ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.278
Committed: Sun Oct 1 07:24:34 2017 UTC (6 years, 7 months ago) by root
Branch: MAIN
Changes since 1.277: +10 -4 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
239 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
240     aio_rmdir $pathname, $callback->($status)
241     aio_readdir $pathname, $callback->($entries)
242     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
243     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
244     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
245 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
246 root 1.209 aio_load $pathname, $data, $callback->($status)
247 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
248     aio_move $srcpath, $dstpath, $callback->($status)
249 root 1.209 aio_rmtree $pathname, $callback->($status)
250 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
251     aio_ioctl $fh, $request, $buf, $callback->($status)
252 root 1.175 aio_sync $callback->($status)
253 root 1.206 aio_syncfs $fh, $callback->($status)
254 root 1.175 aio_fsync $fh, $callback->($status)
255     aio_fdatasync $fh, $callback->($status)
256     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
257 root 1.209 aio_pathsync $pathname, $callback->($status)
258 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
259 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
260 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
261     aio_mlockall $flags, $callback->($status)
262 root 1.175 aio_group $callback->(...)
263     aio_nop $callback->()
264    
265     $prev_pri = aioreq_pri [$pri]
266     aioreq_nice $pri_adjust
267    
268     IO::AIO::poll_wait
269     IO::AIO::poll_cb
270     IO::AIO::poll
271     IO::AIO::flush
272     IO::AIO::max_poll_reqs $nreqs
273     IO::AIO::max_poll_time $seconds
274     IO::AIO::min_parallel $nthreads
275     IO::AIO::max_parallel $nthreads
276     IO::AIO::max_idle $nthreads
277 root 1.188 IO::AIO::idle_timeout $seconds
278 root 1.175 IO::AIO::max_outstanding $maxreqs
279     IO::AIO::nreqs
280     IO::AIO::nready
281     IO::AIO::npending
282 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
283     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
284 root 1.175
285     IO::AIO::sendfile $ofh, $ifh, $offset, $count
286     IO::AIO::fadvise $fh, $offset, $len, $advice
287 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
288     IO::AIO::munmap $scalar
289 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
290     IO::AIO::mprotect $scalar, $offset, $length, $protect
291 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
292 root 1.175 IO::AIO::munlockall
293    
294 root 1.219 =head2 API NOTES
295 root 1.1
296 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
297     with the same name (sans C<aio_>). The arguments are similar or identical,
298 root 1.14 and they all accept an additional (and optional) C<$callback> argument
299 root 1.212 which must be a code reference. This code reference will be called after
300     the syscall has been executed in an asynchronous fashion. The results
301     of the request will be passed as arguments to the callback (and, if an
302     error occured, in C<$!>) - for most requests the syscall return code (e.g.
303     most syscalls return C<-1> on error, unlike perl, which usually delivers
304     "false").
305    
306     Some requests (such as C<aio_readdir>) pass the actual results and
307     communicate failures by passing C<undef>.
308 root 1.1
309 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
310     internally until the request has finished.
311 root 1.1
312 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
313     further manipulation of those requests while they are in-flight.
314 root 1.52
315 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
316     reason for this is that at the time the request is being executed, the
317 root 1.212 current working directory could have changed. Alternatively, you can
318     make sure that you never change the current working directory anywhere
319     in the program and then use relative paths. You can also take advantage
320     of IO::AIOs working directory abstraction, that lets you specify paths
321     relative to some previously-opened "working directory object" - see the
322     description of the C<IO::AIO::WD> class later in this document.
323 root 1.28
324 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
325     in filenames you got from outside (command line, readdir etc.) without
326 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
327     module and encode your pathnames to the locale (or other) encoding in
328     effect in the user environment, d) use Glib::filename_from_unicode on
329     unicode filenames or e) use something else to ensure your scalar has the
330     correct contents.
331 root 1.87
332     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
333 root 1.136 handles correctly whether it is set or not.
334 root 1.1
335 root 1.219 =head2 AIO REQUEST FUNCTIONS
336    
337 root 1.5 =over 4
338 root 1.1
339 root 1.80 =item $prev_pri = aioreq_pri [$pri]
340 root 1.68
341 root 1.80 Returns the priority value that would be used for the next request and, if
342     C<$pri> is given, sets the priority for the next aio request.
343 root 1.68
344 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
345     and C<4>, respectively. Requests with higher priority will be serviced
346     first.
347    
348     The priority will be reset to C<0> after each call to one of the C<aio_*>
349 root 1.68 functions.
350    
351 root 1.69 Example: open a file with low priority, then read something from it with
352     higher priority so the read request is serviced before other low priority
353     open requests (potentially spamming the cache):
354    
355     aioreq_pri -3;
356     aio_open ..., sub {
357     return unless $_[0];
358    
359     aioreq_pri -2;
360     aio_read $_[0], ..., sub {
361     ...
362     };
363     };
364    
365 root 1.106
366 root 1.69 =item aioreq_nice $pri_adjust
367    
368     Similar to C<aioreq_pri>, but subtracts the given value from the current
369 root 1.87 priority, so the effect is cumulative.
370 root 1.69
371 root 1.106
372 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
373 root 1.1
374 root 1.2 Asynchronously open or create a file and call the callback with a newly
375 root 1.233 created filehandle for the file (or C<undef> in case of an error).
376 root 1.1
377     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
378     for an explanation.
379    
380 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
381     list. They are the same as used by C<sysopen>.
382    
383     Likewise, C<$mode> specifies the mode of the newly created file, if it
384     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
385     except that it is mandatory (i.e. use C<0> if you don't create new files,
386 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
387     by the umask in effect then the request is being executed, so better never
388     change the umask.
389 root 1.1
390     Example:
391    
392 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
393 root 1.2 if ($_[0]) {
394     print "open successful, fh is $_[0]\n";
395 root 1.1 ...
396     } else {
397     die "open failed: $!\n";
398     }
399     };
400    
401 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
402     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
403     following POSIX and non-POSIX constants are available (missing ones on
404     your system are, as usual, C<0>):
405    
406     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
407     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
408 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
409 root 1.194
410 root 1.106
411 root 1.40 =item aio_close $fh, $callback->($status)
412 root 1.1
413 root 1.2 Asynchronously close a file and call the callback with the result
414 root 1.116 code.
415    
416 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
417 root 1.121 closing the file descriptor associated with the filehandle itself.
418 root 1.117
419 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
420     use dup2 to overwrite the file descriptor with the write-end of a pipe
421     (the pipe fd will be created on demand and will be cached).
422 root 1.117
423 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
424     free for reuse until the perl filehandle is closed.
425 root 1.117
426     =cut
427    
428 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
429    
430 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
431 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
432     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
433     C<IO::AIO::SEEK_END>).
434    
435     The resulting absolute offset will be passed to the callback, or C<-1> in
436     case of an error.
437    
438     In theory, the C<$whence> constants could be different than the
439     corresponding values from L<Fcntl>, but perl guarantees they are the same,
440     so don't panic.
441    
442 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
443     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
444     could be found. No guarantees about suitability for use in C<aio_seek> or
445     Perl's C<sysseek> can be made though, although I would naively assume they
446     "just work".
447    
448 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
449 root 1.1
450 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
453 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
454     calls the callback with the actual number of bytes transferred (or -1 on
455 root 1.145 error, just like the syscall).
456 root 1.109
457 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
458     offset plus the actual number of bytes read.
459    
460 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
461     be used (and updated), otherwise the file descriptor offset will not be
462     changed by these calls.
463 root 1.109
464 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
465     C<$data>.
466 root 1.109
467     If C<$dataoffset> is less than zero, it will be counted from the end of
468     C<$data>.
469 root 1.1
470 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
471 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
472     the necessary/optional hardware is installed).
473 root 1.31
474 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
475 root 1.1 offset C<0> within the scalar:
476    
477     aio_read $fh, 7, 15, $buffer, 0, sub {
478 root 1.9 $_[0] > 0 or die "read error: $!";
479     print "read $_[0] bytes: <$buffer>\n";
480 root 1.1 };
481    
482 root 1.106
483 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
484 root 1.35
485     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
486     reading at byte offset C<$in_offset>, and starts writing at the current
487     file offset of C<$out_fh>. Because of that, it is not safe to issue more
488     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
489 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
490     move or use the file offset of C<$in_fh>.
