ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.287
Committed: Tue Jul 24 04:58:59 2018 UTC (5 years, 9 months ago) by root
Branch: MAIN
Changes since 1.286: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.286 our $VERSION = 4.42;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
291 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
292     IO::AIO::mprotect $scalar, $offset, $length, $protect
293 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
294 root 1.175 IO::AIO::munlockall
295    
296 root 1.219 =head2 API NOTES
297 root 1.1
298 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
299     with the same name (sans C<aio_>). The arguments are similar or identical,
300 root 1.14 and they all accept an additional (and optional) C<$callback> argument
301 root 1.212 which must be a code reference. This code reference will be called after
302     the syscall has been executed in an asynchronous fashion. The results
303     of the request will be passed as arguments to the callback (and, if an
304     error occured, in C<$!>) - for most requests the syscall return code (e.g.
305     most syscalls return C<-1> on error, unlike perl, which usually delivers
306     "false").
307    
308     Some requests (such as C<aio_readdir>) pass the actual results and
309     communicate failures by passing C<undef>.
310 root 1.1
311 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
312     internally until the request has finished.
313 root 1.1
314 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
315     further manipulation of those requests while they are in-flight.
316 root 1.52
317 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
318     reason for this is that at the time the request is being executed, the
319 root 1.212 current working directory could have changed. Alternatively, you can
320     make sure that you never change the current working directory anywhere
321     in the program and then use relative paths. You can also take advantage
322     of IO::AIOs working directory abstraction, that lets you specify paths
323     relative to some previously-opened "working directory object" - see the
324     description of the C<IO::AIO::WD> class later in this document.
325 root 1.28
326 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
327     in filenames you got from outside (command line, readdir etc.) without
328 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
329     module and encode your pathnames to the locale (or other) encoding in
330     effect in the user environment, d) use Glib::filename_from_unicode on
331     unicode filenames or e) use something else to ensure your scalar has the
332     correct contents.
333 root 1.87
334     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
335 root 1.136 handles correctly whether it is set or not.
336 root 1.1
337 root 1.219 =head2 AIO REQUEST FUNCTIONS
338    
339 root 1.5 =over 4
340 root 1.1
341 root 1.80 =item $prev_pri = aioreq_pri [$pri]
342 root 1.68
343 root 1.80 Returns the priority value that would be used for the next request and, if
344     C<$pri> is given, sets the priority for the next aio request.
345 root 1.68
346 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
347     and C<4>, respectively. Requests with higher priority will be serviced
348     first.
349    
350     The priority will be reset to C<0> after each call to one of the C<aio_*>
351 root 1.68 functions.
352    
353 root 1.69 Example: open a file with low priority, then read something from it with
354     higher priority so the read request is serviced before other low priority
355     open requests (potentially spamming the cache):
356    
357     aioreq_pri -3;
358     aio_open ..., sub {
359     return unless $_[0];
360    
361     aioreq_pri -2;
362     aio_read $_[0], ..., sub {
363     ...
364     };
365     };
366    
367 root 1.106
368 root 1.69 =item aioreq_nice $pri_adjust
369    
370     Similar to C<aioreq_pri>, but subtracts the given value from the current
371 root 1.87 priority, so the effect is cumulative.
372 root 1.69
373 root 1.106
374 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
375 root 1.1
376 root 1.2 Asynchronously open or create a file and call the callback with a newly
377 root 1.233 created filehandle for the file (or C<undef> in case of an error).
378 root 1.1
379     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
380     for an explanation.
381    
382 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
383     list. They are the same as used by C<sysopen>.
384    
385     Likewise, C<$mode> specifies the mode of the newly created file, if it
386     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
387     except that it is mandatory (i.e. use C<0> if you don't create new files,
388 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
389     by the umask in effect then the request is being executed, so better never
390     change the umask.
391 root 1.1
392     Example:
393    
394 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
395 root 1.2 if ($_[0]) {
396     print "open successful, fh is $_[0]\n";
397 root 1.1 ...
398     } else {
399     die "open failed: $!\n";
400     }
401     };
402    
403 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
404     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
405     following POSIX and non-POSIX constants are available (missing ones on
406     your system are, as usual, C<0>):
407    
408     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
409     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
410 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
411 root 1.194
412 root 1.106
413 root 1.40 =item aio_close $fh, $callback->($status)
414 root 1.1
415 root 1.2 Asynchronously close a file and call the callback with the result
416 root 1.116 code.
417    
418 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
419 root 1.121 closing the file descriptor associated with the filehandle itself.
420 root 1.117
421 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
422     use dup2 to overwrite the file descriptor with the write-end of a pipe
423     (the pipe fd will be created on demand and will be cached).
424 root 1.117
425 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
426     free for reuse until the perl filehandle is closed.
427 root 1.117
428     =cut
429    
430 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
431    
432 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
433 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
434     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
435     C<IO::AIO::SEEK_END>).
436    
437     The resulting absolute offset will be passed to the callback, or C<-1> in
438     case of an error.
439    
440     In theory, the C<$whence> constants could be different than the
441     corresponding values from L<Fcntl>, but perl guarantees they are the same,
442     so don't panic.
443    
444 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
445     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
446     could be found. No guarantees about suitability for use in C<aio_seek> or
447     Perl's C<sysseek> can be made though, although I would naively assume they
448     "just work".
449    
450 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
453 root 1.1
454 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
455 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
456     calls the callback with the actual number of bytes transferred (or -1 on
457 root 1.145 error, just like the syscall).
458 root 1.109
459 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
460     offset plus the actual number of bytes read.
461    
462 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
463     be used (and updated), otherwise the file descriptor offset will not be
464     changed by these calls.
465 root 1.109
466 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
467     C<$data>.
468 root 1.109
469     If C<$dataoffset> is less than zero, it will be counted from the end of
470     C<$data>.
471 root 1.1
472 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
473 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
474     the necessary/optional hardware is installed).
475 root 1.31
476 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
477 root 1.1 offset C<0> within the scalar:
478    
479     aio_read $fh, 7, 15, $buffer, 0, sub {
480 root 1.9 $_[0] > 0 or die "read error: $!";
481     print "read $_[0] bytes: <$buffer>\n";
482 root 1.1 };
483    
484 root 1.106
485 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
486 root 1.35
487     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
488     reading at byte offset C<$in_offset>, and starts writing at the current
489     file offset of C<$out_fh>. Because of that, it is not safe to issue more
490     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
491 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
492     move or use the file offset of C<$in_fh>.
493 root 1.35
494 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
495 root 1.196 are written, and there is no way to find out how many more bytes have been
496     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
497     number of bytes written to C<$out_fh>. Only if the result value equals
498     C<$length> one can assume that C<$length> bytes have been read.
499 root 1.185
500     Unlike with other C<aio_> functions, it makes a lot of sense to use
501     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
502     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
503 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
504     into a trap where C<aio_sendfile> reads some data with readahead, then
505     fails to write all data, and when the socket is ready the next time, the
506     data in the cache is already lost, forcing C<aio_sendfile> to again hit
507     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
508     resource usage.
509    
510     This call tries to make use of a native C<sendfile>-like syscall to
511     provide zero-copy operation. For this to work, C<$out_fh> should refer to
512     a socket, and C<$in_fh> should refer to an mmap'able file.
513 root 1.35
514 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
515 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
516     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
517     type of filehandle regardless of the limitations of the operating system.
518    
519     As native sendfile syscalls (as practically any non-POSIX interface hacked
520     together in a hurry to improve benchmark numbers) tend to be rather buggy
521     on many systems, this implementation tries to work around some known bugs
522     in Linux and FreeBSD kernels (probably others, too), but that might fail,
523     so you really really should check the return value of C<aio_sendfile> -
524 root 1.262 fewer bytes than expected might have been transferred.
525 root 1.35
526 root 1.106
527 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
528 root 1.1
529 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
530 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
531     argument specifies the starting point from which data is to be read and
532     C<$length> specifies the number of bytes to be read. I/O is performed in
533     whole pages, so that offset is effectively rounded down to a page boundary
534     and bytes are read up to the next page boundary greater than or equal to
535 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
536 root 1.1 file. The current file offset of the file is left unchanged.
537    
538 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
539     be emulated by simply reading the data, which would have a similar effect.
540 root 1.26
541 root 1.106
542 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
543 root 1.1
544 root 1.40 =item aio_lstat $fh, $callback->($status)
545 root 1.1
546     Works like perl's C<stat> or C<lstat> in void context. The callback will
547     be called after the stat and the results will be available using C<stat _>
548     or C<-s _> etc...
