 root 1.123 aioreq_pri $pri;
984     add $grp aio_open $src, O_RDONLY, 0, sub {
985     if (my $src_fh = $_[0]) {
986 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
987 root 1.95
988 root 1.123 aioreq_pri $pri;
989     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
990     if (my $dst_fh = $_[0]) {
991     aioreq_pri $pri;
992     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
993     if ($_[0] == $stat[7]) {
994     $grp->result (0);
995     close $src_fh;
996    
997 root 1.147 my $ch = sub {
998     aioreq_pri $pri;
999     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
1000     aioreq_pri $pri;
1001     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
1002     aioreq_pri $pri;
1003     add $grp aio_close $dst_fh;
1004     }
1005     };
1006     };
1007 root 1.123
1008     aioreq_pri $pri;
1009 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1010     if ($_[0] < 0 && $! == ENOSYS) {
1011     aioreq_pri $pri;
1012     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1013     } else {
1014     $ch->();
1015     }
1016     };
1017 root 1.123 } else {
1018     $grp->result (-1);
1019     close $src_fh;
1020     close $dst_fh;
1021    
1022     aioreq $pri;
1023     add $grp aio_unlink $dst;
1024     }
1025     };
1026     } else {
1027     $grp->result (-1);
1028     }
1029     },
1030 root 1.82
1031 root 1.123 } else {
1032     $grp->result (-1);
1033     }
1034     };
1035 root 1.82
1036 root 1.123 $grp
1037 root 1.82 }
1038    
1039     =item aio_move $srcpath, $dstpath, $callback->($status)
1040    
1041     Try to move the I<file> (directories not supported as either source or
1042     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1043 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1044 root 1.82
1045 root 1.137 This is a composite request that tries to rename(2) the file first; if
1046     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1047     that is successful, unlinks the C<$srcpath>.
1048 root 1.82
1049     =cut
1050    
1051     sub aio_move($$;$) {
1052 root 1.123 my ($src, $dst, $cb) = @_;
1053 root 1.82
1054 root 1.123 my $pri = aioreq_pri;
1055     my $grp = aio_group $cb;
1056 root 1.82
1057 root 1.123 aioreq_pri $pri;
1058     add $grp aio_rename $src, $dst, sub {
1059     if ($_[0] && $! == EXDEV) {
1060     aioreq_pri $pri;
1061     add $grp aio_copy $src, $dst, sub {
1062     $grp->result ($_[0]);
1063 root 1.95
1064 root 1.196 unless ($_[0]) {
1065 root 1.123 aioreq_pri $pri;
1066     add $grp aio_unlink $src;
1067     }
1068     };
1069     } else {
1070     $grp->result ($_[0]);
1071     }
1072     };
1073 root 1.82
1074 root 1.123 $grp
1075 root 1.82 }
1076    
1077 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1078 root 1.40
1079 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1080 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1081     names, directories you can recurse into (directories), and ones you cannot
1082     recurse into (everything else, including symlinks to directories).
1083 root 1.52
1084 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1085     C<$maxreq> specifies the maximum number of outstanding aio requests that
1086     this function generates. If it is C<< <= 0 >>, then a suitable default
1087 root 1.81 will be chosen (currently 4).
1088 root 1.40
1089     On error, the callback is called without arguments, otherwise it receives
1090     two array-refs with path-relative entry names.
1091    
1092     Example:
1093    
1094     aio_scandir $dir, 0, sub {
1095     my ($dirs, $nondirs) = @_;
1096     print "real directories: @$dirs\n";
1097     print "everything else: @$nondirs\n";
1098     };
1099    
1100     Implementation notes.
1101    
1102     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1103    
1104 root 1.149 If readdir returns file type information, then this is used directly to
1105     find directories.
1106    
1107     Otherwise, after reading the directory, the modification time, size etc.
1108     of the directory before and after the readdir is checked, and if they
1109     match (and isn't the current time), the link count will be used to decide
1110     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1111     number of subdirectories will be assumed.
1112    
1113     Then entries will be sorted into likely directories a non-initial dot
1114     currently) and likely non-directories (see C<aio_readdirx>). Then every
1115     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1116     in order of their inode numbers. If that succeeds, it assumes that the
1117     entry is a directory or a symlink to directory (which will be checked
1118 root 1.207 separately). This is often faster than stat'ing the entry itself because
1119 root 1.52 filesystems might detect the type of the entry without reading the inode
1120 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1121     the filetype information on readdir.
1122 root 1.52
1123     If the known number of directories (link count - 2) has been reached, the
1124     rest of the entries is assumed to be non-directories.
1125    
1126     This only works with certainty on POSIX (= UNIX) filesystems, which
1127     fortunately are the vast majority of filesystems around.
1128    
1129     It will also likely work on non-POSIX filesystems with reduced efficiency
1130     as those tend to return 0 or 1 as link counts, which disables the
1131     directory counting heuristic.