491 root 1.35
492 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
493 root 1.196 are written, and there is no way to find out how many more bytes have been
494     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
495     number of bytes written to C<$out_fh>. Only if the result value equals
496     C<$length> one can assume that C<$length> bytes have been read.
497 root 1.185
498     Unlike with other C<aio_> functions, it makes a lot of sense to use
499     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
500     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
501 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
502     into a trap where C<aio_sendfile> reads some data with readahead, then
503     fails to write all data, and when the socket is ready the next time, the
504     data in the cache is already lost, forcing C<aio_sendfile> to again hit
505     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
506     resource usage.
507    
508     This call tries to make use of a native C<sendfile>-like syscall to
509     provide zero-copy operation. For this to work, C<$out_fh> should refer to
510     a socket, and C<$in_fh> should refer to an mmap'able file.
511 root 1.35
512 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
513 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
514     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
515     type of filehandle regardless of the limitations of the operating system.
516    
517     As native sendfile syscalls (as practically any non-POSIX interface hacked
518     together in a hurry to improve benchmark numbers) tend to be rather buggy
519     on many systems, this implementation tries to work around some known bugs
520     in Linux and FreeBSD kernels (probably others, too), but that might fail,
521     so you really really should check the return value of C<aio_sendfile> -
522 root 1.262 fewer bytes than expected might have been transferred.
523 root 1.35
524 root 1.106
525 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
526 root 1.1
527 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
528 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
529     argument specifies the starting point from which data is to be read and
530     C<$length> specifies the number of bytes to be read. I/O is performed in
531     whole pages, so that offset is effectively rounded down to a page boundary
532     and bytes are read up to the next page boundary greater than or equal to
533 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
534 root 1.1 file. The current file offset of the file is left unchanged.
535    
536 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
537     be emulated by simply reading the data, which would have a similar effect.
538 root 1.26
539 root 1.106
540 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
541 root 1.1
542 root 1.40 =item aio_lstat $fh, $callback->($status)
543 root 1.1
544     Works like perl's C<stat> or C<lstat> in void context. The callback will
545     be called after the stat and the results will be available using C<stat _>
546     or C<-s _> etc...
547    
548     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
549     for an explanation.
550    
551     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
552     error when stat'ing a large file, the results will be silently truncated
553     unless perl itself is compiled with large file support.
554    
555 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
556     following constants and functions (if not implemented, the constants will
557     be C<0> and the functions will either C<croak> or fall back on traditional
558     behaviour).
559    
560     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
561     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
562     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
563    
564 root 1.1 Example: Print the length of F</etc/passwd>:
565    
566     aio_stat "/etc/passwd", sub {
567     $_[0] and die "stat failed: $!";
568     print "size is ", -s _, "\n";
569     };
570    
571 root 1.106
572 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
573 root 1.172
574     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
575     whether a file handle or path was passed.
576    
577     On success, the callback is passed a hash reference with the following
578     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
579     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
580     is passed.
581    
582     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
583     C<ST_NOSUID>.
584    
585     The following non-POSIX IO::AIO::ST_* flag masks are defined to
586     their correct value when available, or to C<0> on systems that do
587     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
588     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
589     C<ST_NODIRATIME> and C<ST_RELATIME>.
590    
591     Example: stat C</wd> and dump out the data if successful.
592    
593     aio_statvfs "/wd", sub {
594     my $f = $_[0]
595     or die "statvfs: $!";
596    
597     use Data::Dumper;
598     say Dumper $f;
599     };
600    
601     # result:
602     {
603     bsize => 1024,
604     bfree => 4333064312,
605     blocks => 10253828096,
606     files => 2050765568,
607     flag => 4096,
608     favail => 2042092649,
609     bavail => 4333064312,
610     ffree => 2042092649,
611     namemax => 255,
612     frsize => 1024,
613     fsid => 1810
614     }
615    
616 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
617     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
618 root 1.235
619     0x0000adf5 adfs
620     0x0000adff affs
621     0x5346414f afs
622     0x09041934 anon-inode filesystem
623     0x00000187 autofs
624     0x42465331 befs
625     0x1badface bfs
626     0x42494e4d binfmt_misc
627     0x9123683e btrfs
628     0x0027e0eb cgroupfs
629     0xff534d42 cifs
630     0x73757245 coda
631     0x012ff7b7 coh
632     0x28cd3d45 cramfs
633     0x453dcd28 cramfs-wend (wrong endianness)
634     0x64626720 debugfs
635     0x00001373 devfs
636     0x00001cd1 devpts
637     0x0000f15f ecryptfs
638     0x00414a53 efs
639     0x0000137d ext
640 root 1.257 0x0000ef53 ext2/ext3/ext4
641 root 1.235 0x0000ef51 ext2
642 root 1.257 0xf2f52010 f2fs
643 root 1.235 0x00004006 fat
644     0x65735546 fuseblk
645     0x65735543 fusectl
646     0x0bad1dea futexfs
647     0x01161970 gfs2
648     0x47504653 gpfs
649     0x00004244 hfs
650     0xf995e849 hpfs
651 root 1.257 0x00c0ffee hostfs
652 root 1.235 0x958458f6 hugetlbfs
653     0x2bad1dea inotifyfs
654     0x00009660 isofs
655     0x000072b6 jffs2
656     0x3153464a jfs
657     0x6b414653 k-afs
658     0x0bd00bd0 lustre
659     0x0000137f minix
660     0x0000138f minix 30 char names
661     0x00002468 minix v2
662     0x00002478 minix v2 30 char names
663     0x00004d5a minix v3
664     0x19800202 mqueue
665     0x00004d44 msdos
666     0x0000564c novell
667     0x00006969 nfs
668     0x6e667364 nfsd
669     0x00003434 nilfs
670     0x5346544e ntfs
671     0x00009fa1 openprom
672     0x7461636F ocfs2
673     0x00009fa0 proc
674     0x6165676c pstorefs
675     0x0000002f qnx4
676 root 1.257 0x68191122 qnx6
677 root 1.235 0x858458f6 ramfs
678     0x52654973 reiserfs
679     0x00007275 romfs
680     0x67596969 rpc_pipefs
681     0x73636673 securityfs
682     0xf97cff8c selinux
683     0x0000517b smb
684     0x534f434b sockfs
685     0x73717368 squashfs
686     0x62656572 sysfs
687     0x012ff7b6 sysv2
688     0x012ff7b5 sysv4
689     0x01021994 tmpfs
690     0x15013346 udf
691     0x00011954 ufs
692     0x54190100 ufs byteswapped
693     0x00009fa2 usbdevfs
694     0x01021997 v9fs
695     0xa501fcf5 vxfs
696     0xabba1974 xenfs
697     0x012ff7b4 xenix
698     0x58465342 xfs
699     0x012fd16d xia
700 root 1.172
701 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
702    
703     Works like perl's C<utime> function (including the special case of $atime
704     and $mtime being undef). Fractional times are supported if the underlying
705     syscalls support them.
706    
707     When called with a pathname, uses utimes(2) if available, otherwise
708     utime(2). If called on a file descriptor, uses futimes(2) if available,
709     otherwise returns ENOSYS, so this is not portable.
710    
711     Examples:
712    
713 root 1.107 # set atime and mtime to current time (basically touch(1)):
714 root 1.106 aio_utime "path", undef, undef;
715     # set atime to current time and mtime to beginning of the epoch:
716     aio_utime "path", time, undef; # undef==0
717    
718    
719     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
720    
721     Works like perl's C<chown> function, except that C<undef> for either $uid
722     or $gid is being interpreted as "do not change" (but -1 can also be used).
723    
724     Examples:
725    
726     # same as "chown root path" in the shell:
727     aio_chown "path", 0, -1;
728     # same as above:
729     aio_chown "path", 0, undef;
730    
731    
732 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
733    
734     Works like truncate(2) or ftruncate(2).
735    
736    
737 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
738    
739 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
740     linux C<fallocate> documentation for details.
741 root 1.229
742 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
743     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
744     to deallocate a file range.
745    
746     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
747 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
748     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
749     to unshare shared blocks (see your L<fallocate(2)> manpage).
750 root 1.229
751     The file system block size used by C<fallocate> is presumably the
752 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
753     can dictate other limitations.
754 root 1.229
755     If C<fallocate> isn't available or cannot be emulated (currently no
756     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
757    
758    
759 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
760    
761     Works like perl's C<chmod> function.
762    
763    
764 root 1.40 =item aio_unlink $pathname, $callback->($status)
765 root 1.1
766     Asynchronously unlink (delete) a file and call the callback with the
767     result code.
768    
769 root 1.106
770 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
771 root 1.82
772 root 1.86 [EXPERIMENTAL]
773    
774 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
775    
776 root 1.86 The only (POSIX-) portable way of calling this function is:
777 root 1.83
778 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
779 root 1.82
780 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
781     and functions.