549    
550     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
551     for an explanation.
552    
553     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
554     error when stat'ing a large file, the results will be silently truncated
555     unless perl itself is compiled with large file support.
556    
557 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
558     following constants and functions (if not implemented, the constants will
559     be C<0> and the functions will either C<croak> or fall back on traditional
560     behaviour).
561    
562     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
563     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
564     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
565    
566 root 1.1 Example: Print the length of F</etc/passwd>:
567    
568     aio_stat "/etc/passwd", sub {
569     $_[0] and die "stat failed: $!";
570     print "size is ", -s _, "\n";
571     };
572    
573 root 1.106
574 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
575 root 1.172
576     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
577     whether a file handle or path was passed.
578    
579     On success, the callback is passed a hash reference with the following
580     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
581     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
582     is passed.
583    
584     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
585     C<ST_NOSUID>.
586    
587     The following non-POSIX IO::AIO::ST_* flag masks are defined to
588     their correct value when available, or to C<0> on systems that do
589     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
590     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
591     C<ST_NODIRATIME> and C<ST_RELATIME>.
592    
593     Example: stat C</wd> and dump out the data if successful.
594    
595     aio_statvfs "/wd", sub {
596     my $f = $_[0]
597     or die "statvfs: $!";
598    
599     use Data::Dumper;
600     say Dumper $f;
601     };
602    
603     # result:
604     {
605     bsize => 1024,
606     bfree => 4333064312,
607     blocks => 10253828096,
608     files => 2050765568,
609     flag => 4096,
610     favail => 2042092649,
611     bavail => 4333064312,
612     ffree => 2042092649,
613     namemax => 255,
614     frsize => 1024,
615     fsid => 1810
616     }
617    
618 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
619    
620     Works like perl's C<utime> function (including the special case of $atime
621     and $mtime being undef). Fractional times are supported if the underlying
622     syscalls support them.
623    
624     When called with a pathname, uses utimes(2) if available, otherwise
625     utime(2). If called on a file descriptor, uses futimes(2) if available,
626     otherwise returns ENOSYS, so this is not portable.
627    
628     Examples:
629    
630 root 1.107 # set atime and mtime to current time (basically touch(1)):
631 root 1.106 aio_utime "path", undef, undef;
632     # set atime to current time and mtime to beginning of the epoch:
633     aio_utime "path", time, undef; # undef==0
634    
635    
636     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
637    
638     Works like perl's C<chown> function, except that C<undef> for either $uid
639     or $gid is being interpreted as "do not change" (but -1 can also be used).
640    
641     Examples:
642    
643     # same as "chown root path" in the shell:
644     aio_chown "path", 0, -1;
645     # same as above:
646     aio_chown "path", 0, undef;
647    
648    
649 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
650    
651     Works like truncate(2) or ftruncate(2).
652    
653    
654 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
655    
656 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
657     linux C<fallocate> documentation for details.
658 root 1.229
659 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
660     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
661     to deallocate a file range.
662    
663     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
664 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
665     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
666     to unshare shared blocks (see your L<fallocate(2)> manpage).
667 root 1.229
668     The file system block size used by C<fallocate> is presumably the
669 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
670     can dictate other limitations.
671 root 1.229
672     If C<fallocate> isn't available or cannot be emulated (currently no
673     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
674    
675    
676 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
677    
678     Works like perl's C<chmod> function.
679    
680    
681 root 1.40 =item aio_unlink $pathname, $callback->($status)
682 root 1.1
683     Asynchronously unlink (delete) a file and call the callback with the
684     result code.
685    
686 root 1.106
687 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
688 root 1.82
689 root 1.86 [EXPERIMENTAL]
690    
691 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
692    
693 root 1.86 The only (POSIX-) portable way of calling this function is:
694 root 1.83
695 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
696 root 1.82
697 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
698     and functions.
699 root 1.106
700 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
701    
702     Asynchronously create a new link to the existing object at C<$srcpath> at
703     the path C<$dstpath> and call the callback with the result code.
704    
705 root 1.106
706 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
707    
708     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
709     the path C<$dstpath> and call the callback with the result code.
710    
711 root 1.106
712 root 1.209 =item aio_readlink $pathname, $callback->($link)
713 root 1.90
714     Asynchronously read the symlink specified by C<$path> and pass it to
715     the callback. If an error occurs, nothing or undef gets passed to the
716     callback.
717    
718 root 1.106
719 root 1.209 =item aio_realpath $pathname, $callback->($path)
720 root 1.201
721     Asynchronously make the path absolute and resolve any symlinks in
722 root 1.239 C<$path>. The resulting path only consists of directories (same as
723 root 1.202 L<Cwd::realpath>).
724 root 1.201
725     This request can be used to get the absolute path of the current working
726     directory by passing it a path of F<.> (a single dot).
727    
728    
729 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
730    
731     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
732     rename(2) and call the callback with the result code.
733    
734 root 1.241 On systems that support the AIO::WD working directory abstraction
735     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
736     of failing, C<rename> is called on the absolute path of C<$wd>.
737    
738 root 1.106
739 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
740    
741     Basically a version of C<aio_rename> with an additional C<$flags>
742     argument. Calling this with C<$flags=0> is the same as calling
743     C<aio_rename>.
744    
745     Non-zero flags are currently only supported on GNU/Linux systems that
746     support renameat2. Other systems fail with C<ENOSYS> in this case.
747    
748     The following constants are available (missing ones are, as usual C<0>),
749     see renameat2(2) for details:
750    
751     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
752     and C<IO::AIO::RENAME_WHITEOUT>.
753    
754    
755 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
756    
757     Asynchronously mkdir (create) a directory and call the callback with
758     the result code. C<$mode> will be modified by the umask at the time the
759     request is executed, so do not change your umask.
760    
761 root 1.106
762 root 1.40 =item aio_rmdir $pathname, $callback->($status)
763 root 1.27
764     Asynchronously rmdir (delete) a directory and call the callback with the
765     result code.
766    
767 root 1.241 On systems that support the AIO::WD working directory abstraction
768     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
769     C<rmdir> is called on the absolute path of C<$wd>.
770    
771 root 1.106
772 root 1.46 =item aio_readdir $pathname, $callback->($entries)
773 root 1.37
774     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
775     directory (i.e. opendir + readdir + closedir). The entries will not be
776     sorted, and will B<NOT> include the C<.> and C<..> entries.
777    
778 root 1.148 The callback is passed a single argument which is either C<undef> or an
779     array-ref with the filenames.
780    
781    
782     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
783    
784 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
785     tune behaviour and output format. In case of an error, C<$entries> will be
786 root 1.148 C<undef>.
787    
788     The flags are a combination of the following constants, ORed together (the
789     flags will also be passed to the callback, possibly modified):
790    
791     =over 4
792    
793 root 1.150 =item IO::AIO::READDIR_DENTS
794 root 1.148
795 root 1.284 Normally the callback gets an arrayref consisting of names only (as
796     with C<aio_readdir>). If this flag is set, then the callback gets an
797     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
798     single directory entry in more detail:
799 root 1.148
800     C<$name> is the name of the entry.
801    
802 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
803 root 1.148
804 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
805     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
806     C<IO::AIO::DT_WHT>.
807 root 1.148
808 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
809     to know, you have to run stat yourself. Also, for speed/memory reasons,
810     the C<$type> scalars are read-only: you must not modify them.
811 root 1.148
812 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
813 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
814     systems that do not deliver the inode information.
815 root 1.150
816     =item IO::AIO::READDIR_DIRS_FIRST
817 root 1.148
818     When this flag is set, then the names will be returned in an order where
819 root 1.193 likely directories come first, in optimal stat order. This is useful when
820     you need to quickly find directories, or you want to find all directories
821     while avoiding to stat() each entry.
822 root 1.148
823 root 1.149 If the system returns type information in readdir, then this is used
824 root 1.193 to find directories directly. Otherwise, likely directories are names
825     beginning with ".", or otherwise names with no dots, of which names with
826 root 1.149 short names are tried first.
827    
828 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
829 root 1.148
830     When this flag is set, then the names will be returned in an order
831 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
832     all files in the given directory, then the returned order will likely be
833     faster.
834    
835     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
836     then the likely dirs come first, resulting in a less optimal stat order
837     for stat'ing all entries, but likely a more optimal order for finding
838     subdirectories.
839 root 1.148
840 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
841 root 1.148
842     This flag should not be set when calling C<aio_readdirx>. Instead, it
843     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
844 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
845 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
846    
847     =back
848 root 1.37
849 root 1.106
850 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
851    
852     Opens, reads and closes the given file. The data is put into C<$data>,
853     which is resized as required.