1132 root 1.40
1133     =cut
1134    
1135 root 1.100 sub aio_scandir($$;$) {
1136 root 1.123 my ($path, $maxreq, $cb) = @_;
1137    
1138     my $pri = aioreq_pri;
1139 root 1.40
1140 root 1.123 my $grp = aio_group $cb;
1141 root 1.80
1142 root 1.123 $maxreq = 4 if $maxreq <= 0;
1143 root 1.55
1144 root 1.210 # get a wd object
1145 root 1.123 aioreq_pri $pri;
1146 root 1.210 add $grp aio_wd $path, sub {
1147 root 1.212 $_[0]
1148     or return $grp->result ();
1149    
1150 root 1.210 my $wd = [shift, "."];
1151 root 1.40
1152 root 1.210 # stat once
1153 root 1.80 aioreq_pri $pri;
1154 root 1.210 add $grp aio_stat $wd, sub {
1155     return $grp->result () if $_[0];
1156     my $now = time;
1157     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1158 root 1.40
1159 root 1.210 # read the directory entries
1160 root 1.80 aioreq_pri $pri;
1161 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1162     my $entries = shift
1163     or return $grp->result ();
1164    
1165     # stat the dir another time
1166     aioreq_pri $pri;
1167     add $grp aio_stat $wd, sub {
1168     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1169 root 1.95
1170 root 1.210 my $ndirs;
1171 root 1.95
1172 root 1.210 # take the slow route if anything looks fishy
1173     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1174     $ndirs = -1;
1175     } else {
1176     # if nlink == 2, we are finished
1177     # for non-posix-fs's, we rely on nlink < 2
1178     $ndirs = (stat _)[3] - 2
1179     or return $grp->result ([], $entries);
1180     }
1181 root 1.123
1182 root 1.210 my (@dirs, @nondirs);
1183 root 1.40
1184 root 1.210 my $statgrp = add $grp aio_group sub {
1185     $grp->result (\@dirs, \@nondirs);
1186     };
1187 root 1.40
1188 root 1.210 limit $statgrp $maxreq;
1189     feed $statgrp sub {
1190     return unless @$entries;
1191     my $entry = shift @$entries;
1192    
1193     aioreq_pri $pri;
1194     $wd->[1] = "$entry/.";
1195     add $statgrp aio_stat $wd, sub {
1196     if ($_[0] < 0) {
1197     push @nondirs, $entry;
1198     } else {
1199     # need to check for real directory
1200     aioreq_pri $pri;
1201     $wd->[1] = $entry;
1202     add $statgrp aio_lstat $wd, sub {
1203     if (-d _) {
1204     push @dirs, $entry;
1205    
1206     unless (--$ndirs) {
1207     push @nondirs, @$entries;
1208     feed $statgrp;
1209     }
1210     } else {
1211     push @nondirs, $entry;
1212 root 1.74 }
1213 root 1.40 }
1214     }
1215 root 1.210 };
1216 root 1.74 };
1217 root 1.40 };
1218     };
1219     };
1220 root 1.123 };
1221 root 1.55
1222 root 1.123 $grp
1223 root 1.40 }
1224    
1225 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1226 root 1.99
1227 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1228 root 1.239 status of the final C<rmdir> only. This is a composite request that
1229 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1230     everything else.
1231 root 1.99
1232     =cut
1233    
1234     sub aio_rmtree;
1235 root 1.100 sub aio_rmtree($;$) {
1236 root 1.123 my ($path, $cb) = @_;
1237 root 1.99
1238 root 1.123 my $pri = aioreq_pri;
1239     my $grp = aio_group $cb;
1240 root 1.99
1241 root 1.123 aioreq_pri $pri;
1242     add $grp aio_scandir $path, 0, sub {
1243     my ($dirs, $nondirs) = @_;
1244 root 1.99
1245 root 1.123 my $dirgrp = aio_group sub {
1246     add $grp aio_rmdir $path, sub {
1247     $grp->result ($_[0]);
1248 root 1.99 };
1249 root 1.123 };
1250 root 1.99
1251 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1252     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1253 root 1.99
1254 root 1.123 add $grp $dirgrp;
1255     };
1256 root 1.99
1257 root 1.123 $grp
1258 root 1.99 }
1259    
1260 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1261    
1262     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1263    
1264     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1265     they execute asynchronously and pass the return value to the callback.
1266    
1267     Both calls can be used for a lot of things, some of which make more sense
1268     to run asynchronously in their own thread, while some others make less
1269     sense. For example, calls that block waiting for external events, such
1270     as locking, will also lock down an I/O thread while it is waiting, which
1271     can deadlock the whole I/O system. At the same time, there might be no
1272     alternative to using a thread to wait.
1273    
1274     So in general, you should only use these calls for things that do
1275     (filesystem) I/O, not for things that wait for other events (network,
1276     other processes), although if you are careful and know what you are doing,
1277     you still can.
1278    
1279 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1280    
1281 root 1.271 C<F_DUPFD_CLOEXEC>,
1282    
1283     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1284    
1285 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1286    
1287     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1288     C<FS_IOC_FIEMAP>.
1289    
1290     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1291     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1292    
1293     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1294     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1295     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1296     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1297     C<FS_FL_USER_MODIFIABLE>.
1298    
1299     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1300     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1301     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1302     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1303    
1304 root 1.119 =item aio_sync $callback->($status)
1305    
1306     Asynchronously call sync and call the callback when finished.
1307    
1308 root 1.40 =item aio_fsync $fh, $callback->($status)
1309 root 1.1
1310     Asynchronously call fsync on the given filehandle and call the callback
1311     with the fsync result code.
1312    
1313 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1314 root 1.1
1315     Asynchronously call fdatasync on the given filehandle and call the
1316 root 1.26 callback with the fdatasync result code.
1317    
1318     If this call isn't available because your OS lacks it or it couldn't be
1319     detected, it will be emulated by calling C<fsync> instead.
1320 root 1.1
1321 root 1.206 =item aio_syncfs $fh, $callback->($status)
1322    
1323     Asynchronously call the syncfs syscall to sync the filesystem associated
1324     to the given filehandle and call the callback with the syncfs result
1325     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1326     errno to C<ENOSYS> nevertheless.
1327    
1328 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1329    
1330     Sync the data portion of the file specified by C<$offset> and C<$length>
1331     to disk (but NOT the metadata), by calling the Linux-specific
1332     sync_file_range call. If sync_file_range is not available or it returns
1333     ENOSYS, then fdatasync or fsync is being substituted.
1334    
1335     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1336     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1337     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1338     manpage for details.