782 root 1.106
783 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
784    
785     Asynchronously create a new link to the existing object at C<$srcpath> at
786     the path C<$dstpath> and call the callback with the result code.
787    
788 root 1.106
789 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
790    
791     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
792     the path C<$dstpath> and call the callback with the result code.
793    
794 root 1.106
795 root 1.209 =item aio_readlink $pathname, $callback->($link)
796 root 1.90
797     Asynchronously read the symlink specified by C<$path> and pass it to
798     the callback. If an error occurs, nothing or undef gets passed to the
799     callback.
800    
801 root 1.106
802 root 1.209 =item aio_realpath $pathname, $callback->($path)
803 root 1.201
804     Asynchronously make the path absolute and resolve any symlinks in
805 root 1.239 C<$path>. The resulting path only consists of directories (same as
806 root 1.202 L<Cwd::realpath>).
807 root 1.201
808     This request can be used to get the absolute path of the current working
809     directory by passing it a path of F<.> (a single dot).
810    
811    
812 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
813    
814     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
815     rename(2) and call the callback with the result code.
816    
817 root 1.241 On systems that support the AIO::WD working directory abstraction
818     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
819     of failing, C<rename> is called on the absolute path of C<$wd>.
820    
821 root 1.106
822 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
823    
824     Basically a version of C<aio_rename> with an additional C<$flags>
825     argument. Calling this with C<$flags=0> is the same as calling
826     C<aio_rename>.
827    
828     Non-zero flags are currently only supported on GNU/Linux systems that
829     support renameat2. Other systems fail with C<ENOSYS> in this case.
830    
831     The following constants are available (missing ones are, as usual C<0>),
832     see renameat2(2) for details:
833    
834     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
835     and C<IO::AIO::RENAME_WHITEOUT>.
836    
837    
838 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
839    
840     Asynchronously mkdir (create) a directory and call the callback with
841     the result code. C<$mode> will be modified by the umask at the time the
842     request is executed, so do not change your umask.
843    
844 root 1.106
845 root 1.40 =item aio_rmdir $pathname, $callback->($status)
846 root 1.27
847     Asynchronously rmdir (delete) a directory and call the callback with the
848     result code.
849    
850 root 1.241 On systems that support the AIO::WD working directory abstraction
851     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
852     C<rmdir> is called on the absolute path of C<$wd>.
853    
854 root 1.106
855 root 1.46 =item aio_readdir $pathname, $callback->($entries)
856 root 1.37
857     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
858     directory (i.e. opendir + readdir + closedir). The entries will not be
859     sorted, and will B<NOT> include the C<.> and C<..> entries.
860    
861 root 1.148 The callback is passed a single argument which is either C<undef> or an
862     array-ref with the filenames.
863    
864    
865     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
866    
867 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
868     tune behaviour and output format. In case of an error, C<$entries> will be
869 root 1.148 C<undef>.
870    
871     The flags are a combination of the following constants, ORed together (the
872     flags will also be passed to the callback, possibly modified):
873    
874     =over 4
875    
876 root 1.150 =item IO::AIO::READDIR_DENTS
877 root 1.148
878 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
879     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
880 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
881 root 1.148 entry in more detail.
882    
883     C<$name> is the name of the entry.
884    
885 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
886 root 1.148
887 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
888     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
889     C<IO::AIO::DT_WHT>.
890 root 1.148
891 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
892 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
893     scalars are read-only: you can not modify them.
894    
895 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
896 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
897     systems that do not deliver the inode information.
898 root 1.150
899     =item IO::AIO::READDIR_DIRS_FIRST
900 root 1.148
901     When this flag is set, then the names will be returned in an order where
902 root 1.193 likely directories come first, in optimal stat order. This is useful when
903     you need to quickly find directories, or you want to find all directories
904     while avoiding to stat() each entry.
905 root 1.148
906 root 1.149 If the system returns type information in readdir, then this is used
907 root 1.193 to find directories directly. Otherwise, likely directories are names
908     beginning with ".", or otherwise names with no dots, of which names with
909 root 1.149 short names are tried first.
910    
911 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
912 root 1.148
913     When this flag is set, then the names will be returned in an order
914     suitable for stat()'ing each one. That is, when you plan to stat()
915     all files in the given directory, then the returned order will likely
916     be fastest.
917    
918 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
919     the likely dirs come first, resulting in a less optimal stat order.
920 root 1.148
921 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
922 root 1.148
923     This flag should not be set when calling C<aio_readdirx>. Instead, it
924     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
925 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
926 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
927    
928     =back
929 root 1.37
930 root 1.106
931 root 1.209 =item aio_load $pathname, $data, $callback->($status)
932 root 1.98
933     This is a composite request that tries to fully load the given file into
934     memory. Status is the same as with aio_read.
935    
936     =cut
937    
938     sub aio_load($$;$) {
939 root 1.123 my ($path, undef, $cb) = @_;
940     my $data = \$_[1];
941 root 1.98
942 root 1.123 my $pri = aioreq_pri;
943     my $grp = aio_group $cb;
944    
945     aioreq_pri $pri;
946     add $grp aio_open $path, O_RDONLY, 0, sub {
947     my $fh = shift
948     or return $grp->result (-1);
949 root 1.98
950     aioreq_pri $pri;
951 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
952     $grp->result ($_[0]);
953 root 1.98 };
954 root 1.123 };
955 root 1.98
956 root 1.123 $grp
957 root 1.98 }
958    
959 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
960    
961     Try to copy the I<file> (directories not supported as either source or
962     destination) from C<$srcpath> to C<$dstpath> and call the callback with
963 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
964 root 1.82
965 root 1.275 Existing destination files will be truncated.
966    
967 root 1.134 This is a composite request that creates the destination file with
968 root 1.82 mode 0200 and copies the contents of the source file into it using
969     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
970     uid/gid, in that order.
971    
972     If an error occurs, the partial destination file will be unlinked, if
973     possible, except when setting atime, mtime, access mode and uid/gid, where
974     errors are being ignored.
975    
976     =cut
977    
978     sub aio_copy($$;$) {
979 root 1.123 my ($src, $dst, $cb) = @_;
980 root 1.82
981 root 1.123 my $pri = aioreq_pri;
982     my $grp = aio_group $cb;
983 root 1.82
984 root 1.123 aioreq_pri $pri;
985     add $grp aio_open $src, O_RDONLY, 0, sub {
986     if (my $src_fh = $_[0]) {
987 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
988 root 1.95
989 root 1.123 aioreq_pri $pri;
990     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
991     if (my $dst_fh = $_[0]) {
992     aioreq_pri $pri;
993     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
994     if ($_[0] == $stat[7]) {
995     $grp->result (0);
996     close $src_fh;
997    
998 root 1.147 my $ch = sub {
999     aioreq_pri $pri;
1000     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
1001     aioreq_pri $pri;
1002     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
1003     aioreq_pri $pri;
1004     add $grp aio_close $dst_fh;
1005     }
1006     };
1007     };
1008 root 1.123
1009     aioreq_pri $pri;
1010 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1011     if ($_[0] < 0 && $! == ENOSYS) {
1012     aioreq_pri $pri;
1013     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1014     } else {
1015     $ch->();
1016     }
1017     };
1018 root 1.123 } else {
1019     $grp->result (-1);
1020     close $src_fh;
1021     close $dst_fh;
1022    
1023     aioreq $pri;
1024     add $grp aio_unlink $dst;
1025     }
1026     };
1027     } else {
1028     $grp->result (-1);
1029     }
1030     },
1031 root 1.82
1032 root 1.123 } else {
1033     $grp->result (-1);
1034     }
1035     };
1036 root 1.82
1037 root 1.123 $grp
1038 root 1.82 }
1039    
1040     =item aio_move $srcpath, $dstpath, $callback->($status)
1041    
1042     Try to move the I<file> (directories not supported as either source or
1043     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1044 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1045 root 1.82
1046 root 1.137 This is a composite request that tries to rename(2) the file first; if
1047     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1048     that is successful, unlinks the C<$srcpath>.