854    
855     If C<$offset> is negative, then it is counted from the end of the file.
856    
857     If C<$length> is zero, then the remaining length of the file is
858     used. Also, in this case, the same limitations to modifying C<$data> apply
859     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
860     with C<substr>. If the size of the file is known, specifying a non-zero
861     C<$length> results in a performance advantage.
862    
863     This request is similar to the older C<aio_load> request, but since it is
864     a single request, it might be more efficient to use.
865    
866     Example: load F</etc/passwd> into C<$passwd>.
867    
868     my $passwd;
869     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
870     $_[0] >= 0
871     or die "/etc/passwd: $!\n";
872    
873     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
874     print $passwd;
875     };
876     IO::AIO::flush;
877    
878    
879 root 1.209 =item aio_load $pathname, $data, $callback->($status)
880 root 1.98
881     This is a composite request that tries to fully load the given file into
882     memory. Status is the same as with aio_read.
883    
884 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
885    
886 root 1.98 =cut
887    
888     sub aio_load($$;$) {
889 root 1.123 my ($path, undef, $cb) = @_;
890     my $data = \$_[1];
891 root 1.98
892 root 1.123 my $pri = aioreq_pri;
893     my $grp = aio_group $cb;
894    
895     aioreq_pri $pri;
896     add $grp aio_open $path, O_RDONLY, 0, sub {
897     my $fh = shift
898     or return $grp->result (-1);
899 root 1.98
900     aioreq_pri $pri;
901 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
902     $grp->result ($_[0]);
903 root 1.98 };
904 root 1.123 };
905 root 1.98
906 root 1.123 $grp
907 root 1.98 }
908    
909 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
910    
911     Try to copy the I<file> (directories not supported as either source or
912     destination) from C<$srcpath> to C<$dstpath> and call the callback with
913 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
914 root 1.82
915 root 1.275 Existing destination files will be truncated.
916    
917 root 1.134 This is a composite request that creates the destination file with
918 root 1.82 mode 0200 and copies the contents of the source file into it using
919     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
920     uid/gid, in that order.
921    
922     If an error occurs, the partial destination file will be unlinked, if
923     possible, except when setting atime, mtime, access mode and uid/gid, where
924     errors are being ignored.
925    
926     =cut
927    
928     sub aio_copy($$;$) {
929 root 1.123 my ($src, $dst, $cb) = @_;
930 root 1.82
931 root 1.123 my $pri = aioreq_pri;
932     my $grp = aio_group $cb;
933 root 1.82
934 root 1.123 aioreq_pri $pri;
935     add $grp aio_open $src, O_RDONLY, 0, sub {
936     if (my $src_fh = $_[0]) {
937 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
938 root 1.95
939 root 1.123 aioreq_pri $pri;
940     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
941     if (my $dst_fh = $_[0]) {
942     aioreq_pri $pri;
943     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
944     if ($_[0] == $stat[7]) {
945     $grp->result (0);
946     close $src_fh;
947    
948 root 1.147 my $ch = sub {
949     aioreq_pri $pri;
950     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
951     aioreq_pri $pri;
952     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
953     aioreq_pri $pri;
954     add $grp aio_close $dst_fh;
955     }
956     };
957     };
958 root 1.123
959     aioreq_pri $pri;
960 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
961     if ($_[0] < 0 && $! == ENOSYS) {
962     aioreq_pri $pri;
963     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
964     } else {
965     $ch->();
966     }
967     };
968 root 1.123 } else {
969     $grp->result (-1);
970     close $src_fh;
971     close $dst_fh;
972    
973     aioreq $pri;
974     add $grp aio_unlink $dst;
975     }
976     };
977     } else {
978     $grp->result (-1);
979     }
980     },
981 root 1.82
982 root 1.123 } else {
983     $grp->result (-1);
984     }
985     };
986 root 1.82
987 root 1.123 $grp
988 root 1.82 }
989    
990     =item aio_move $srcpath, $dstpath, $callback->($status)
991    
992     Try to move the I<file> (directories not supported as either source or
993     destination) from C<$srcpath> to C<$dstpath> and call the callback with
994 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
995 root 1.82
996 root 1.137 This is a composite request that tries to rename(2) the file first; if
997     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
998     that is successful, unlinks the C<$srcpath>.
999 root 1.82
1000     =cut
1001    
1002     sub aio_move($$;$) {
1003 root 1.123 my ($src, $dst, $cb) = @_;
1004 root 1.82
1005 root 1.123 my $pri = aioreq_pri;
1006     my $grp = aio_group $cb;
1007 root 1.82
1008 root 1.123 aioreq_pri $pri;
1009     add $grp aio_rename $src, $dst, sub {
1010     if ($_[0] && $! == EXDEV) {
1011     aioreq_pri $pri;
1012     add $grp aio_copy $src, $dst, sub {
1013     $grp->result ($_[0]);
1014 root 1.95
1015 root 1.196 unless ($_[0]) {
1016 root 1.123 aioreq_pri $pri;
1017     add $grp aio_unlink $src;
1018     }
1019     };
1020     } else {
1021     $grp->result ($_[0]);
1022     }
1023     };
1024 root 1.82
1025 root 1.123 $grp
1026 root 1.82 }
1027    
1028 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1029 root 1.40
1030 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1031 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1032     names, directories you can recurse into (directories), and ones you cannot
1033     recurse into (everything else, including symlinks to directories).
1034 root 1.52
1035 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1036 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1037     this function generates. If it is C<< <= 0 >>, then a suitable default
1038 root 1.81 will be chosen (currently 4).
1039 root 1.40
1040     On error, the callback is called without arguments, otherwise it receives
1041     two array-refs with path-relative entry names.
1042    
1043     Example:
1044    
1045     aio_scandir $dir, 0, sub {
1046     my ($dirs, $nondirs) = @_;
1047     print "real directories: @$dirs\n";
1048     print "everything else: @$nondirs\n";
1049     };
1050    
1051     Implementation notes.
1052    
1053     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1054    
1055 root 1.149 If readdir returns file type information, then this is used directly to
1056     find directories.
1057    
1058     Otherwise, after reading the directory, the modification time, size etc.
1059     of the directory before and after the readdir is checked, and if they
1060     match (and isn't the current time), the link count will be used to decide
1061     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1062     number of subdirectories will be assumed.
1063    
1064     Then entries will be sorted into likely directories a non-initial dot
1065     currently) and likely non-directories (see C<aio_readdirx>). Then every
1066     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1067     in order of their inode numbers. If that succeeds, it assumes that the
1068     entry is a directory or a symlink to directory (which will be checked
1069 root 1.207 separately). This is often faster than stat'ing the entry itself because
1070 root 1.52 filesystems might detect the type of the entry without reading the inode
1071 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1072     the filetype information on readdir.
1073 root 1.52
1074     If the known number of directories (link count - 2) has been reached, the
1075     rest of the entries is assumed to be non-directories.
1076    
1077     This only works with certainty on POSIX (= UNIX) filesystems, which
1078     fortunately are the vast majority of filesystems around.
1079    
1080     It will also likely work on non-POSIX filesystems with reduced efficiency
1081     as those tend to return 0 or 1 as link counts, which disables the
1082     directory counting heuristic.