1339    
1340 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1341 root 1.120
1342     This request tries to open, fsync and close the given path. This is a
1343 root 1.135 composite request intended to sync directories after directory operations
1344 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1345     specific effect, but usually it makes sure that directory changes get
1346     written to disc. It works for anything that can be opened for read-only,
1347     not just directories.
1348    
1349 root 1.162 Future versions of this function might fall back to other methods when
1350     C<fsync> on the directory fails (such as calling C<sync>).
1351    
1352 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1353    
1354     =cut
1355    
1356     sub aio_pathsync($;$) {
1357 root 1.123 my ($path, $cb) = @_;
1358    
1359     my $pri = aioreq_pri;
1360     my $grp = aio_group $cb;
1361 root 1.120
1362 root 1.123 aioreq_pri $pri;
1363     add $grp aio_open $path, O_RDONLY, 0, sub {
1364     my ($fh) = @_;
1365     if ($fh) {
1366     aioreq_pri $pri;
1367     add $grp aio_fsync $fh, sub {
1368     $grp->result ($_[0]);
1369 root 1.120
1370     aioreq_pri $pri;
1371 root 1.123 add $grp aio_close $fh;
1372     };
1373     } else {
1374     $grp->result (-1);
1375     }
1376     };
1377 root 1.120
1378 root 1.123 $grp
1379 root 1.120 }
1380    
1381 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1382 root 1.170
1383     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1384 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1385     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1386     scalar must only be modified in-place while an aio operation is pending on
1387     it).
1388 root 1.170
1389     It calls the C<msync> function of your OS, if available, with the memory
1390     area starting at C<$offset> in the string and ending C<$length> bytes
1391     later. If C<$length> is negative, counts from the end, and if C<$length>
1392     is C<undef>, then it goes till the end of the string. The flags can be
1393 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1394     C<IO::AIO::MS_INVALIDATE>.
1395 root 1.170
1396     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1397    
1398     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1399     scalars.
1400    
1401     It touches (reads or writes) all memory pages in the specified
1402 root 1.239 range inside the scalar. All caveats and parameters are the same
1403 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1404     C<0> (which reads all pages and ensures they are instantiated) or
1405 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1406 root 1.170 writing an octet from it, which dirties the page).
1407    
1408 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1409    
1410     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1411     scalars.
1412    
1413     It reads in all the pages of the underlying storage into memory (if any)
1414     and locks them, so they are not getting swapped/paged out or removed.
1415    
1416     If C<$length> is undefined, then the scalar will be locked till the end.
1417    
1418     On systems that do not implement C<mlock>, this function returns C<-1>
1419     and sets errno to C<ENOSYS>.
1420    
1421     Note that the corresponding C<munlock> is synchronous and is
1422     documented under L<MISCELLANEOUS FUNCTIONS>.
1423    
1424 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1425     C<$data> gets destroyed.
1426    
1427     open my $fh, "<", $path or die "$path: $!";
1428     my $data;
1429     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1430     aio_mlock $data; # mlock in background
1431    
1432 root 1.182 =item aio_mlockall $flags, $callback->($status)
1433    
1434     Calls the C<mlockall> function with the given C<$flags> (a combination of
1435     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1436    
1437     On systems that do not implement C<mlockall>, this function returns C<-1>
1438     and sets errno to C<ENOSYS>.
1439    
1440     Note that the corresponding C<munlockall> is synchronous and is
1441     documented under L<MISCELLANEOUS FUNCTIONS>.
1442    
1443 root 1.183 Example: asynchronously lock all current and future pages into memory.
1444    
1445     aio_mlockall IO::AIO::MCL_FUTURE;
1446    
1447 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1448    
1449 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1450     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1451     the ioctl is not available on your OS, then this request will fail with
1452 root 1.223 C<ENOSYS>.
1453    
1454     C<$start> is the starting offset to query extents for, C<$length> is the
1455     size of the range to query - if it is C<undef>, then the whole file will
1456     be queried.
1457    
1458     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1459     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1460     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1461     the data portion.
1462    
1463     C<$count> is the maximum number of extent records to return. If it is
1464 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1465 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1466 root 1.232 instead of the extents themselves (which is unreliable, see below).
1467 root 1.223
1468     If an error occurs, the callback receives no arguments. The special
1469     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1470    
1471     Otherwise, the callback receives an array reference with extent
1472     structures. Each extent structure is an array reference itself, with the
1473     following members:
1474    
1475     [$logical, $physical, $length, $flags]
1476    
1477     Flags is any combination of the following flag values (typically either C<0>
1478 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1479 root 1.223
1480     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1481     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1482     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1483     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1484     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1485     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1486    
1487 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1488     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1489     it to return all extents of a range for files with large number of
1490     extents. The code works around all these issues if C<$count> is undef.
1491    
1492 root 1.58 =item aio_group $callback->(...)
1493 root 1.54
1494 root 1.55 This is a very special aio request: Instead of doing something, it is a
1495     container for other aio requests, which is useful if you want to bundle
1496 root 1.71 many requests into a single, composite, request with a definite callback
1497     and the ability to cancel the whole request with its subrequests.
1498 root 1.55
1499     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1500     for more info.
1501    
1502     Example:
1503    
1504     my $grp = aio_group sub {
1505     print "all stats done\n";
1506     };
1507    
1508     add $grp
1509     (aio_stat ...),
1510     (aio_stat ...),
1511     ...;
1512    
1513 root 1.63 =item aio_nop $callback->()
1514    
1515     This is a special request - it does nothing in itself and is only used for
1516     side effects, such as when you want to add a dummy request to a group so
1517     that finishing the requests in the group depends on executing the given
1518     code.