1049 root 1.82
1050     =cut
1051    
1052     sub aio_move($$;$) {
1053 root 1.123 my ($src, $dst, $cb) = @_;
1054 root 1.82
1055 root 1.123 my $pri = aioreq_pri;
1056     my $grp = aio_group $cb;
1057 root 1.82
1058 root 1.123 aioreq_pri $pri;
1059     add $grp aio_rename $src, $dst, sub {
1060     if ($_[0] && $! == EXDEV) {
1061     aioreq_pri $pri;
1062     add $grp aio_copy $src, $dst, sub {
1063     $grp->result ($_[0]);
1064 root 1.95
1065 root 1.196 unless ($_[0]) {
1066 root 1.123 aioreq_pri $pri;
1067     add $grp aio_unlink $src;
1068     }
1069     };
1070     } else {
1071     $grp->result ($_[0]);
1072     }
1073     };
1074 root 1.82
1075 root 1.123 $grp
1076 root 1.82 }
1077    
1078 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1079 root 1.40
1080 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1081 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1082     names, directories you can recurse into (directories), and ones you cannot
1083     recurse into (everything else, including symlinks to directories).
1084 root 1.52
1085 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1086 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1087     this function generates. If it is C<< <= 0 >>, then a suitable default
1088 root 1.81 will be chosen (currently 4).
1089 root 1.40
1090     On error, the callback is called without arguments, otherwise it receives
1091     two array-refs with path-relative entry names.
1092    
1093     Example:
1094    
1095     aio_scandir $dir, 0, sub {
1096     my ($dirs, $nondirs) = @_;
1097     print "real directories: @$dirs\n";
1098     print "everything else: @$nondirs\n";
1099     };
1100    
1101     Implementation notes.
1102    
1103     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1104    
1105 root 1.149 If readdir returns file type information, then this is used directly to
1106     find directories.
1107    
1108     Otherwise, after reading the directory, the modification time, size etc.
1109     of the directory before and after the readdir is checked, and if they
1110     match (and isn't the current time), the link count will be used to decide
1111     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1112     number of subdirectories will be assumed.
1113    
1114     Then entries will be sorted into likely directories a non-initial dot
1115     currently) and likely non-directories (see C<aio_readdirx>). Then every
1116     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1117     in order of their inode numbers. If that succeeds, it assumes that the
1118     entry is a directory or a symlink to directory (which will be checked
1119 root 1.207 separately). This is often faster than stat'ing the entry itself because
1120 root 1.52 filesystems might detect the type of the entry without reading the inode
1121 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1122     the filetype information on readdir.
1123 root 1.52
1124     If the known number of directories (link count - 2) has been reached, the
1125     rest of the entries is assumed to be non-directories.
1126    
1127     This only works with certainty on POSIX (= UNIX) filesystems, which
1128     fortunately are the vast majority of filesystems around.
1129    
1130     It will also likely work on non-POSIX filesystems with reduced efficiency
1131     as those tend to return 0 or 1 as link counts, which disables the
1132     directory counting heuristic.
1133 root 1.40
1134     =cut
1135    
1136 root 1.100 sub aio_scandir($$;$) {
1137 root 1.123 my ($path, $maxreq, $cb) = @_;
1138    
1139     my $pri = aioreq_pri;
1140 root 1.40
1141 root 1.123 my $grp = aio_group $cb;
1142 root 1.80
1143 root 1.123 $maxreq = 4 if $maxreq <= 0;
1144 root 1.55
1145 root 1.210 # get a wd object
1146 root 1.123 aioreq_pri $pri;
1147 root 1.210 add $grp aio_wd $path, sub {
1148 root 1.212 $_[0]
1149     or return $grp->result ();
1150    
1151 root 1.210 my $wd = [shift, "."];
1152 root 1.40
1153 root 1.210 # stat once
1154 root 1.80 aioreq_pri $pri;
1155 root 1.210 add $grp aio_stat $wd, sub {
1156     return $grp->result () if $_[0];
1157     my $now = time;
1158     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1159 root 1.40
1160 root 1.210 # read the directory entries
1161 root 1.80 aioreq_pri $pri;
1162 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1163     my $entries = shift
1164     or return $grp->result ();
1165    
1166     # stat the dir another time
1167     aioreq_pri $pri;
1168     add $grp aio_stat $wd, sub {
1169     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1170 root 1.95
1171 root 1.210 my $ndirs;
1172 root 1.95
1173 root 1.210 # take the slow route if anything looks fishy
1174     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1175     $ndirs = -1;
1176     } else {
1177     # if nlink == 2, we are finished
1178     # for non-posix-fs's, we rely on nlink < 2
1179     $ndirs = (stat _)[3] - 2
1180     or return $grp->result ([], $entries);
1181     }
1182 root 1.123
1183 root 1.210 my (@dirs, @nondirs);
1184 root 1.40
1185 root 1.210 my $statgrp = add $grp aio_group sub {
1186     $grp->result (\@dirs, \@nondirs);
1187     };
1188 root 1.40
1189 root 1.210 limit $statgrp $maxreq;
1190     feed $statgrp sub {
1191     return unless @$entries;
1192     my $entry = shift @$entries;
1193    
1194     aioreq_pri $pri;
1195     $wd->[1] = "$entry/.";
1196     add $statgrp aio_stat $wd, sub {
1197     if ($_[0] < 0) {
1198     push @nondirs, $entry;
1199     } else {
1200     # need to check for real directory
1201     aioreq_pri $pri;
1202     $wd->[1] = $entry;
1203     add $statgrp aio_lstat $wd, sub {
1204     if (-d _) {
1205     push @dirs, $entry;
1206    
1207     unless (--$ndirs) {
1208     push @nondirs, @$entries;
1209     feed $statgrp;
1210     }
1211     } else {
1212     push @nondirs, $entry;
1213 root 1.74 }
1214 root 1.40 }
1215     }
1216 root 1.210 };
1217 root 1.74 };
1218 root 1.40 };
1219     };
1220     };
1221 root 1.123 };
1222 root 1.55
1223 root 1.123 $grp
1224 root 1.40 }
1225    
1226 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1227 root 1.99
1228 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1229 root 1.239 status of the final C<rmdir> only. This is a composite request that
1230 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1231     everything else.
1232 root 1.99
1233     =cut
1234    
1235     sub aio_rmtree;
1236 root 1.100 sub aio_rmtree($;$) {
1237 root 1.123 my ($path, $cb) = @_;
1238 root 1.99
1239 root 1.123 my $pri = aioreq_pri;
1240     my $grp = aio_group $cb;
1241 root 1.99
1242 root 1.123 aioreq_pri $pri;
1243     add $grp aio_scandir $path, 0, sub {
1244     my ($dirs, $nondirs) = @_;
1245 root 1.99
1246 root 1.123 my $dirgrp = aio_group sub {
1247     add $grp aio_rmdir $path, sub {
1248     $grp->result ($_[0]);
1249 root 1.99 };
1250 root 1.123 };
1251 root 1.99
1252 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1253     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1254 root 1.99
1255 root 1.123 add $grp $dirgrp;
1256     };
1257 root 1.99
1258 root 1.123 $grp
1259 root 1.99 }
1260    
1261 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1262    
1263     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1264    
1265     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1266     they execute asynchronously and pass the return value to the callback.
1267    
1268     Both calls can be used for a lot of things, some of which make more sense
1269     to run asynchronously in their own thread, while some others make less
1270     sense. For example, calls that block waiting for external events, such
1271     as locking, will also lock down an I/O thread while it is waiting, which
1272     can deadlock the whole I/O system. At the same time, there might be no
1273     alternative to using a thread to wait.
1274    
1275     So in general, you should only use these calls for things that do
1276     (filesystem) I/O, not for things that wait for other events (network,
1277     other processes), although if you are careful and know what you are doing,
1278     you still can.
1279    
1280 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1281    
1282 root 1.271 C<F_DUPFD_CLOEXEC>,
1283    
1284     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1285    
1286 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1287    
1288     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1289     C<FS_IOC_FIEMAP>.
1290    
1291     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1292     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1293    
1294     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1295     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1296     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1297     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1298     C<FS_FL_USER_MODIFIABLE>.
1299    
1300     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1301     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1302     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1303     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1304    
1305 root 1.119 =item aio_sync $callback->($status)
1306    
1307     Asynchronously call sync and call the callback when finished.
1308    
1309 root 1.40 =item aio_fsync $fh, $callback->($status)
1310 root 1.1
1311     Asynchronously call fsync on the given filehandle and call the callback
1312     with the fsync result code.
1313    
1314 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1315 root 1.1
1316     Asynchronously call fdatasync on the given filehandle and call the
1317 root 1.26 callback with the fdatasync result code.
1318    
1319     If this call isn't available because your OS lacks it or it couldn't be
1320     detected, it will be emulated by calling C<fsync> instead.
1321 root 1.1
1322 root 1.206 =item aio_syncfs $fh, $callback->($status)
1323    
1324     Asynchronously call the syncfs syscall to sync the filesystem associated
1325     to the given filehandle and call the callback with the syncfs result
1326     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1327     errno to C<ENOSYS> nevertheless.