1083 root 1.40
1084     =cut
1085    
1086 root 1.100 sub aio_scandir($$;$) {
1087 root 1.123 my ($path, $maxreq, $cb) = @_;
1088    
1089     my $pri = aioreq_pri;
1090 root 1.40
1091 root 1.123 my $grp = aio_group $cb;
1092 root 1.80
1093 root 1.123 $maxreq = 4 if $maxreq <= 0;
1094 root 1.55
1095 root 1.210 # get a wd object
1096 root 1.123 aioreq_pri $pri;
1097 root 1.210 add $grp aio_wd $path, sub {
1098 root 1.212 $_[0]
1099     or return $grp->result ();
1100    
1101 root 1.210 my $wd = [shift, "."];
1102 root 1.40
1103 root 1.210 # stat once
1104 root 1.80 aioreq_pri $pri;
1105 root 1.210 add $grp aio_stat $wd, sub {
1106     return $grp->result () if $_[0];
1107     my $now = time;
1108     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1109 root 1.40
1110 root 1.210 # read the directory entries
1111 root 1.80 aioreq_pri $pri;
1112 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1113     my $entries = shift
1114     or return $grp->result ();
1115    
1116     # stat the dir another time
1117     aioreq_pri $pri;
1118     add $grp aio_stat $wd, sub {
1119     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1120 root 1.95
1121 root 1.210 my $ndirs;
1122 root 1.95
1123 root 1.210 # take the slow route if anything looks fishy
1124     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1125     $ndirs = -1;
1126     } else {
1127     # if nlink == 2, we are finished
1128     # for non-posix-fs's, we rely on nlink < 2
1129     $ndirs = (stat _)[3] - 2
1130     or return $grp->result ([], $entries);
1131     }
1132 root 1.123
1133 root 1.210 my (@dirs, @nondirs);
1134 root 1.40
1135 root 1.210 my $statgrp = add $grp aio_group sub {
1136     $grp->result (\@dirs, \@nondirs);
1137     };
1138 root 1.40
1139 root 1.210 limit $statgrp $maxreq;
1140     feed $statgrp sub {
1141     return unless @$entries;
1142     my $entry = shift @$entries;
1143    
1144     aioreq_pri $pri;
1145     $wd->[1] = "$entry/.";
1146     add $statgrp aio_stat $wd, sub {
1147     if ($_[0] < 0) {
1148     push @nondirs, $entry;
1149     } else {
1150     # need to check for real directory
1151     aioreq_pri $pri;
1152     $wd->[1] = $entry;
1153     add $statgrp aio_lstat $wd, sub {
1154     if (-d _) {
1155     push @dirs, $entry;
1156    
1157     unless (--$ndirs) {
1158     push @nondirs, @$entries;
1159     feed $statgrp;
1160     }
1161     } else {
1162     push @nondirs, $entry;
1163 root 1.74 }
1164 root 1.40 }
1165     }
1166 root 1.210 };
1167 root 1.74 };
1168 root 1.40 };
1169     };
1170     };
1171 root 1.123 };
1172 root 1.55
1173 root 1.123 $grp
1174 root 1.40 }
1175    
1176 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1177 root 1.99
1178 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1179 root 1.239 status of the final C<rmdir> only. This is a composite request that
1180 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1181     everything else.
1182 root 1.99
1183     =cut
1184    
1185     sub aio_rmtree;
1186 root 1.100 sub aio_rmtree($;$) {
1187 root 1.123 my ($path, $cb) = @_;
1188 root 1.99
1189 root 1.123 my $pri = aioreq_pri;
1190     my $grp = aio_group $cb;
1191 root 1.99
1192 root 1.123 aioreq_pri $pri;
1193     add $grp aio_scandir $path, 0, sub {
1194     my ($dirs, $nondirs) = @_;
1195 root 1.99
1196 root 1.123 my $dirgrp = aio_group sub {
1197     add $grp aio_rmdir $path, sub {
1198     $grp->result ($_[0]);
1199 root 1.99 };
1200 root 1.123 };
1201 root 1.99
1202 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1203     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1204 root 1.99
1205 root 1.123 add $grp $dirgrp;
1206     };
1207 root 1.99
1208 root 1.123 $grp
1209 root 1.99 }
1210    
1211 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1212    
1213     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1214    
1215     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1216     they execute asynchronously and pass the return value to the callback.
1217    
1218     Both calls can be used for a lot of things, some of which make more sense
1219     to run asynchronously in their own thread, while some others make less
1220     sense. For example, calls that block waiting for external events, such
1221     as locking, will also lock down an I/O thread while it is waiting, which
1222     can deadlock the whole I/O system. At the same time, there might be no
1223     alternative to using a thread to wait.
1224    
1225     So in general, you should only use these calls for things that do
1226     (filesystem) I/O, not for things that wait for other events (network,
1227     other processes), although if you are careful and know what you are doing,
1228     you still can.
1229    
1230 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1231    
1232 root 1.271 C<F_DUPFD_CLOEXEC>,
1233    
1234     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1235    
1236 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1237    
1238     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1239     C<FS_IOC_FIEMAP>.
1240    
1241     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1242     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1243    
1244     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1245     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1246     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1247     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1248     C<FS_FL_USER_MODIFIABLE>.
1249    
1250     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1251     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1252     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1253     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1254    
1255 root 1.119 =item aio_sync $callback->($status)
1256    
1257     Asynchronously call sync and call the callback when finished.
1258    
1259 root 1.40 =item aio_fsync $fh, $callback->($status)
1260 root 1.1
1261     Asynchronously call fsync on the given filehandle and call the callback
1262     with the fsync result code.
1263    
1264 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1265 root 1.1
1266     Asynchronously call fdatasync on the given filehandle and call the
1267 root 1.26 callback with the fdatasync result code.
1268    
1269     If this call isn't available because your OS lacks it or it couldn't be
1270     detected, it will be emulated by calling C<fsync> instead.
1271 root 1.1
1272 root 1.206 =item aio_syncfs $fh, $callback->($status)
1273    
1274     Asynchronously call the syncfs syscall to sync the filesystem associated
1275     to the given filehandle and call the callback with the syncfs result
1276     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1277     errno to C<ENOSYS> nevertheless.
1278    
1279 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1280    
1281     Sync the data portion of the file specified by C<$offset> and C<$length>
1282     to disk (but NOT the metadata), by calling the Linux-specific
1283     sync_file_range call. If sync_file_range is not available or it returns
1284     ENOSYS, then fdatasync or fsync is being substituted.
1285    
1286     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1287     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1288     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1289     manpage for details.
1290    
1291 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1292 root 1.120
1293     This request tries to open, fsync and close the given path. This is a
1294 root 1.135 composite request intended to sync directories after directory operations
1295 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1296     specific effect, but usually it makes sure that directory changes get
1297     written to disc. It works for anything that can be opened for read-only,
1298     not just directories.
1299    
1300 root 1.162 Future versions of this function might fall back to other methods when
1301     C<fsync> on the directory fails (such as calling C<sync>).
1302    
1303 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1304    
1305     =cut
1306    
1307     sub aio_pathsync($;$) {
1308 root 1.123 my ($path, $cb) = @_;
1309    
1310     my $pri = aioreq_pri;
1311     my $grp = aio_group $cb;
1312 root 1.120
1313 root 1.123 aioreq_pri $pri;
1314     add $grp aio_open $path, O_RDONLY, 0, sub {
1315     my ($fh) = @_;
1316     if ($fh) {
1317     aioreq_pri $pri;
1318     add $grp aio_fsync $fh, sub {
1319     $grp->result ($_[0]);
1320 root 1.120
1321     aioreq_pri $pri;
1322 root 1.123 add $grp aio_close $fh;
1323     };
1324     } else {
1325     $grp->result (-1);
1326     }
1327     };
1328 root 1.120
1329 root 1.123 $grp
1330 root 1.120 }
1331    
1332 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1333 root 1.170
1334     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1335 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1336     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1337     scalar must only be modified in-place while an aio operation is pending on
1338     it).
1339 root 1.170
1340     It calls the C<msync> function of your OS, if available, with the memory
1341     area starting at C<$offset> in the string and ending C<$length> bytes
1342     later. If C<$length> is negative, counts from the end, and if C<$length>
1343     is C<undef>, then it goes till the end of the string. The flags can be
1344 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1345     C<IO::AIO::MS_INVALIDATE>.
1346 root 1.170
1347     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1348    
1349     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1350     scalars.
1351    
1352     It touches (reads or writes) all memory pages in the specified
1353 root 1.239 range inside the scalar. All caveats and parameters are the same
1354 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1355     C<0> (which reads all pages and ensures they are instantiated) or
1356 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1357 root 1.170 writing an octet from it, which dirties the page).
1358    
1359 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1360    
1361     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1362     scalars.
1363    
1364     It reads in all the pages of the underlying storage into memory (if any)
1365     and locks them, so they are not getting swapped/paged out or removed.
1366    
1367     If C<$length> is undefined, then the scalar will be locked till the end.
1368    
1369     On systems that do not implement C<mlock>, this function returns C<-1>
1370     and sets errno to C<ENOSYS>.
1371    
1372     Note that the corresponding C<munlock> is synchronous and is
1373     documented under L<MISCELLANEOUS FUNCTIONS>.
1374    
1375 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1376     C<$data> gets destroyed.
1377    
1378     open my $fh, "<", $path or die "$path: $!";
1379     my $data;
1380     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1381     aio_mlock $data; # mlock in background
1382    
1383 root 1.182 =item aio_mlockall $flags, $callback->($status)
1384    
1385     Calls the C<mlockall> function with the given C<$flags> (a combination of
1386     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1387    
1388     On systems that do not implement C<mlockall>, this function returns C<-1>
1389     and sets errno to C<ENOSYS>.