1519    
1520 root 1.64 While this request does nothing, it still goes through the execution
1521     phase and still requires a worker thread. Thus, the callback will not
1522     be executed immediately but only after other requests in the queue have
1523     entered their execution phase. This can be used to measure request
1524     latency.
1525    
1526 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1527 root 1.54
1528     Mainly used for debugging and benchmarking, this aio request puts one of
1529     the request workers to sleep for the given time.
1530    
1531 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1532 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1533     immense (it blocks a thread for a long time) so do not use this function
1534     except to put your application under artificial I/O pressure.
1535 root 1.56
1536 root 1.5 =back
1537    
1538 root 1.209
1539     =head2 IO::AIO::WD - multiple working directories
1540    
1541     Your process only has one current working directory, which is used by all
1542     threads. This makes it hard to use relative paths (some other component
1543     could call C<chdir> at any time, and it is hard to control when the path
1544     will be used by IO::AIO).
1545    
1546     One solution for this is to always use absolute paths. This usually works,
1547     but can be quite slow (the kernel has to walk the whole path on every
1548     access), and can also be a hassle to implement.
1549    
1550     Newer POSIX systems have a number of functions (openat, fdopendir,
1551     futimensat and so on) that make it possible to specify working directories
1552     per operation.
1553    
1554     For portability, and because the clowns who "designed", or shall I write,
1555     perpetrated this new interface were obviously half-drunk, this abstraction
1556     cannot be perfect, though.
1557    
1558     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1559     object. This object stores the canonicalised, absolute version of the
1560     path, and on systems that allow it, also a directory file descriptor.
1561    
1562     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1563     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1564 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1565     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1566 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1567 root 1.209 to that IO::AIO::WD object.
1568    
1569     For example, to get a wd object for F</etc> and then stat F<passwd>
1570     inside, you would write:
1571    
1572     aio_wd "/etc", sub {
1573     my $etcdir = shift;
1574    
1575     # although $etcdir can be undef on error, there is generally no reason
1576     # to check for errors here, as aio_stat will fail with ENOENT
1577     # when $etcdir is undef.
1578    
1579     aio_stat [$etcdir, "passwd"], sub {
1580     # yay
1581     };
1582     };
1583    
1584 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1585     creating an IO::AIO::WD object is itself a potentially blocking operation,
1586     which is why it is done asynchronously.
1587 root 1.214
1588     To stat the directory obtained with C<aio_wd> above, one could write
1589     either of the following three request calls:
1590    
1591     aio_lstat "/etc" , sub { ... # pathname as normal string
1592     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1593     aio_lstat $wd , sub { ... # shorthand for the previous
1594 root 1.209
1595     As with normal pathnames, IO::AIO keeps a copy of the working directory
1596     object and the pathname string, so you could write the following without
1597     causing any issues due to C<$path> getting reused:
1598    
1599     my $path = [$wd, undef];
1600    
1601     for my $name (qw(abc def ghi)) {
1602     $path->[1] = $name;
1603     aio_stat $path, sub {
1604     # ...
1605     };
1606     }
1607    
1608     There are some caveats: when directories get renamed (or deleted), the
1609     pathname string doesn't change, so will point to the new directory (or
1610     nowhere at all), while the directory fd, if available on the system,
1611     will still point to the original directory. Most functions accepting a
1612     pathname will use the directory fd on newer systems, and the string on
1613     older systems. Some functions (such as realpath) will always rely on the
1614     string form of the pathname.
1615    
1616 root 1.239 So this functionality is mainly useful to get some protection against
1617 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1618     reference, and to speed up doing many operations in the same directory
1619     (e.g. when stat'ing all files in a directory).
1620    
1621     The following functions implement this working directory abstraction:
1622    
1623     =over 4
1624    
1625     =item aio_wd $pathname, $callback->($wd)
1626    
1627     Asynchonously canonicalise the given pathname and convert it to an
1628     IO::AIO::WD object representing it. If possible and supported on the
1629     system, also open a directory fd to speed up pathname resolution relative
1630     to this working directory.
1631    
1632     If something goes wrong, then C<undef> is passwd to the callback instead
1633     of a working directory object and C<$!> is set appropriately. Since
1634     passing C<undef> as working directory component of a pathname fails the
1635     request with C<ENOENT>, there is often no need for error checking in the
1636     C<aio_wd> callback, as future requests using the value will fail in the
1637     expected way.
1638    
1639     =item IO::AIO::CWD
1640    
1641     This is a compiletime constant (object) that represents the process
1642     current working directory.
1643    
1644 root 1.239 Specifying this object as working directory object for a pathname is as if
1645     the pathname would be specified directly, without a directory object. For
1646     example, these calls are functionally identical:
1647 root 1.209
1648     aio_stat "somefile", sub { ... };
1649     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1650    
1651     =back
1652    
1653 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1654     C<aio_realpath>:
1655    
1656     aio_realpath $wd, sub {
1657     warn "path is $_[0]\n";
1658     };
1659    
1660 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1661     sometimes, fall back to using an absolue path.
1662 root 1.209
1663 root 1.53 =head2 IO::AIO::REQ CLASS
1664 root 1.52
1665     All non-aggregate C<aio_*> functions return an object of this class when
1666     called in non-void context.
1667    
1668     =over 4
1669    
1670 root 1.65 =item cancel $req
1671 root 1.52
1672     Cancels the request, if possible. Has the effect of skipping execution
1673     when entering the B<execute> state and skipping calling the callback when
1674     entering the the B<result> state, but will leave the request otherwise
1675 root 1.151 untouched (with the exception of readdir). That means that requests that
1676     currently execute will not be stopped and resources held by the request
1677     will not be freed prematurely.