1328    
1329 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1330    
1331     Sync the data portion of the file specified by C<$offset> and C<$length>
1332     to disk (but NOT the metadata), by calling the Linux-specific
1333     sync_file_range call. If sync_file_range is not available or it returns
1334     ENOSYS, then fdatasync or fsync is being substituted.
1335    
1336     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1337     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1338     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1339     manpage for details.
1340    
1341 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1342 root 1.120
1343     This request tries to open, fsync and close the given path. This is a
1344 root 1.135 composite request intended to sync directories after directory operations
1345 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1346     specific effect, but usually it makes sure that directory changes get
1347     written to disc. It works for anything that can be opened for read-only,
1348     not just directories.
1349    
1350 root 1.162 Future versions of this function might fall back to other methods when
1351     C<fsync> on the directory fails (such as calling C<sync>).
1352    
1353 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1354    
1355     =cut
1356    
1357     sub aio_pathsync($;$) {
1358 root 1.123 my ($path, $cb) = @_;
1359    
1360     my $pri = aioreq_pri;
1361     my $grp = aio_group $cb;
1362 root 1.120
1363 root 1.123 aioreq_pri $pri;
1364     add $grp aio_open $path, O_RDONLY, 0, sub {
1365     my ($fh) = @_;
1366     if ($fh) {
1367     aioreq_pri $pri;
1368     add $grp aio_fsync $fh, sub {
1369     $grp->result ($_[0]);
1370 root 1.120
1371     aioreq_pri $pri;
1372 root 1.123 add $grp aio_close $fh;
1373     };
1374     } else {
1375     $grp->result (-1);
1376     }
1377     };
1378 root 1.120
1379 root 1.123 $grp
1380 root 1.120 }
1381    
1382 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1383 root 1.170
1384     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1385 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1386     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1387     scalar must only be modified in-place while an aio operation is pending on
1388     it).
1389 root 1.170
1390     It calls the C<msync> function of your OS, if available, with the memory
1391     area starting at C<$offset> in the string and ending C<$length> bytes
1392     later. If C<$length> is negative, counts from the end, and if C<$length>
1393     is C<undef>, then it goes till the end of the string. The flags can be
1394 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1395     C<IO::AIO::MS_INVALIDATE>.
1396 root 1.170
1397     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1398    
1399     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1400     scalars.
1401    
1402     It touches (reads or writes) all memory pages in the specified
1403 root 1.239 range inside the scalar. All caveats and parameters are the same
1404 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1405     C<0> (which reads all pages and ensures they are instantiated) or
1406 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1407 root 1.170 writing an octet from it, which dirties the page).
1408    
1409 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1410    
1411     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1412     scalars.
1413    
1414     It reads in all the pages of the underlying storage into memory (if any)
1415     and locks them, so they are not getting swapped/paged out or removed.
1416    
1417     If C<$length> is undefined, then the scalar will be locked till the end.
1418    
1419     On systems that do not implement C<mlock>, this function returns C<-1>
1420     and sets errno to C<ENOSYS>.
1421    
1422     Note that the corresponding C<munlock> is synchronous and is
1423     documented under L<MISCELLANEOUS FUNCTIONS>.
1424    
1425 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1426     C<$data> gets destroyed.
1427    
1428     open my $fh, "<", $path or die "$path: $!";
1429     my $data;
1430     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1431     aio_mlock $data; # mlock in background
1432    
1433 root 1.182 =item aio_mlockall $flags, $callback->($status)
1434    
1435     Calls the C<mlockall> function with the given C<$flags> (a combination of
1436     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1437    
1438     On systems that do not implement C<mlockall>, this function returns C<-1>
1439     and sets errno to C<ENOSYS>.
1440    
1441     Note that the corresponding C<munlockall> is synchronous and is
1442     documented under L<MISCELLANEOUS FUNCTIONS>.
1443    
1444 root 1.183 Example: asynchronously lock all current and future pages into memory.
1445    
1446     aio_mlockall IO::AIO::MCL_FUTURE;
1447    
1448 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1449    
1450 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1451     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1452     the ioctl is not available on your OS, then this request will fail with
1453 root 1.223 C<ENOSYS>.
1454    
1455     C<$start> is the starting offset to query extents for, C<$length> is the
1456     size of the range to query - if it is C<undef>, then the whole file will
1457     be queried.
1458    
1459     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1460     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1461     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1462     the data portion.
1463    
1464     C<$count> is the maximum number of extent records to return. If it is
1465 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1466 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1467 root 1.232 instead of the extents themselves (which is unreliable, see below).
1468 root 1.223
1469     If an error occurs, the callback receives no arguments. The special
1470     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1471    
1472     Otherwise, the callback receives an array reference with extent
1473     structures. Each extent structure is an array reference itself, with the
1474     following members:
1475    
1476     [$logical, $physical, $length, $flags]
1477    
1478     Flags is any combination of the following flag values (typically either C<0>
1479 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1480 root 1.223
1481     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1482     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1483     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1484     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1485     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1486     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1487    
1488 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1489 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1490 root 1.278 it to return all extents of a range for files with a large number of
1491     extents. The code (only) works around all these issues if C<$count> is
1492     C<undef>.
1493 root 1.232
1494 root 1.58 =item aio_group $callback->(...)
1495 root 1.54
1496 root 1.55 This is a very special aio request: Instead of doing something, it is a
1497     container for other aio requests, which is useful if you want to bundle
1498 root 1.71 many requests into a single, composite, request with a definite callback
1499     and the ability to cancel the whole request with its subrequests.
1500 root 1.55
1501     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1502     for more info.
1503    
1504     Example:
1505    
1506     my $grp = aio_group sub {
1507     print "all stats done\n";
1508     };
1509    
1510     add $grp
1511     (aio_stat ...),
1512     (aio_stat ...),
1513     ...;
1514    
1515 root 1.63 =item aio_nop $callback->()
1516    
1517     This is a special request - it does nothing in itself and is only used for
1518     side effects, such as when you want to add a dummy request to a group so
1519     that finishing the requests in the group depends on executing the given
1520     code.
1521    
1522 root 1.64 While this request does nothing, it still goes through the execution
1523     phase and still requires a worker thread. Thus, the callback will not
1524     be executed immediately but only after other requests in the queue have
1525     entered their execution phase. This can be used to measure request
1526     latency.
1527    
1528 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1529 root 1.54
1530     Mainly used for debugging and benchmarking, this aio request puts one of
1531     the request workers to sleep for the given time.
1532    
1533 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1534 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1535     immense (it blocks a thread for a long time) so do not use this function
1536     except to put your application under artificial I/O pressure.
1537 root 1.56
1538 root 1.5 =back
1539    
1540 root 1.209
1541     =head2 IO::AIO::WD - multiple working directories
1542    
1543     Your process only has one current working directory, which is used by all
1544     threads. This makes it hard to use relative paths (some other component
1545     could call C<chdir> at any time, and it is hard to control when the path
1546     will be used by IO::AIO).
1547    
1548     One solution for this is to always use absolute paths. This usually works,
1549     but can be quite slow (the kernel has to walk the whole path on every
1550     access), and can also be a hassle to implement.
1551    
1552     Newer POSIX systems have a number of functions (openat, fdopendir,
1553     futimensat and so on) that make it possible to specify working directories
1554     per operation.
1555    
1556     For portability, and because the clowns who "designed", or shall I write,
1557     perpetrated this new interface were obviously half-drunk, this abstraction
1558     cannot be perfect, though.
1559    
1560     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1561     object. This object stores the canonicalised, absolute version of the
1562     path, and on systems that allow it, also a directory file descriptor.
1563    
1564     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1565     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1566 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1567     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1568 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1569 root 1.209 to that IO::AIO::WD object.
1570    
1571     For example, to get a wd object for F</etc> and then stat F<passwd>
1572     inside, you would write:
1573    
1574     aio_wd "/etc", sub {
1575     my $etcdir = shift;
1576    
1577     # although $etcdir can be undef on error, there is generally no reason
1578     # to check for errors here, as aio_stat will fail with ENOENT
1579     # when $etcdir is undef.
1580    
1581     aio_stat [$etcdir, "passwd"], sub {
1582     # yay
1583     };
1584     };
1585    
1586 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1587     creating an IO::AIO::WD object is itself a potentially blocking operation,
1588     which is why it is done asynchronously.