1390    
1391     Note that the corresponding C<munlockall> is synchronous and is
1392     documented under L<MISCELLANEOUS FUNCTIONS>.
1393    
1394 root 1.183 Example: asynchronously lock all current and future pages into memory.
1395    
1396     aio_mlockall IO::AIO::MCL_FUTURE;
1397    
1398 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1399    
1400 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1401     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1402     the ioctl is not available on your OS, then this request will fail with
1403 root 1.223 C<ENOSYS>.
1404    
1405     C<$start> is the starting offset to query extents for, C<$length> is the
1406     size of the range to query - if it is C<undef>, then the whole file will
1407     be queried.
1408    
1409     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1410     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1411     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1412     the data portion.
1413    
1414     C<$count> is the maximum number of extent records to return. If it is
1415 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1416 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1417 root 1.232 instead of the extents themselves (which is unreliable, see below).
1418 root 1.223
1419     If an error occurs, the callback receives no arguments. The special
1420     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1421    
1422     Otherwise, the callback receives an array reference with extent
1423     structures. Each extent structure is an array reference itself, with the
1424     following members:
1425    
1426     [$logical, $physical, $length, $flags]
1427    
1428     Flags is any combination of the following flag values (typically either C<0>
1429 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1430 root 1.223
1431     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1432     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1433     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1434     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1435     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1436     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1437    
1438 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1439 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1440 root 1.278 it to return all extents of a range for files with a large number of
1441     extents. The code (only) works around all these issues if C<$count> is
1442     C<undef>.
1443 root 1.232
1444 root 1.58 =item aio_group $callback->(...)
1445 root 1.54
1446 root 1.55 This is a very special aio request: Instead of doing something, it is a
1447     container for other aio requests, which is useful if you want to bundle
1448 root 1.71 many requests into a single, composite, request with a definite callback
1449     and the ability to cancel the whole request with its subrequests.
1450 root 1.55
1451     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1452     for more info.
1453    
1454     Example:
1455    
1456     my $grp = aio_group sub {
1457     print "all stats done\n";
1458     };
1459    
1460     add $grp
1461     (aio_stat ...),
1462     (aio_stat ...),
1463     ...;
1464    
1465 root 1.63 =item aio_nop $callback->()
1466    
1467     This is a special request - it does nothing in itself and is only used for
1468     side effects, such as when you want to add a dummy request to a group so
1469     that finishing the requests in the group depends on executing the given
1470     code.
1471    
1472 root 1.64 While this request does nothing, it still goes through the execution
1473     phase and still requires a worker thread. Thus, the callback will not
1474     be executed immediately but only after other requests in the queue have
1475     entered their execution phase. This can be used to measure request
1476     latency.
1477    
1478 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1479 root 1.54
1480     Mainly used for debugging and benchmarking, this aio request puts one of
1481     the request workers to sleep for the given time.
1482    
1483 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1484 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1485     immense (it blocks a thread for a long time) so do not use this function
1486     except to put your application under artificial I/O pressure.
1487 root 1.56
1488 root 1.5 =back
1489    
1490 root 1.209
1491     =head2 IO::AIO::WD - multiple working directories
1492    
1493     Your process only has one current working directory, which is used by all
1494     threads. This makes it hard to use relative paths (some other component
1495     could call C<chdir> at any time, and it is hard to control when the path
1496     will be used by IO::AIO).
1497    
1498     One solution for this is to always use absolute paths. This usually works,
1499     but can be quite slow (the kernel has to walk the whole path on every
1500     access), and can also be a hassle to implement.
1501    
1502     Newer POSIX systems have a number of functions (openat, fdopendir,
1503     futimensat and so on) that make it possible to specify working directories
1504     per operation.
1505    
1506     For portability, and because the clowns who "designed", or shall I write,
1507     perpetrated this new interface were obviously half-drunk, this abstraction
1508     cannot be perfect, though.
1509    
1510     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1511     object. This object stores the canonicalised, absolute version of the
1512     path, and on systems that allow it, also a directory file descriptor.
1513    
1514     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1515     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1516 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1517     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1518 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1519 root 1.209 to that IO::AIO::WD object.
1520    
1521     For example, to get a wd object for F</etc> and then stat F<passwd>
1522     inside, you would write:
1523    
1524     aio_wd "/etc", sub {
1525     my $etcdir = shift;
1526    
1527     # although $etcdir can be undef on error, there is generally no reason
1528     # to check for errors here, as aio_stat will fail with ENOENT
1529     # when $etcdir is undef.
1530    
1531     aio_stat [$etcdir, "passwd"], sub {
1532     # yay
1533     };
1534     };
1535    
1536 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1537     creating an IO::AIO::WD object is itself a potentially blocking operation,
1538     which is why it is done asynchronously.
1539 root 1.214
1540     To stat the directory obtained with C<aio_wd> above, one could write
1541     either of the following three request calls:
1542    
1543     aio_lstat "/etc" , sub { ... # pathname as normal string
1544     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1545     aio_lstat $wd , sub { ... # shorthand for the previous
1546 root 1.209
1547     As with normal pathnames, IO::AIO keeps a copy of the working directory
1548     object and the pathname string, so you could write the following without
1549     causing any issues due to C<$path> getting reused:
1550    
1551     my $path = [$wd, undef];
1552    
1553     for my $name (qw(abc def ghi)) {
1554     $path->[1] = $name;
1555     aio_stat $path, sub {
1556     # ...
1557     };
1558     }
1559    
1560     There are some caveats: when directories get renamed (or deleted), the
1561     pathname string doesn't change, so will point to the new directory (or
1562     nowhere at all), while the directory fd, if available on the system,
1563     will still point to the original directory. Most functions accepting a
1564     pathname will use the directory fd on newer systems, and the string on
1565 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1566     the string form of the pathname.
1567 root 1.209
1568 root 1.239 So this functionality is mainly useful to get some protection against
1569 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1570     reference, and to speed up doing many operations in the same directory
1571     (e.g. when stat'ing all files in a directory).
1572    
1573     The following functions implement this working directory abstraction:
1574    
1575     =over 4
1576    
1577     =item aio_wd $pathname, $callback->($wd)
1578    
1579     Asynchonously canonicalise the given pathname and convert it to an
1580     IO::AIO::WD object representing it. If possible and supported on the
1581     system, also open a directory fd to speed up pathname resolution relative
1582     to this working directory.
1583    
1584     If something goes wrong, then C<undef> is passwd to the callback instead
1585     of a working directory object and C<$!> is set appropriately. Since
1586     passing C<undef> as working directory component of a pathname fails the
1587     request with C<ENOENT>, there is often no need for error checking in the
1588     C<aio_wd> callback, as future requests using the value will fail in the
1589     expected way.
1590    
1591     =item IO::AIO::CWD
1592    
1593     This is a compiletime constant (object) that represents the process
1594     current working directory.
1595    
1596 root 1.239 Specifying this object as working directory object for a pathname is as if
1597     the pathname would be specified directly, without a directory object. For
1598     example, these calls are functionally identical:
1599 root 1.209
1600     aio_stat "somefile", sub { ... };
1601     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1602    
1603     =back
1604    
1605 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1606     C<aio_realpath>:
1607    
1608     aio_realpath $wd, sub {
1609     warn "path is $_[0]\n";
1610     };
1611    
1612 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1613     sometimes, fall back to using an absolue path.
1614 root 1.209
1615 root 1.53 =head2 IO::AIO::REQ CLASS
1616 root 1.52
1617     All non-aggregate C<aio_*> functions return an object of this class when
1618     called in non-void context.
1619    
1620     =over 4
1621    
1622 root 1.65 =item cancel $req
1623 root 1.52
1624     Cancels the request, if possible. Has the effect of skipping execution
1625     when entering the B<execute> state and skipping calling the callback when
1626     entering the the B<result> state, but will leave the request otherwise
1627 root 1.151 untouched (with the exception of readdir). That means that requests that
1628     currently execute will not be stopped and resources held by the request
1629     will not be freed prematurely.
1630 root 1.52
1631 root 1.65 =item cb $req $callback->(...)
1632    
1633     Replace (or simply set) the callback registered to the request.
1634    
1635 root 1.52 =back
1636    
1637 root 1.55 =head2 IO::AIO::GRP CLASS
1638    
1639     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1640     objects of this class, too.
1641    
1642     A IO::AIO::GRP object is a special request that can contain multiple other
1643     aio requests.