1678 root 1.52
1679 root 1.65 =item cb $req $callback->(...)
1680    
1681     Replace (or simply set) the callback registered to the request.
1682    
1683 root 1.52 =back
1684    
1685 root 1.55 =head2 IO::AIO::GRP CLASS
1686    
1687     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1688     objects of this class, too.
1689    
1690     A IO::AIO::GRP object is a special request that can contain multiple other
1691     aio requests.
1692    
1693     You create one by calling the C<aio_group> constructing function with a
1694     callback that will be called when all contained requests have entered the
1695     C<done> state:
1696    
1697     my $grp = aio_group sub {
1698     print "all requests are done\n";
1699     };
1700    
1701     You add requests by calling the C<add> method with one or more
1702     C<IO::AIO::REQ> objects:
1703    
1704     $grp->add (aio_unlink "...");
1705    
1706 root 1.58 add $grp aio_stat "...", sub {
1707     $_[0] or return $grp->result ("error");
1708    
1709     # add another request dynamically, if first succeeded
1710     add $grp aio_open "...", sub {
1711     $grp->result ("ok");
1712     };
1713     };
1714 root 1.55
1715     This makes it very easy to create composite requests (see the source of
1716     C<aio_move> for an application) that work and feel like simple requests.
1717    
1718 root 1.62 =over 4
1719    
1720     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1721 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1722    
1723 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1724 root 1.59 only the request itself, but also all requests it contains.
1725 root 1.55
1726 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1727 root 1.55
1728 root 1.62 =item * You must not add requests to a group from within the group callback (or
1729 root 1.60 any later time).
1730    
1731 root 1.62 =back
1732    
1733 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1734     will finish very quickly. If they contain only requests that are in the
1735     C<done> state, they will also finish. Otherwise they will continue to
1736     exist.
1737    
1738 root 1.133 That means after creating a group you have some time to add requests
1739     (precisely before the callback has been invoked, which is only done within
1740     the C<poll_cb>). And in the callbacks of those requests, you can add
1741     further requests to the group. And only when all those requests have
1742     finished will the the group itself finish.
1743 root 1.57
1744 root 1.55 =over 4
1745    
1746 root 1.65 =item add $grp ...
1747    
1748 root 1.55 =item $grp->add (...)
1749    
1750 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1751     be added, including other groups, as long as you do not create circular
1752     dependencies.
1753    
1754     Returns all its arguments.
1755 root 1.55
1756 root 1.74 =item $grp->cancel_subs
1757    
1758     Cancel all subrequests and clears any feeder, but not the group request
1759     itself. Useful when you queued a lot of events but got a result early.
1760    
1761 root 1.168 The group request will finish normally (you cannot add requests to the
1762     group).
1763    
1764 root 1.58 =item $grp->result (...)
1765    
1766     Set the result value(s) that will be passed to the group callback when all
1767 root 1.120 subrequests have finished and set the groups errno to the current value
1768 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1769     no argument will be passed and errno is zero.
1770    
1771     =item $grp->errno ([$errno])
1772    
1773     Sets the group errno value to C<$errno>, or the current value of errno
1774     when the argument is missing.
1775    
1776     Every aio request has an associated errno value that is restored when
1777     the callback is invoked. This method lets you change this value from its
1778     default (0).
1779    
1780     Calling C<result> will also set errno, so make sure you either set C<$!>
1781     before the call to C<result>, or call c<errno> after it.
1782 root 1.58
1783 root 1.65 =item feed $grp $callback->($grp)
1784 root 1.60
1785     Sets a feeder/generator on this group: every group can have an attached
1786     generator that generates requests if idle. The idea behind this is that,
1787     although you could just queue as many requests as you want in a group,
1788 root 1.139 this might starve other requests for a potentially long time. For example,
1789 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1790     requests, delaying any later requests for a long time.
1791 root 1.60
1792     To avoid this, and allow incremental generation of requests, you can
1793     instead a group and set a feeder on it that generates those requests. The
1794 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1795 root 1.60 below) requests active in the group itself and is expected to queue more
1796     requests.
1797    
1798 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1799     not impose any limits).
1800 root 1.60
1801 root 1.65 If the feed does not queue more requests when called, it will be
1802 root 1.60 automatically removed from the group.
1803    
1804 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1805     C<2> automatically.
1806 root 1.60
1807     Example:
1808    
1809     # stat all files in @files, but only ever use four aio requests concurrently:
1810    
1811     my $grp = aio_group sub { print "finished\n" };
1812 root 1.68 limit $grp 4;
1813 root 1.65 feed $grp sub {
1814 root 1.60 my $file = pop @files
1815     or return;
1816    
1817     add $grp aio_stat $file, sub { ... };
1818 root 1.65 };
1819 root 1.60
1820 root 1.68 =item limit $grp $num
1821 root 1.60
1822     Sets the feeder limit for the group: The feeder will be called whenever
1823     the group contains less than this many requests.
1824    
1825     Setting the limit to C<0> will pause the feeding process.
1826    
1827 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1828     automatically bumps it up to C<2>.
1829    
1830 root 1.55 =back
1831    
1832 root 1.5 =head2 SUPPORT FUNCTIONS
1833    
1834 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1835    
1836 root 1.5 =over 4
1837    
1838     =item $fileno = IO::AIO::poll_fileno
1839    
1840 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1841 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1842     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1843     you have to call C<poll_cb> to check the results.
1844 root 1.5
1845     See C<poll_cb> for an example.
1846    
1847     =item IO::AIO::poll_cb
1848    
1849 root 1.240 Process some requests that have reached the result phase (i.e. they have
1850     been executed but the results are not yet reported). You have to call
1851     this "regularly" to finish outstanding requests.