1589 root 1.214
1590     To stat the directory obtained with C<aio_wd> above, one could write
1591     either of the following three request calls:
1592    
1593     aio_lstat "/etc" , sub { ... # pathname as normal string
1594     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1595     aio_lstat $wd , sub { ... # shorthand for the previous
1596 root 1.209
1597     As with normal pathnames, IO::AIO keeps a copy of the working directory
1598     object and the pathname string, so you could write the following without
1599     causing any issues due to C<$path> getting reused:
1600    
1601     my $path = [$wd, undef];
1602    
1603     for my $name (qw(abc def ghi)) {
1604     $path->[1] = $name;
1605     aio_stat $path, sub {
1606     # ...
1607     };
1608     }
1609    
1610     There are some caveats: when directories get renamed (or deleted), the
1611     pathname string doesn't change, so will point to the new directory (or
1612     nowhere at all), while the directory fd, if available on the system,
1613     will still point to the original directory. Most functions accepting a
1614     pathname will use the directory fd on newer systems, and the string on
1615 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1616     the string form of the pathname.
1617 root 1.209
1618 root 1.239 So this functionality is mainly useful to get some protection against
1619 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1620     reference, and to speed up doing many operations in the same directory
1621     (e.g. when stat'ing all files in a directory).
1622    
1623     The following functions implement this working directory abstraction:
1624    
1625     =over 4
1626    
1627     =item aio_wd $pathname, $callback->($wd)
1628    
1629     Asynchonously canonicalise the given pathname and convert it to an
1630     IO::AIO::WD object representing it. If possible and supported on the
1631     system, also open a directory fd to speed up pathname resolution relative
1632     to this working directory.
1633    
1634     If something goes wrong, then C<undef> is passwd to the callback instead
1635     of a working directory object and C<$!> is set appropriately. Since
1636     passing C<undef> as working directory component of a pathname fails the
1637     request with C<ENOENT>, there is often no need for error checking in the
1638     C<aio_wd> callback, as future requests using the value will fail in the
1639     expected way.
1640    
1641     =item IO::AIO::CWD
1642    
1643     This is a compiletime constant (object) that represents the process
1644     current working directory.
1645    
1646 root 1.239 Specifying this object as working directory object for a pathname is as if
1647     the pathname would be specified directly, without a directory object. For
1648     example, these calls are functionally identical:
1649 root 1.209
1650     aio_stat "somefile", sub { ... };
1651     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1652    
1653     =back
1654    
1655 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1656     C<aio_realpath>:
1657    
1658     aio_realpath $wd, sub {
1659     warn "path is $_[0]\n";
1660     };
1661    
1662 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1663     sometimes, fall back to using an absolue path.
1664 root 1.209
1665 root 1.53 =head2 IO::AIO::REQ CLASS
1666 root 1.52
1667     All non-aggregate C<aio_*> functions return an object of this class when
1668     called in non-void context.
1669    
1670     =over 4
1671    
1672 root 1.65 =item cancel $req
1673 root 1.52
1674     Cancels the request, if possible. Has the effect of skipping execution
1675     when entering the B<execute> state and skipping calling the callback when
1676     entering the the B<result> state, but will leave the request otherwise
1677 root 1.151 untouched (with the exception of readdir). That means that requests that
1678     currently execute will not be stopped and resources held by the request
1679     will not be freed prematurely.
1680 root 1.52
1681 root 1.65 =item cb $req $callback->(...)
1682    
1683     Replace (or simply set) the callback registered to the request.
1684    
1685 root 1.52 =back
1686    
1687 root 1.55 =head2 IO::AIO::GRP CLASS
1688    
1689     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1690     objects of this class, too.
1691    
1692     A IO::AIO::GRP object is a special request that can contain multiple other
1693     aio requests.
1694    
1695     You create one by calling the C<aio_group> constructing function with a
1696     callback that will be called when all contained requests have entered the
1697     C<done> state:
1698    
1699     my $grp = aio_group sub {
1700     print "all requests are done\n";
1701     };
1702    
1703     You add requests by calling the C<add> method with one or more
1704     C<IO::AIO::REQ> objects:
1705    
1706     $grp->add (aio_unlink "...");
1707    
1708 root 1.58 add $grp aio_stat "...", sub {
1709     $_[0] or return $grp->result ("error");
1710    
1711     # add another request dynamically, if first succeeded
1712     add $grp aio_open "...", sub {
1713     $grp->result ("ok");
1714     };
1715     };
1716 root 1.55
1717     This makes it very easy to create composite requests (see the source of
1718     C<aio_move> for an application) that work and feel like simple requests.
1719    
1720 root 1.62 =over 4
1721    
1722     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1723 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1724    
1725 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1726 root 1.59 only the request itself, but also all requests it contains.
1727 root 1.55
1728 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1729 root 1.55
1730 root 1.62 =item * You must not add requests to a group from within the group callback (or
1731 root 1.60 any later time).
1732    
1733 root 1.62 =back
1734    
1735 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1736     will finish very quickly. If they contain only requests that are in the
1737     C<done> state, they will also finish. Otherwise they will continue to
1738     exist.
1739    
1740 root 1.133 That means after creating a group you have some time to add requests
1741     (precisely before the callback has been invoked, which is only done within
1742     the C<poll_cb>). And in the callbacks of those requests, you can add
1743     further requests to the group. And only when all those requests have
1744     finished will the the group itself finish.
1745 root 1.57
1746 root 1.55 =over 4
1747    
1748 root 1.65 =item add $grp ...
1749    
1750 root 1.55 =item $grp->add (...)
1751    
1752 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1753     be added, including other groups, as long as you do not create circular
1754     dependencies.
1755    
1756     Returns all its arguments.
1757 root 1.55
1758 root 1.74 =item $grp->cancel_subs
1759    
1760     Cancel all subrequests and clears any feeder, but not the group request
1761     itself. Useful when you queued a lot of events but got a result early.
1762    
1763 root 1.168 The group request will finish normally (you cannot add requests to the
1764     group).
1765    
1766 root 1.58 =item $grp->result (...)
1767    
1768     Set the result value(s) that will be passed to the group callback when all
1769 root 1.120 subrequests have finished and set the groups errno to the current value
1770 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1771     no argument will be passed and errno is zero.
1772    
1773     =item $grp->errno ([$errno])
1774    
1775     Sets the group errno value to C<$errno>, or the current value of errno
1776     when the argument is missing.
1777    
1778     Every aio request has an associated errno value that is restored when
1779     the callback is invoked. This method lets you change this value from its
1780     default (0).
1781    
1782     Calling C<result> will also set errno, so make sure you either set C<$!>
1783     before the call to C<result>, or call c<errno> after it.
1784 root 1.58
1785 root 1.65 =item feed $grp $callback->($grp)
1786 root 1.60
1787     Sets a feeder/generator on this group: every group can have an attached
1788     generator that generates requests if idle. The idea behind this is that,
1789     although you could just queue as many requests as you want in a group,
1790 root 1.139 this might starve other requests for a potentially long time. For example,
1791 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1792     requests, delaying any later requests for a long time.
1793 root 1.60
1794     To avoid this, and allow incremental generation of requests, you can
1795     instead a group and set a feeder on it that generates those requests. The
1796 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1797 root 1.60 below) requests active in the group itself and is expected to queue more
1798     requests.
1799    
1800 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1801     not impose any limits).
1802 root 1.60
1803 root 1.65 If the feed does not queue more requests when called, it will be
1804 root 1.60 automatically removed from the group.
1805    
1806 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1807     C<2> automatically.
1808 root 1.60
1809     Example:
1810    
1811     # stat all files in @files, but only ever use four aio requests concurrently:
1812    
1813     my $grp = aio_group sub { print "finished\n" };
1814 root 1.68 limit $grp 4;
1815 root 1.65 feed $grp sub {
1816 root 1.60 my $file = pop @files
1817     or return;
1818    
1819     add $grp aio_stat $file, sub { ... };
1820 root 1.65 };
1821 root 1.60
1822 root 1.68 =item limit $grp $num
1823 root 1.60
1824     Sets the feeder limit for the group: The feeder will be called whenever
1825     the group contains less than this many requests.
1826    
1827     Setting the limit to C<0> will pause the feeding process.
1828    
1829 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1830     automatically bumps it up to C<2>.
1831    
1832 root 1.55 =back
1833    
1834 root 1.5 =head2 SUPPORT FUNCTIONS
1835    
1836 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1837    
1838 root 1.5 =over 4
1839    
1840     =item $fileno = IO::AIO::poll_fileno
1841    
1842 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1843 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1844     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1845     you have to call C<poll_cb> to check the results.
1846 root 1.5
1847     See C<poll_cb> for an example.
1848    
1849     =item IO::AIO::poll_cb
1850    
1851 root 1.240 Process some requests that have reached the result phase (i.e. they have
1852     been executed but the results are not yet reported). You have to call
1853     this "regularly" to finish outstanding requests.