1644    
1645     You create one by calling the C<aio_group> constructing function with a
1646     callback that will be called when all contained requests have entered the
1647     C<done> state:
1648    
1649     my $grp = aio_group sub {
1650     print "all requests are done\n";
1651     };
1652    
1653     You add requests by calling the C<add> method with one or more
1654     C<IO::AIO::REQ> objects:
1655    
1656     $grp->add (aio_unlink "...");
1657    
1658 root 1.58 add $grp aio_stat "...", sub {
1659     $_[0] or return $grp->result ("error");
1660    
1661     # add another request dynamically, if first succeeded
1662     add $grp aio_open "...", sub {
1663     $grp->result ("ok");
1664     };
1665     };
1666 root 1.55
1667     This makes it very easy to create composite requests (see the source of
1668     C<aio_move> for an application) that work and feel like simple requests.
1669    
1670 root 1.62 =over 4
1671    
1672     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1673 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1674    
1675 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1676 root 1.59 only the request itself, but also all requests it contains.
1677 root 1.55
1678 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1679 root 1.55
1680 root 1.62 =item * You must not add requests to a group from within the group callback (or
1681 root 1.60 any later time).
1682    
1683 root 1.62 =back
1684    
1685 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1686     will finish very quickly. If they contain only requests that are in the
1687     C<done> state, they will also finish. Otherwise they will continue to
1688     exist.
1689    
1690 root 1.133 That means after creating a group you have some time to add requests
1691     (precisely before the callback has been invoked, which is only done within
1692     the C<poll_cb>). And in the callbacks of those requests, you can add
1693     further requests to the group. And only when all those requests have
1694     finished will the the group itself finish.
1695 root 1.57
1696 root 1.55 =over 4
1697    
1698 root 1.65 =item add $grp ...
1699    
1700 root 1.55 =item $grp->add (...)
1701    
1702 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1703     be added, including other groups, as long as you do not create circular
1704     dependencies.
1705    
1706     Returns all its arguments.
1707 root 1.55
1708 root 1.74 =item $grp->cancel_subs
1709    
1710     Cancel all subrequests and clears any feeder, but not the group request
1711     itself. Useful when you queued a lot of events but got a result early.
1712    
1713 root 1.168 The group request will finish normally (you cannot add requests to the
1714     group).
1715    
1716 root 1.58 =item $grp->result (...)
1717    
1718     Set the result value(s) that will be passed to the group callback when all
1719 root 1.120 subrequests have finished and set the groups errno to the current value
1720 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1721     no argument will be passed and errno is zero.
1722    
1723     =item $grp->errno ([$errno])
1724    
1725     Sets the group errno value to C<$errno>, or the current value of errno
1726     when the argument is missing.
1727    
1728     Every aio request has an associated errno value that is restored when
1729     the callback is invoked. This method lets you change this value from its
1730     default (0).
1731    
1732     Calling C<result> will also set errno, so make sure you either set C<$!>
1733     before the call to C<result>, or call c<errno> after it.
1734 root 1.58
1735 root 1.65 =item feed $grp $callback->($grp)
1736 root 1.60
1737     Sets a feeder/generator on this group: every group can have an attached
1738     generator that generates requests if idle. The idea behind this is that,
1739     although you could just queue as many requests as you want in a group,
1740 root 1.139 this might starve other requests for a potentially long time. For example,
1741 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1742     requests, delaying any later requests for a long time.
1743 root 1.60
1744     To avoid this, and allow incremental generation of requests, you can
1745     instead a group and set a feeder on it that generates those requests. The
1746 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1747 root 1.60 below) requests active in the group itself and is expected to queue more
1748     requests.
1749    
1750 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1751     not impose any limits).
1752 root 1.60
1753 root 1.65 If the feed does not queue more requests when called, it will be
1754 root 1.60 automatically removed from the group.
1755    
1756 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1757     C<2> automatically.
1758 root 1.60
1759     Example:
1760    
1761     # stat all files in @files, but only ever use four aio requests concurrently:
1762    
1763     my $grp = aio_group sub { print "finished\n" };
1764 root 1.68 limit $grp 4;
1765 root 1.65 feed $grp sub {
1766 root 1.60 my $file = pop @files
1767     or return;
1768    
1769     add $grp aio_stat $file, sub { ... };
1770 root 1.65 };
1771 root 1.60
1772 root 1.68 =item limit $grp $num
1773 root 1.60
1774     Sets the feeder limit for the group: The feeder will be called whenever
1775     the group contains less than this many requests.
1776    
1777     Setting the limit to C<0> will pause the feeding process.
1778    
1779 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1780     automatically bumps it up to C<2>.
1781    
1782 root 1.55 =back
1783    
1784 root 1.5 =head2 SUPPORT FUNCTIONS
1785    
1786 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1787    
1788 root 1.5 =over 4
1789    
1790     =item $fileno = IO::AIO::poll_fileno
1791    
1792 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1793 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1794     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1795     you have to call C<poll_cb> to check the results.
1796 root 1.5
1797     See C<poll_cb> for an example.
1798    
1799     =item IO::AIO::poll_cb
1800    
1801 root 1.240 Process some requests that have reached the result phase (i.e. they have
1802     been executed but the results are not yet reported). You have to call
1803     this "regularly" to finish outstanding requests.
1804    
1805     Returns C<0> if all events could be processed (or there were no
1806     events to process), or C<-1> if it returned earlier for whatever
1807     reason. Returns immediately when no events are outstanding. The amount
1808     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1809     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1810    
1811     If not all requests were processed for whatever reason, the poll file
1812     descriptor will still be ready when C<poll_cb> returns, so normally you
1813     don't have to do anything special to have it called later.
1814 root 1.78
1815 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1816     ready, it can be beneficial to call this function from loops which submit
1817     a lot of requests, to make sure the results get processed when they become
1818     available and not just when the loop is finished and the event loop takes
1819     over again. This function returns very fast when there are no outstanding
1820     requests.
1821    
1822 root 1.20 Example: Install an Event watcher that automatically calls
1823 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1824     SYNOPSIS section, at the top of this document):
1825 root 1.5
1826     Event->io (fd => IO::AIO::poll_fileno,
1827     poll => 'r', async => 1,
1828     cb => \&IO::AIO::poll_cb);
1829    
1830 root 1.175 =item IO::AIO::poll_wait
1831    
1832 root 1.240 Wait until either at least one request is in the result phase or no
1833     requests are outstanding anymore.
1834    
1835     This is useful if you want to synchronously wait for some requests to
1836     become ready, without actually handling them.
1837 root 1.175
1838     See C<nreqs> for an example.
1839    
1840     =item IO::AIO::poll
1841    
1842     Waits until some requests have been handled.
1843    
1844     Returns the number of requests processed, but is otherwise strictly
1845     equivalent to:
1846    
1847     IO::AIO::poll_wait, IO::AIO::poll_cb
1848    
1849     =item IO::AIO::flush
1850    
1851     Wait till all outstanding AIO requests have been handled.
1852    
1853     Strictly equivalent to:
1854    
1855     IO::AIO::poll_wait, IO::AIO::poll_cb
1856     while IO::AIO::nreqs;
1857    
1858 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1859    
1860     =item IO::AIO::max_poll_time $seconds
1861    
1862     These set the maximum number of requests (default C<0>, meaning infinity)
1863     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1864     the maximum amount of time (default C<0>, meaning infinity) spent in
1865     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1866     of time C<poll_cb> is allowed to use).
1867 root 1.78
1868 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1869     syscall per request processed, which is not normally a problem unless your
1870     callbacks are really really fast or your OS is really really slow (I am
1871     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1872    
1873 root 1.86 Setting these is useful if you want to ensure some level of
1874     interactiveness when perl is not fast enough to process all requests in
1875     time.
1876 root 1.78
1877 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1878 root 1.78
1879     Example: Install an Event watcher that automatically calls
1880 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1881 root 1.78 program get the CPU sometimes even under high AIO load.
1882    
1883 root 1.86 # try not to spend much more than 0.1s in poll_cb
1884     IO::AIO::max_poll_time 0.1;
1885    
1886     # use a low priority so other tasks have priority
1887 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1888     poll => 'r', nice => 1,
1889 root 1.86 cb => &IO::AIO::poll_cb);
1890 root 1.78
1891 root 1.104 =back
1892    
1893 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1894 root 1.13
1895 root 1.105 =over
1896    
1897 root 1.5 =item IO::AIO::min_parallel $nthreads
1898    
1899 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1900     default is C<8>, which means eight asynchronous operations can execute
1901     concurrently at any one time (the number of outstanding requests,
1902     however, is unlimited).
1903 root 1.5
1904 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1905 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1906     create demand for a hundred threads, even if it turns out that everything
1907     is in the cache and could have been processed faster by a single thread.