1852    
1853     Returns C<0> if all events could be processed (or there were no
1854     events to process), or C<-1> if it returned earlier for whatever
1855     reason. Returns immediately when no events are outstanding. The amount
1856     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1857     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1858    
1859     If not all requests were processed for whatever reason, the poll file
1860     descriptor will still be ready when C<poll_cb> returns, so normally you
1861     don't have to do anything special to have it called later.
1862 root 1.78
1863 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1864     ready, it can be beneficial to call this function from loops which submit
1865     a lot of requests, to make sure the results get processed when they become
1866     available and not just when the loop is finished and the event loop takes
1867     over again. This function returns very fast when there are no outstanding
1868     requests.
1869    
1870 root 1.20 Example: Install an Event watcher that automatically calls
1871 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1872     SYNOPSIS section, at the top of this document):
1873 root 1.5
1874     Event->io (fd => IO::AIO::poll_fileno,
1875     poll => 'r', async => 1,
1876     cb => \&IO::AIO::poll_cb);
1877    
1878 root 1.175 =item IO::AIO::poll_wait
1879    
1880 root 1.240 Wait until either at least one request is in the result phase or no
1881     requests are outstanding anymore.
1882    
1883     This is useful if you want to synchronously wait for some requests to
1884     become ready, without actually handling them.
1885 root 1.175
1886     See C<nreqs> for an example.
1887    
1888     =item IO::AIO::poll
1889    
1890     Waits until some requests have been handled.
1891    
1892     Returns the number of requests processed, but is otherwise strictly
1893     equivalent to:
1894    
1895     IO::AIO::poll_wait, IO::AIO::poll_cb
1896    
1897     =item IO::AIO::flush
1898    
1899     Wait till all outstanding AIO requests have been handled.
1900    
1901     Strictly equivalent to:
1902    
1903     IO::AIO::poll_wait, IO::AIO::poll_cb
1904     while IO::AIO::nreqs;
1905    
1906 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1907    
1908     =item IO::AIO::max_poll_time $seconds
1909    
1910     These set the maximum number of requests (default C<0>, meaning infinity)
1911     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1912     the maximum amount of time (default C<0>, meaning infinity) spent in
1913     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1914     of time C<poll_cb> is allowed to use).
1915 root 1.78
1916 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1917     syscall per request processed, which is not normally a problem unless your
1918     callbacks are really really fast or your OS is really really slow (I am
1919     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1920    
1921 root 1.86 Setting these is useful if you want to ensure some level of
1922     interactiveness when perl is not fast enough to process all requests in
1923     time.
1924 root 1.78
1925 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1926 root 1.78
1927     Example: Install an Event watcher that automatically calls
1928 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1929 root 1.78 program get the CPU sometimes even under high AIO load.
1930    
1931 root 1.86 # try not to spend much more than 0.1s in poll_cb
1932     IO::AIO::max_poll_time 0.1;
1933    
1934     # use a low priority so other tasks have priority
1935 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1936     poll => 'r', nice => 1,
1937 root 1.86 cb => &IO::AIO::poll_cb);
1938 root 1.78
1939 root 1.104 =back
1940    
1941 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1942 root 1.13
1943 root 1.105 =over
1944    
1945 root 1.5 =item IO::AIO::min_parallel $nthreads
1946    
1947 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1948     default is C<8>, which means eight asynchronous operations can execute
1949     concurrently at any one time (the number of outstanding requests,
1950     however, is unlimited).
1951 root 1.5
1952 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1953 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1954     create demand for a hundred threads, even if it turns out that everything
1955     is in the cache and could have been processed faster by a single thread.
1956 root 1.34
1957 root 1.61 It is recommended to keep the number of threads relatively low, as some
1958     Linux kernel versions will scale negatively with the number of threads
1959     (higher parallelity => MUCH higher latency). With current Linux 2.6
1960     versions, 4-32 threads should be fine.
1961 root 1.5
1962 root 1.34 Under most circumstances you don't need to call this function, as the
1963     module selects a default that is suitable for low to moderate load.
1964 root 1.5
1965     =item IO::AIO::max_parallel $nthreads
1966    
1967 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1968     specified number of threads are currently running, this function kills
1969     them. This function blocks until the limit is reached.
1970    
1971     While C<$nthreads> are zero, aio requests get queued but not executed
1972     until the number of threads has been increased again.
1973 root 1.5
1974     This module automatically runs C<max_parallel 0> at program end, to ensure
1975     that all threads are killed and that there are no outstanding requests.
1976    
1977     Under normal circumstances you don't need to call this function.
1978    
1979 root 1.86 =item IO::AIO::max_idle $nthreads
1980    
1981 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1982     (i.e., threads that did not get a request to process within the idle
1983     timeout (default: 10 seconds). That means if a thread becomes idle while
1984     C<$nthreads> other threads are also idle, it will free its resources and
1985     exit.
1986 root 1.86
1987     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1988     to allow for extremely high load situations, but want to free resources
1989     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1990    
1991     The default is probably ok in most situations, especially if thread
1992     creation is fast. If thread creation is very slow on your system you might
1993     want to use larger values.
1994    
1995 root 1.188 =item IO::AIO::idle_timeout $seconds
1996    
1997     Sets the minimum idle timeout (default 10) after which worker threads are
1998     allowed to exit. SEe C<IO::AIO::max_idle>.
1999    
2000 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2001 root 1.5
2002 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2003     you do queue up more than this number of requests, the next call to
2004     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2005     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2006     longer exceeded.
2007    
2008     In other words, this setting does not enforce a queue limit, but can be
2009     used to make poll functions block if the limit is exceeded.