1854    
1855     Returns C<0> if all events could be processed (or there were no
1856     events to process), or C<-1> if it returned earlier for whatever
1857     reason. Returns immediately when no events are outstanding. The amount
1858     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1859     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1860    
1861     If not all requests were processed for whatever reason, the poll file
1862     descriptor will still be ready when C<poll_cb> returns, so normally you
1863     don't have to do anything special to have it called later.
1864 root 1.78
1865 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1866     ready, it can be beneficial to call this function from loops which submit
1867     a lot of requests, to make sure the results get processed when they become
1868     available and not just when the loop is finished and the event loop takes
1869     over again. This function returns very fast when there are no outstanding
1870     requests.
1871    
1872 root 1.20 Example: Install an Event watcher that automatically calls
1873 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1874     SYNOPSIS section, at the top of this document):
1875 root 1.5
1876     Event->io (fd => IO::AIO::poll_fileno,
1877     poll => 'r', async => 1,
1878     cb => \&IO::AIO::poll_cb);
1879    
1880 root 1.175 =item IO::AIO::poll_wait
1881    
1882 root 1.240 Wait until either at least one request is in the result phase or no
1883     requests are outstanding anymore.
1884    
1885     This is useful if you want to synchronously wait for some requests to
1886     become ready, without actually handling them.
1887 root 1.175
1888     See C<nreqs> for an example.
1889    
1890     =item IO::AIO::poll
1891    
1892     Waits until some requests have been handled.
1893    
1894     Returns the number of requests processed, but is otherwise strictly
1895     equivalent to:
1896    
1897     IO::AIO::poll_wait, IO::AIO::poll_cb
1898    
1899     =item IO::AIO::flush
1900    
1901     Wait till all outstanding AIO requests have been handled.
1902    
1903     Strictly equivalent to:
1904    
1905     IO::AIO::poll_wait, IO::AIO::poll_cb
1906     while IO::AIO::nreqs;
1907    
1908 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1909    
1910     =item IO::AIO::max_poll_time $seconds
1911    
1912     These set the maximum number of requests (default C<0>, meaning infinity)
1913     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1914     the maximum amount of time (default C<0>, meaning infinity) spent in
1915     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1916     of time C<poll_cb> is allowed to use).
1917 root 1.78
1918 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1919     syscall per request processed, which is not normally a problem unless your
1920     callbacks are really really fast or your OS is really really slow (I am
1921     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1922    
1923 root 1.86 Setting these is useful if you want to ensure some level of
1924     interactiveness when perl is not fast enough to process all requests in
1925     time.
1926 root 1.78
1927 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1928 root 1.78
1929     Example: Install an Event watcher that automatically calls
1930 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1931 root 1.78 program get the CPU sometimes even under high AIO load.
1932    
1933 root 1.86 # try not to spend much more than 0.1s in poll_cb
1934     IO::AIO::max_poll_time 0.1;
1935    
1936     # use a low priority so other tasks have priority
1937 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1938     poll => 'r', nice => 1,
1939 root 1.86 cb => &IO::AIO::poll_cb);
1940 root 1.78
1941 root 1.104 =back
1942    
1943 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1944 root 1.13
1945 root 1.105 =over
1946    
1947 root 1.5 =item IO::AIO::min_parallel $nthreads
1948    
1949 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1950     default is C<8>, which means eight asynchronous operations can execute
1951     concurrently at any one time (the number of outstanding requests,
1952     however, is unlimited).
1953 root 1.5
1954 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1955 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1956     create demand for a hundred threads, even if it turns out that everything
1957     is in the cache and could have been processed faster by a single thread.
1958 root 1.34
1959 root 1.61 It is recommended to keep the number of threads relatively low, as some
1960     Linux kernel versions will scale negatively with the number of threads
1961     (higher parallelity => MUCH higher latency). With current Linux 2.6
1962     versions, 4-32 threads should be fine.
1963 root 1.5
1964 root 1.34 Under most circumstances you don't need to call this function, as the
1965     module selects a default that is suitable for low to moderate load.
1966 root 1.5
1967     =item IO::AIO::max_parallel $nthreads
1968    
1969 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1970     specified number of threads are currently running, this function kills
1971     them. This function blocks until the limit is reached.
1972    
1973     While C<$nthreads> are zero, aio requests get queued but not executed
1974     until the number of threads has been increased again.
1975 root 1.5
1976     This module automatically runs C<max_parallel 0> at program end, to ensure
1977     that all threads are killed and that there are no outstanding requests.
1978    
1979     Under normal circumstances you don't need to call this function.
1980    
1981 root 1.86 =item IO::AIO::max_idle $nthreads
1982    
1983 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1984     (i.e., threads that did not get a request to process within the idle
1985     timeout (default: 10 seconds). That means if a thread becomes idle while
1986     C<$nthreads> other threads are also idle, it will free its resources and
1987     exit.
1988 root 1.86
1989     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1990     to allow for extremely high load situations, but want to free resources
1991     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1992    
1993     The default is probably ok in most situations, especially if thread
1994     creation is fast. If thread creation is very slow on your system you might
1995     want to use larger values.
1996    
1997 root 1.188 =item IO::AIO::idle_timeout $seconds
1998    
1999     Sets the minimum idle timeout (default 10) after which worker threads are
2000     allowed to exit. SEe C<IO::AIO::max_idle>.
2001    
2002 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2003 root 1.5
2004 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2005     you do queue up more than this number of requests, the next call to
2006     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2007     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2008     longer exceeded.
2009    
2010     In other words, this setting does not enforce a queue limit, but can be
2011     used to make poll functions block if the limit is exceeded.
2012    
2013 root 1.79 This is a very bad function to use in interactive programs because it
2014     blocks, and a bad way to reduce concurrency because it is inexact: Better
2015     use an C<aio_group> together with a feed callback.
2016    
2017 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2018 root 1.274 a lot of files, you can write something like this:
2019 root 1.195
2020     IO::AIO::max_outstanding 32;
2021    
2022     for my $path (...) {
2023     aio_stat $path , ...;
2024     IO::AIO::poll_cb;
2025     }
2026    
2027     IO::AIO::flush;
2028    
2029     The call to C<poll_cb> inside the loop will normally return instantly, but
2030     as soon as more thna C<32> reqeusts are in-flight, it will block until
2031     some requests have been handled. This keeps the loop from pushing a large
2032     number of C<aio_stat> requests onto the queue.
2033    
2034     The default value for C<max_outstanding> is very large, so there is no
2035     practical limit on the number of outstanding requests.
2036 root 1.5
2037 root 1.104 =back
2038    
2039 root 1.86 =head3 STATISTICAL INFORMATION
2040    
2041 root 1.104 =over
2042    
2043 root 1.86 =item IO::AIO::nreqs
2044    
2045     Returns the number of requests currently in the ready, execute or pending
2046     states (i.e. for which their callback has not been invoked yet).
2047    
2048     Example: wait till there are no outstanding requests anymore:
2049    
2050     IO::AIO::poll_wait, IO::AIO::poll_cb
2051     while IO::AIO::nreqs;
2052    
2053     =item IO::AIO::nready
2054    
2055     Returns the number of requests currently in the ready state (not yet
2056     executed).
2057    
2058     =item IO::AIO::npending
2059    
2060     Returns the number of requests currently in the pending state (executed,
2061     but not yet processed by poll_cb).
2062    
2063 root 1.5 =back
2064    
2065 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2066    
2067 root 1.248 IO::AIO implements some functions that are useful when you want to use
2068     some "Advanced I/O" function not available to in Perl, without going the
2069     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2070     counterpart.
2071 root 1.157
2072     =over 4
2073    
2074 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2075    
2076 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2077    
2078 root 1.275 Tries to find the current file descriptor limit and returns it, or
2079     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2080     the highest valid file descriptor number.
2081    
2082     =item IO::AIO::min_fdlimit [$numfd]
2083    
2084 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2085    
2086 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2087     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2088     is missing, it will try to set a very high limit, although this is not
2089     recommended when you know the actual minimum that you require.
2090    
2091     If the limit cannot be raised enough, the function makes a best-effort
2092     attempt to increase the limit as much as possible, using various
2093     tricks, while still failing. You can query the resulting limit using
2094     C<IO::AIO::get_fdlimit>.
2095    
2096 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2097     true.
2098 root 1.275
2099 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2100    
2101     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2102     but is blocking (this makes most sense if you know the input data is
2103     likely cached already and the output filehandle is set to non-blocking
2104     operations).