1908 root 1.34
1909 root 1.61 It is recommended to keep the number of threads relatively low, as some
1910     Linux kernel versions will scale negatively with the number of threads
1911     (higher parallelity => MUCH higher latency). With current Linux 2.6
1912     versions, 4-32 threads should be fine.
1913 root 1.5
1914 root 1.34 Under most circumstances you don't need to call this function, as the
1915     module selects a default that is suitable for low to moderate load.
1916 root 1.5
1917     =item IO::AIO::max_parallel $nthreads
1918    
1919 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1920     specified number of threads are currently running, this function kills
1921     them. This function blocks until the limit is reached.
1922    
1923     While C<$nthreads> are zero, aio requests get queued but not executed
1924     until the number of threads has been increased again.
1925 root 1.5
1926     This module automatically runs C<max_parallel 0> at program end, to ensure
1927     that all threads are killed and that there are no outstanding requests.
1928    
1929     Under normal circumstances you don't need to call this function.
1930    
1931 root 1.86 =item IO::AIO::max_idle $nthreads
1932    
1933 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1934     (i.e., threads that did not get a request to process within the idle
1935     timeout (default: 10 seconds). That means if a thread becomes idle while
1936     C<$nthreads> other threads are also idle, it will free its resources and
1937     exit.
1938 root 1.86
1939     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1940     to allow for extremely high load situations, but want to free resources
1941     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1942    
1943     The default is probably ok in most situations, especially if thread
1944     creation is fast. If thread creation is very slow on your system you might
1945     want to use larger values.
1946    
1947 root 1.188 =item IO::AIO::idle_timeout $seconds
1948    
1949     Sets the minimum idle timeout (default 10) after which worker threads are
1950     allowed to exit. SEe C<IO::AIO::max_idle>.
1951    
1952 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1953 root 1.5
1954 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1955     you do queue up more than this number of requests, the next call to
1956     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1957     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1958     longer exceeded.
1959    
1960     In other words, this setting does not enforce a queue limit, but can be
1961     used to make poll functions block if the limit is exceeded.
1962    
1963 root 1.79 This is a very bad function to use in interactive programs because it
1964     blocks, and a bad way to reduce concurrency because it is inexact: Better
1965     use an C<aio_group> together with a feed callback.
1966    
1967 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1968 root 1.274 a lot of files, you can write something like this:
1969 root 1.195
1970     IO::AIO::max_outstanding 32;
1971    
1972     for my $path (...) {
1973     aio_stat $path , ...;
1974     IO::AIO::poll_cb;
1975     }
1976    
1977     IO::AIO::flush;
1978    
1979     The call to C<poll_cb> inside the loop will normally return instantly, but
1980     as soon as more thna C<32> reqeusts are in-flight, it will block until
1981     some requests have been handled. This keeps the loop from pushing a large
1982     number of C<aio_stat> requests onto the queue.
1983    
1984     The default value for C<max_outstanding> is very large, so there is no
1985     practical limit on the number of outstanding requests.
1986 root 1.5
1987 root 1.104 =back
1988    
1989 root 1.86 =head3 STATISTICAL INFORMATION
1990    
1991 root 1.104 =over
1992    
1993 root 1.86 =item IO::AIO::nreqs
1994    
1995     Returns the number of requests currently in the ready, execute or pending
1996     states (i.e. for which their callback has not been invoked yet).
1997    
1998     Example: wait till there are no outstanding requests anymore:
1999    
2000     IO::AIO::poll_wait, IO::AIO::poll_cb
2001     while IO::AIO::nreqs;
2002    
2003     =item IO::AIO::nready
2004    
2005     Returns the number of requests currently in the ready state (not yet
2006     executed).
2007    
2008     =item IO::AIO::npending
2009    
2010     Returns the number of requests currently in the pending state (executed,
2011     but not yet processed by poll_cb).
2012    
2013 root 1.5 =back
2014    
2015 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2016    
2017 root 1.248 IO::AIO implements some functions that are useful when you want to use
2018     some "Advanced I/O" function not available to in Perl, without going the
2019     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2020     counterpart.
2021 root 1.157
2022     =over 4
2023    
2024 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2025    
2026 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2027    
2028 root 1.275 Tries to find the current file descriptor limit and returns it, or
2029     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2030     the highest valid file descriptor number.
2031    
2032     =item IO::AIO::min_fdlimit [$numfd]
2033    
2034 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2035    
2036 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2037     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2038     is missing, it will try to set a very high limit, although this is not
2039     recommended when you know the actual minimum that you require.
2040    
2041     If the limit cannot be raised enough, the function makes a best-effort
2042     attempt to increase the limit as much as possible, using various
2043     tricks, while still failing. You can query the resulting limit using
2044     C<IO::AIO::get_fdlimit>.
2045    
2046 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2047     true.
2048 root 1.275
2049 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2050    
2051     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2052     but is blocking (this makes most sense if you know the input data is
2053     likely cached already and the output filehandle is set to non-blocking
2054     operations).
2055    
2056     Returns the number of bytes copied, or C<-1> on error.
2057    
2058     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2059    
2060 root 1.184 Simply calls the C<posix_fadvise> function (see its
2061 root 1.157 manpage for details). The following advice constants are
2062 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2063 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2064     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2065    
2066     On systems that do not implement C<posix_fadvise>, this function returns
2067     ENOSYS, otherwise the return value of C<posix_fadvise>.
2068    
2069 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2070    
2071     Simply calls the C<posix_madvise> function (see its
2072     manpage for details). The following advice constants are
2073 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2074 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2075     C<IO::AIO::MADV_DONTNEED>.
2076 root 1.184
2077 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2078     the remaining length of the C<$scalar> is used. If possible, C<$length>
2079     will be reduced to fit into the C<$scalar>.
2080    
2081 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2082     ENOSYS, otherwise the return value of C<posix_madvise>.
2083    
2084     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2085    
2086     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2087     $scalar (see its manpage for details). The following protect
2088 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2089 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2090    
2091 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2092     the remaining length of the C<$scalar> is used. If possible, C<$length>
2093     will be reduced to fit into the C<$scalar>.
2094    
2095 root 1.184 On systems that do not implement C<mprotect>, this function returns
2096     ENOSYS, otherwise the return value of C<mprotect>.
2097    
2098 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2099    
2100     Memory-maps a file (or anonymous memory range) and attaches it to the
2101 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2102     success, and false otherwise.
2103 root 1.176
2104 root 1.268 The scalar must exist, but its contents do not matter - this means you
2105     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2106     the scalar first.
2107    
2108     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2109     which don't change the string length, and most read-only operations such
2110     as copying it or searching it with regexes and so on.
2111 root 1.176
2112     Anything else is unsafe and will, at best, result in memory leaks.
2113    
2114     The memory map associated with the C<$scalar> is automatically removed
2115 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2116     or C<IO::AIO::munmap> functions are called on it.
2117 root 1.176
2118     This calls the C<mmap>(2) function internally. See your system's manual
2119     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2120    
2121     The C<$length> must be larger than zero and smaller than the actual
2122     filesize.
2123    
2124     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2125     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2126    
2127 root 1.256 C<$flags> can be a combination of
2128     C<IO::AIO::MAP_SHARED> or
2129     C<IO::AIO::MAP_PRIVATE>,
2130     or a number of system-specific flags (when not available, the are C<0>):
2131     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2132     C<IO::AIO::MAP_LOCKED>,
2133     C<IO::AIO::MAP_NORESERVE>,
2134     C<IO::AIO::MAP_POPULATE>,
2135     C<IO::AIO::MAP_NONBLOCK>,
2136     C<IO::AIO::MAP_FIXED>,
2137     C<IO::AIO::MAP_GROWSDOWN>,
2138     C<IO::AIO::MAP_32BIT>,
2139     C<IO::AIO::MAP_HUGETLB> or
2140     C<IO::AIO::MAP_STACK>.
2141 root 1.176
2142     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2143    
2144 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2145     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2146    
2147 root 1.177 Example:
2148    
2149     use Digest::MD5;
2150     use IO::AIO;
2151    
2152     open my $fh, "<verybigfile"
2153     or die "$!";
2154    
2155     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2156     or die "verybigfile: $!";
2157    
2158     my $fast_md5 = md5 $data;
2159    
2160 root 1.176 =item IO::AIO::munmap $scalar
2161    
2162     Removes a previous mmap and undefines the C<$scalar>.
2163    
2164 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2165 root 1.285
2166     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2167     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2168     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2169    
2170     Returns true if successful, and false otherwise. If the underlying mmapped
2171     region has changed address, then the true value has the numerical value
2172     C<1>, otherwise it has the numerical value C<0>:
2173    
2174     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2175     or die "mremap: $!";
2176    
2177     if ($success*1) {
2178     warn "scalar has chanegd address in memory\n";
2179     }
2180    
2181     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2182     implemented, but not supported and might go away in a future version.