2010    
2011 root 1.79 This is a very bad function to use in interactive programs because it
2012     blocks, and a bad way to reduce concurrency because it is inexact: Better
2013     use an C<aio_group> together with a feed callback.
2014    
2015 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2016 root 1.274 a lot of files, you can write something like this:
2017 root 1.195
2018     IO::AIO::max_outstanding 32;
2019    
2020     for my $path (...) {
2021     aio_stat $path , ...;
2022     IO::AIO::poll_cb;
2023     }
2024    
2025     IO::AIO::flush;
2026    
2027     The call to C<poll_cb> inside the loop will normally return instantly, but
2028     as soon as more thna C<32> reqeusts are in-flight, it will block until
2029     some requests have been handled. This keeps the loop from pushing a large
2030     number of C<aio_stat> requests onto the queue.
2031    
2032     The default value for C<max_outstanding> is very large, so there is no
2033     practical limit on the number of outstanding requests.
2034 root 1.5
2035 root 1.104 =back
2036    
2037 root 1.86 =head3 STATISTICAL INFORMATION
2038    
2039 root 1.104 =over
2040    
2041 root 1.86 =item IO::AIO::nreqs
2042    
2043     Returns the number of requests currently in the ready, execute or pending
2044     states (i.e. for which their callback has not been invoked yet).
2045    
2046     Example: wait till there are no outstanding requests anymore:
2047    
2048     IO::AIO::poll_wait, IO::AIO::poll_cb
2049     while IO::AIO::nreqs;
2050    
2051     =item IO::AIO::nready
2052    
2053     Returns the number of requests currently in the ready state (not yet
2054     executed).
2055    
2056     =item IO::AIO::npending
2057    
2058     Returns the number of requests currently in the pending state (executed,
2059     but not yet processed by poll_cb).
2060    
2061 root 1.5 =back
2062    
2063 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2064    
2065 root 1.248 IO::AIO implements some functions that are useful when you want to use
2066     some "Advanced I/O" function not available to in Perl, without going the
2067     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2068     counterpart.
2069 root 1.157
2070     =over 4
2071    
2072 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2073    
2074     Tries to find the current file descriptor limit and returns it, or
2075     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2076     the highest valid file descriptor number.
2077    
2078     =item IO::AIO::min_fdlimit [$numfd]
2079    
2080     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2081     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2082     is missing, it will try to set a very high limit, although this is not
2083     recommended when you know the actual minimum that you require.
2084    
2085     If the limit cannot be raised enough, the function makes a best-effort
2086     attempt to increase the limit as much as possible, using various
2087     tricks, while still failing. You can query the resulting limit using
2088     C<IO::AIO::get_fdlimit>.
2089    
2090 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2091     true.
2092 root 1.275
2093 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2094    
2095     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2096     but is blocking (this makes most sense if you know the input data is
2097     likely cached already and the output filehandle is set to non-blocking
2098     operations).
2099    
2100     Returns the number of bytes copied, or C<-1> on error.
2101    
2102     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2103    
2104 root 1.184 Simply calls the C<posix_fadvise> function (see its
2105 root 1.157 manpage for details). The following advice constants are
2106 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2107 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2108     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2109    
2110     On systems that do not implement C<posix_fadvise>, this function returns
2111     ENOSYS, otherwise the return value of C<posix_fadvise>.
2112    
2113 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2114    
2115     Simply calls the C<posix_madvise> function (see its
2116     manpage for details). The following advice constants are
2117 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2118 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2119     C<IO::AIO::MADV_DONTNEED>.
2120 root 1.184
2121 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2122     the remaining length of the C<$scalar> is used. If possible, C<$length>
2123     will be reduced to fit into the C<$scalar>.
2124    
2125 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2126     ENOSYS, otherwise the return value of C<posix_madvise>.
2127    
2128     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2129    
2130     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2131     $scalar (see its manpage for details). The following protect
2132 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2133 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2134    
2135 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2136     the remaining length of the C<$scalar> is used. If possible, C<$length>
2137     will be reduced to fit into the C<$scalar>.
2138    
2139 root 1.184 On systems that do not implement C<mprotect>, this function returns
2140     ENOSYS, otherwise the return value of C<mprotect>.
2141    
2142 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2143    
2144     Memory-maps a file (or anonymous memory range) and attaches it to the
2145 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2146     success, and false otherwise.
2147 root 1.176
2148 root 1.268 The scalar must exist, but its contents do not matter - this means you
2149     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2150     the scalar first.
2151    
2152     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2153     which don't change the string length, and most read-only operations such
2154     as copying it or searching it with regexes and so on.
2155 root 1.176
2156     Anything else is unsafe and will, at best, result in memory leaks.
2157    
2158     The memory map associated with the C<$scalar> is automatically removed
2159 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2160     or C<IO::AIO::munmap> functions are called on it.
2161 root 1.176
2162     This calls the C<mmap>(2) function internally. See your system's manual
2163     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2164    
2165     The C<$length> must be larger than zero and smaller than the actual
2166     filesize.
2167    
2168     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2169     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2170    
2171 root 1.256 C<$flags> can be a combination of
2172     C<IO::AIO::MAP_SHARED> or
2173     C<IO::AIO::MAP_PRIVATE>,
2174     or a number of system-specific flags (when not available, the are C<0>):
2175     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2176     C<IO::AIO::MAP_LOCKED>,
2177     C<IO::AIO::MAP_NORESERVE>,
2178     C<IO::AIO::MAP_POPULATE>,
2179     C<IO::AIO::MAP_NONBLOCK>,
2180     C<IO::AIO::MAP_FIXED>,
2181     C<IO::AIO::MAP_GROWSDOWN>,
2182     C<IO::AIO::MAP_32BIT>,
2183     C<IO::AIO::MAP_HUGETLB> or
2184     C<IO::AIO::MAP_STACK>.
2185 root 1.176
2186     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2187    
2188 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2189     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2190    
2191 root 1.177 Example:
2192    
2193     use Digest::MD5;
2194     use IO::AIO;
2195    
2196     open my $fh, "<verybigfile"
2197     or die "$!";
2198    
2199     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2200     or die "verybigfile: $!";
2201    
2202     my $fast_md5 = md5 $data;
2203    
2204 root 1.176 =item IO::AIO::munmap $scalar
2205    
2206     Removes a previous mmap and undefines the C<$scalar>.
2207    
2208 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2209 root 1.174
2210 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2211     C<aio_mlock> call (see its description for details).