2105    
2106     Returns the number of bytes copied, or C<-1> on error.
2107    
2108     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2109    
2110 root 1.184 Simply calls the C<posix_fadvise> function (see its
2111 root 1.157 manpage for details). The following advice constants are
2112 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2113 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2114     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2115    
2116     On systems that do not implement C<posix_fadvise>, this function returns
2117     ENOSYS, otherwise the return value of C<posix_fadvise>.
2118    
2119 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2120    
2121     Simply calls the C<posix_madvise> function (see its
2122     manpage for details). The following advice constants are
2123 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2124 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2125     C<IO::AIO::MADV_DONTNEED>.
2126 root 1.184
2127 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2128     the remaining length of the C<$scalar> is used. If possible, C<$length>
2129     will be reduced to fit into the C<$scalar>.
2130    
2131 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2132     ENOSYS, otherwise the return value of C<posix_madvise>.
2133    
2134     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2135    
2136     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2137     $scalar (see its manpage for details). The following protect
2138 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2139 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2140    
2141 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2142     the remaining length of the C<$scalar> is used. If possible, C<$length>
2143     will be reduced to fit into the C<$scalar>.
2144    
2145 root 1.184 On systems that do not implement C<mprotect>, this function returns
2146     ENOSYS, otherwise the return value of C<mprotect>.
2147    
2148 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2149    
2150     Memory-maps a file (or anonymous memory range) and attaches it to the
2151 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2152     success, and false otherwise.
2153 root 1.176
2154 root 1.268 The scalar must exist, but its contents do not matter - this means you
2155     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2156     the scalar first.
2157    
2158     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2159     which don't change the string length, and most read-only operations such
2160     as copying it or searching it with regexes and so on.
2161 root 1.176
2162     Anything else is unsafe and will, at best, result in memory leaks.
2163    
2164     The memory map associated with the C<$scalar> is automatically removed
2165 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2166     or C<IO::AIO::munmap> functions are called on it.
2167 root 1.176
2168     This calls the C<mmap>(2) function internally. See your system's manual
2169     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2170    
2171     The C<$length> must be larger than zero and smaller than the actual
2172     filesize.
2173    
2174     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2175     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2176    
2177 root 1.256 C<$flags> can be a combination of
2178     C<IO::AIO::MAP_SHARED> or
2179     C<IO::AIO::MAP_PRIVATE>,
2180     or a number of system-specific flags (when not available, the are C<0>):
2181     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2182     C<IO::AIO::MAP_LOCKED>,
2183     C<IO::AIO::MAP_NORESERVE>,
2184     C<IO::AIO::MAP_POPULATE>,
2185     C<IO::AIO::MAP_NONBLOCK>,
2186     C<IO::AIO::MAP_FIXED>,
2187     C<IO::AIO::MAP_GROWSDOWN>,
2188     C<IO::AIO::MAP_32BIT>,
2189     C<IO::AIO::MAP_HUGETLB> or
2190     C<IO::AIO::MAP_STACK>.
2191 root 1.176
2192     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2193    
2194 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2195     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2196    
2197 root 1.177 Example:
2198    
2199     use Digest::MD5;
2200     use IO::AIO;
2201    
2202     open my $fh, "<verybigfile"
2203     or die "$!";
2204    
2205     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2206     or die "verybigfile: $!";
2207    
2208     my $fast_md5 = md5 $data;
2209    
2210 root 1.176 =item IO::AIO::munmap $scalar
2211    
2212     Removes a previous mmap and undefines the C<$scalar>.
2213    
2214 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2215 root 1.174
2216 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2217     C<aio_mlock> call (see its description for details).
2218 root 1.174
2219     =item IO::AIO::munlockall
2220    
2221     Calls the C<munlockall> function.
2222    
2223     On systems that do not implement C<munlockall>, this function returns
2224     ENOSYS, otherwise the return value of C<munlockall>.
2225    
2226 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2227    
2228     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2229     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2230     should be the file offset.
2231    
2232 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2233     silently corrupt the data in this case.
2234    
2235 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2236     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2237     C<IO::AIO::SPLICE_F_GIFT>.
2238    
2239     See the C<splice(2)> manpage for details.
2240    
2241     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2242    
2243 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2244 root 1.225 description for C<IO::AIO::splice> above for details.
2245    
2246 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2247    
2248     Attempts to query or change the pipe buffer size. Obviously works only
2249     on pipes, and currently works only on GNU/Linux systems, and fails with
2250     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2251     size on other systems, drop me a note.
2252    
2253 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2254    
2255     This is a direct interface to the Linux L<pipe2(2)> system call. If
2256     C<$flags> is missing or C<0>, then this should be the same as a call to
2257 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2258     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2259     (..., 4096, O_BINARY)>.
2260 root 1.253
2261     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2262     the given flags (Linux 2.6.27, glibc 2.9).
2263    
2264     On success, the read and write file handles are returned.
2265    
2266     On error, nothing will be returned. If the pipe2 syscall is missing and
2267     C<$flags> is non-zero, fails with C<ENOSYS>.
2268    
2269     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2270     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2271     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2272    
2273 root 1.157 =back
2274    
2275 root 1.1 =cut
2276    
2277 root 1.61 min_parallel 8;
2278 root 1.1
2279 root 1.95 END { flush }
2280 root 1.82
2281 root 1.1 1;
2282    
2283 root 1.175 =head1 EVENT LOOP INTEGRATION
2284    
2285     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2286     automatically into many event loops:
2287    
2288     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2289     use AnyEvent::AIO;
2290    
2291     You can also integrate IO::AIO manually into many event loops, here are
2292     some examples of how to do this:
2293    
2294     # EV integration
2295     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2296    
2297     # Event integration
2298     Event->io (fd => IO::AIO::poll_fileno,
2299     poll => 'r',
2300     cb => \&IO::AIO::poll_cb);
2301    
2302     # Glib/Gtk2 integration
2303     add_watch Glib::IO IO::AIO::poll_fileno,
2304     in => sub { IO::AIO::poll_cb; 1 };
2305    
2306     # Tk integration
2307     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2308     readable => \&IO::AIO::poll_cb);
2309    
2310     # Danga::Socket integration
2311     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2312     \&IO::AIO::poll_cb);
2313    
2314 root 1.27 =head2 FORK BEHAVIOUR
2315    
2316 root 1.197 Usage of pthreads in a program changes the semantics of fork
2317     considerably. Specifically, only async-safe functions can be called after
2318     fork. Perl doesn't know about this, so in general, you cannot call fork
2319 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2320     pthreads, so this applies, but many other extensions and (for inexplicable
2321     reasons) perl itself often is linked against pthreads, so this limitation
2322     applies to quite a lot of perls.
2323    
2324     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2325     only works in the process that loaded it. Forking is fully supported, but
2326     using IO::AIO in the child is not.
2327    
2328     You might get around by not I<using> IO::AIO before (or after)
2329     forking. You could also try to call the L<IO::AIO::reinit> function in the
2330     child:
2331    
2332     =over 4
2333    
2334     =item IO::AIO::reinit
2335    
2336 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2337     data structures. This is not an operation supported by any standards, but
2338 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2339    
2340     The only reasonable use for this function is to call it after forking, if
2341     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2342     the process will result in undefined behaviour. Calling it at any time
2343     will also result in any undefined (by POSIX) behaviour.
2344    
2345     =back
2346 root 1.52
2347 root 1.60 =head2 MEMORY USAGE
2348    
2349 root 1.72 Per-request usage:
2350    
2351     Each aio request uses - depending on your architecture - around 100-200
2352     bytes of memory. In addition, stat requests need a stat buffer (possibly
2353     a few hundred bytes), readdir requires a result buffer and so on. Perl
2354     scalars and other data passed into aio requests will also be locked and
2355     will consume memory till the request has entered the done state.
2356 root 1.60
2357 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2358 root 1.60 problem.
2359    
2360 root 1.72 Per-thread usage:
2361    
2362     In the execution phase, some aio requests require more memory for
2363     temporary buffers, and each thread requires a stack and other data
2364     structures (usually around 16k-128k, depending on the OS).
2365    
2366     =head1 KNOWN BUGS
2367    
2368 root 1.73 Known bugs will be fixed in the next release.
2369 root 1.60
2370 root 1.1 =head1 SEE ALSO
2371    
2372 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2373     more natural syntax.
2374 root 1.1
2375     =head1 AUTHOR
2376    
2377     Marc Lehmann <schmorp@schmorp.de>
2378     http://home.schmorp.de/
2379    
2380     =cut
2381