2183    
2184     On systems where this call is not supported or is not emulated, this call
2185     returns falls and sets C<$!> to C<ENOSYS>.
2186    
2187 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2188 root 1.174
2189 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2190     C<aio_mlock> call (see its description for details).
2191 root 1.174
2192     =item IO::AIO::munlockall
2193    
2194     Calls the C<munlockall> function.
2195    
2196     On systems that do not implement C<munlockall>, this function returns
2197     ENOSYS, otherwise the return value of C<munlockall>.
2198    
2199 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2200    
2201     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2202     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2203     should be the file offset.
2204    
2205 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2206     silently corrupt the data in this case.
2207    
2208 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2209     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2210     C<IO::AIO::SPLICE_F_GIFT>.
2211    
2212     See the C<splice(2)> manpage for details.
2213    
2214     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2215    
2216 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2217 root 1.225 description for C<IO::AIO::splice> above for details.
2218    
2219 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2220    
2221     Attempts to query or change the pipe buffer size. Obviously works only
2222     on pipes, and currently works only on GNU/Linux systems, and fails with
2223     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2224     size on other systems, drop me a note.
2225    
2226 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2227    
2228     This is a direct interface to the Linux L<pipe2(2)> system call. If
2229     C<$flags> is missing or C<0>, then this should be the same as a call to
2230 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2231     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2232     (..., 4096, O_BINARY)>.
2233 root 1.253
2234     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2235     the given flags (Linux 2.6.27, glibc 2.9).
2236    
2237     On success, the read and write file handles are returned.
2238    
2239     On error, nothing will be returned. If the pipe2 syscall is missing and
2240     C<$flags> is non-zero, fails with C<ENOSYS>.
2241    
2242     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2243     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2244     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2245    
2246 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2247    
2248     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2249     or die "pipe2: $!\n";
2250    
2251 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2252 root 1.281
2253     This is a direct interface to the Linux L<eventfd(2)> system call. The
2254     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2255    
2256     On success, the new eventfd filehandle is returned, otherwise returns
2257     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2258    
2259     Please refer to L<eventfd(2)> for more info on this call.
2260    
2261     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2262     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2263    
2264 root 1.282 Example: create a new eventfd filehandle:
2265    
2266     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2267     or die "eventfd: $!\n";
2268    
2269     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2270    
2271     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2272     (unhelpful) default for C<$flags> is C<0>.
2273    
2274     On success, the new timerfd filehandle is returned, otherwise returns
2275     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2276    
2277     Please refer to L<timerfd_create(2)> for more info on this call.
2278    
2279     The following C<$clockid> values are
2280     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2281     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2282     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2283     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2284    
2285     The following C<$flags> values are available (Linux
2286     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2287    
2288     Example: create a new timerfd and set it to one-second repeated alarms,
2289     then wait for two alarms:
2290    
2291     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2292     or die "timerfd_create: $!\n";
2293    
2294     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2295     or die "timerfd_settime: $!\n";
2296    
2297     for (1..2) {
2298     8 == sysread $fh, my $buf, 8
2299     or die "timerfd read failure\n";
2300    
2301     printf "number of expirations (likely 1): %d\n",
2302     unpack "Q", $buf;
2303     }
2304    
2305     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2306    
2307     This is a direct interface to the Linux L<timerfd_settime(2)> system
2308     call. Please refer to its manpage for more info on this call.
2309    
2310     The new itimerspec is specified using two (possibly fractional) second
2311     values, C<$new_interval> and C<$new_value>).
2312    
2313     On success, the current interval and value are returned (as per
2314     C<timerfd_gettime>). On failure, the empty list is returned.
2315    
2316     The following C<$flags> values are
2317     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2318     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2319    
2320     See C<IO::AIO::timerfd_create> for a full example.
2321    
2322     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2323    
2324     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2325     call. Please refer to its manpage for more info on this call.
2326    
2327     On success, returns the current values of interval and value for the given
2328     timerfd (as potentially fractional second values). On failure, the empty
2329     list is returned.
2330    
2331 root 1.157 =back
2332    
2333 root 1.1 =cut
2334    
2335 root 1.61 min_parallel 8;
2336 root 1.1
2337 root 1.95 END { flush }
2338 root 1.82
2339 root 1.1 1;
2340    
2341 root 1.175 =head1 EVENT LOOP INTEGRATION
2342    
2343     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2344     automatically into many event loops:
2345    
2346     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2347     use AnyEvent::AIO;
2348    
2349     You can also integrate IO::AIO manually into many event loops, here are
2350     some examples of how to do this:
2351    
2352     # EV integration
2353     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2354    
2355     # Event integration
2356     Event->io (fd => IO::AIO::poll_fileno,
2357     poll => 'r',
2358     cb => \&IO::AIO::poll_cb);
2359    
2360     # Glib/Gtk2 integration
2361     add_watch Glib::IO IO::AIO::poll_fileno,
2362     in => sub { IO::AIO::poll_cb; 1 };
2363    
2364     # Tk integration
2365     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2366     readable => \&IO::AIO::poll_cb);
2367    
2368     # Danga::Socket integration
2369     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2370     \&IO::AIO::poll_cb);
2371    
2372 root 1.27 =head2 FORK BEHAVIOUR
2373    
2374 root 1.197 Usage of pthreads in a program changes the semantics of fork
2375     considerably. Specifically, only async-safe functions can be called after
2376     fork. Perl doesn't know about this, so in general, you cannot call fork
2377 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2378     pthreads, so this applies, but many other extensions and (for inexplicable
2379     reasons) perl itself often is linked against pthreads, so this limitation
2380     applies to quite a lot of perls.
2381    
2382     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2383     only works in the process that loaded it. Forking is fully supported, but
2384     using IO::AIO in the child is not.
2385    
2386     You might get around by not I<using> IO::AIO before (or after)
2387     forking. You could also try to call the L<IO::AIO::reinit> function in the
2388     child:
2389    
2390     =over 4
2391    
2392     =item IO::AIO::reinit
2393    
2394 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2395     data structures. This is not an operation supported by any standards, but
2396 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2397    
2398     The only reasonable use for this function is to call it after forking, if
2399     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2400     the process will result in undefined behaviour. Calling it at any time
2401     will also result in any undefined (by POSIX) behaviour.
2402    
2403     =back
2404 root 1.52
2405 root 1.282 =head2 LINUX-SPECIFIC CALLS
2406    
2407     When a call is documented as "linux-specific" then this means it
2408     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2409     availability and compatibility of such calls regardless of the platform
2410     it is compiled on, so platforms such as FreeBSD which often implement
2411     these calls will work. When in doubt, call them and see if they fail wth
2412     C<ENOSYS>.
2413    
2414 root 1.60 =head2 MEMORY USAGE
2415    
2416 root 1.72 Per-request usage:
2417    
2418     Each aio request uses - depending on your architecture - around 100-200
2419     bytes of memory. In addition, stat requests need a stat buffer (possibly
2420     a few hundred bytes), readdir requires a result buffer and so on. Perl
2421     scalars and other data passed into aio requests will also be locked and
2422     will consume memory till the request has entered the done state.
2423 root 1.60
2424 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2425 root 1.60 problem.
2426    
2427 root 1.72 Per-thread usage:
2428    
2429     In the execution phase, some aio requests require more memory for
2430     temporary buffers, and each thread requires a stack and other data
2431     structures (usually around 16k-128k, depending on the OS).
2432    
2433     =head1 KNOWN BUGS
2434    
2435 root 1.283 Known bugs will be fixed in the next release :)
2436    
2437     =head1 KNOWN ISSUES
2438    
2439     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2440     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2441     non-created hash slots or other scalars I didn't think of. It's best to
2442     avoid such and either use scalar variables or making sure that the scalar
2443     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2444    
2445     I am not sure anything can be done about this, so this is considered a
2446     known issue, rather than a bug.
2447 root 1.60
2448 root 1.1 =head1 SEE ALSO
2449    
2450 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2451     more natural syntax.
2452 root 1.1
2453     =head1 AUTHOR
2454    
2455     Marc Lehmann <schmorp@schmorp.de>
2456     http://home.schmorp.de/
2457    
2458     =cut
2459