2212 root 1.174
2213     =item IO::AIO::munlockall
2214    
2215     Calls the C<munlockall> function.
2216    
2217     On systems that do not implement C<munlockall>, this function returns
2218     ENOSYS, otherwise the return value of C<munlockall>.
2219    
2220 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2221    
2222     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2223     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2224     should be the file offset.
2225    
2226 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2227     silently corrupt the data in this case.
2228    
2229 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2230     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2231     C<IO::AIO::SPLICE_F_GIFT>.
2232    
2233     See the C<splice(2)> manpage for details.
2234    
2235     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2236    
2237 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2238 root 1.225 description for C<IO::AIO::splice> above for details.
2239    
2240 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2241    
2242     Attempts to query or change the pipe buffer size. Obviously works only
2243     on pipes, and currently works only on GNU/Linux systems, and fails with
2244     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2245     size on other systems, drop me a note.
2246    
2247 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2248    
2249     This is a direct interface to the Linux L<pipe2(2)> system call. If
2250     C<$flags> is missing or C<0>, then this should be the same as a call to
2251 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2252     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2253     (..., 4096, O_BINARY)>.
2254 root 1.253
2255     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2256     the given flags (Linux 2.6.27, glibc 2.9).
2257    
2258     On success, the read and write file handles are returned.
2259    
2260     On error, nothing will be returned. If the pipe2 syscall is missing and
2261     C<$flags> is non-zero, fails with C<ENOSYS>.
2262    
2263     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2264     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2265     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2266    
2267 root 1.157 =back
2268    
2269 root 1.1 =cut
2270    
2271 root 1.61 min_parallel 8;
2272 root 1.1
2273 root 1.95 END { flush }
2274 root 1.82
2275 root 1.1 1;
2276    
2277 root 1.175 =head1 EVENT LOOP INTEGRATION
2278    
2279     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2280     automatically into many event loops:
2281    
2282     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2283     use AnyEvent::AIO;
2284    
2285     You can also integrate IO::AIO manually into many event loops, here are
2286     some examples of how to do this:
2287    
2288     # EV integration
2289     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2290    
2291     # Event integration
2292     Event->io (fd => IO::AIO::poll_fileno,
2293     poll => 'r',
2294     cb => \&IO::AIO::poll_cb);
2295    
2296     # Glib/Gtk2 integration
2297     add_watch Glib::IO IO::AIO::poll_fileno,
2298     in => sub { IO::AIO::poll_cb; 1 };
2299    
2300     # Tk integration
2301     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2302     readable => \&IO::AIO::poll_cb);
2303    
2304     # Danga::Socket integration
2305     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2306     \&IO::AIO::poll_cb);
2307    
2308 root 1.27 =head2 FORK BEHAVIOUR
2309    
2310 root 1.197 Usage of pthreads in a program changes the semantics of fork
2311     considerably. Specifically, only async-safe functions can be called after
2312     fork. Perl doesn't know about this, so in general, you cannot call fork
2313 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2314     pthreads, so this applies, but many other extensions and (for inexplicable
2315     reasons) perl itself often is linked against pthreads, so this limitation
2316     applies to quite a lot of perls.
2317    
2318     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2319     only works in the process that loaded it. Forking is fully supported, but
2320     using IO::AIO in the child is not.
2321    
2322     You might get around by not I<using> IO::AIO before (or after)
2323     forking. You could also try to call the L<IO::AIO::reinit> function in the
2324     child:
2325    
2326     =over 4
2327    
2328     =item IO::AIO::reinit
2329    
2330 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2331     data structures. This is not an operation supported by any standards, but
2332 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2333    
2334     The only reasonable use for this function is to call it after forking, if
2335     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2336     the process will result in undefined behaviour. Calling it at any time
2337     will also result in any undefined (by POSIX) behaviour.
2338    
2339     =back
2340 root 1.52
2341 root 1.60 =head2 MEMORY USAGE
2342    
2343 root 1.72 Per-request usage:
2344    
2345     Each aio request uses - depending on your architecture - around 100-200
2346     bytes of memory. In addition, stat requests need a stat buffer (possibly
2347     a few hundred bytes), readdir requires a result buffer and so on. Perl
2348     scalars and other data passed into aio requests will also be locked and
2349     will consume memory till the request has entered the done state.
2350 root 1.60
2351 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2352 root 1.60 problem.
2353    
2354 root 1.72 Per-thread usage:
2355    
2356     In the execution phase, some aio requests require more memory for
2357     temporary buffers, and each thread requires a stack and other data
2358     structures (usually around 16k-128k, depending on the OS).
2359    
2360     =head1 KNOWN BUGS
2361    
2362 root 1.73 Known bugs will be fixed in the next release.
2363 root 1.60
2364 root 1.1 =head1 SEE ALSO
2365    
2366 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2367     more natural syntax.
2368 root 1.1
2369     =head1 AUTHOR
2370    
2371     Marc Lehmann <schmorp@schmorp.de>
2372     http://home.schmorp.de/
2373    
2374     =cut
2375