ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.291
Committed: Sun Aug 12 06:10:31 2018 UTC (5 years, 9 months ago) by root
Branch: MAIN
CVS Tags: rel-4_52
Changes since 1.290: +1 -1 lines
Log Message:
4.52

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.291 our $VERSION = 4.52;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
291 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
292     IO::AIO::mprotect $scalar, $offset, $length, $protect
293 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
294 root 1.175 IO::AIO::munlockall
295    
296 root 1.219 =head2 API NOTES
297 root 1.1
298 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
299     with the same name (sans C<aio_>). The arguments are similar or identical,
300 root 1.14 and they all accept an additional (and optional) C<$callback> argument
301 root 1.212 which must be a code reference. This code reference will be called after
302     the syscall has been executed in an asynchronous fashion. The results
303     of the request will be passed as arguments to the callback (and, if an
304     error occured, in C<$!>) - for most requests the syscall return code (e.g.
305     most syscalls return C<-1> on error, unlike perl, which usually delivers
306     "false").
307    
308     Some requests (such as C<aio_readdir>) pass the actual results and
309     communicate failures by passing C<undef>.
310 root 1.1
311 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
312     internally until the request has finished.
313 root 1.1
314 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
315     further manipulation of those requests while they are in-flight.
316 root 1.52
317 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
318     reason for this is that at the time the request is being executed, the
319 root 1.212 current working directory could have changed. Alternatively, you can
320     make sure that you never change the current working directory anywhere
321     in the program and then use relative paths. You can also take advantage
322     of IO::AIOs working directory abstraction, that lets you specify paths
323     relative to some previously-opened "working directory object" - see the
324     description of the C<IO::AIO::WD> class later in this document.
325 root 1.28
326 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
327     in filenames you got from outside (command line, readdir etc.) without
328 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
329     module and encode your pathnames to the locale (or other) encoding in
330     effect in the user environment, d) use Glib::filename_from_unicode on
331     unicode filenames or e) use something else to ensure your scalar has the
332     correct contents.
333 root 1.87
334     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
335 root 1.136 handles correctly whether it is set or not.
336 root 1.1
337 root 1.219 =head2 AIO REQUEST FUNCTIONS
338    
339 root 1.5 =over 4
340 root 1.1
341 root 1.80 =item $prev_pri = aioreq_pri [$pri]
342 root 1.68
343 root 1.80 Returns the priority value that would be used for the next request and, if
344     C<$pri> is given, sets the priority for the next aio request.
345 root 1.68
346 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
347     and C<4>, respectively. Requests with higher priority will be serviced
348     first.
349    
350     The priority will be reset to C<0> after each call to one of the C<aio_*>
351 root 1.68 functions.
352    
353 root 1.69 Example: open a file with low priority, then read something from it with
354     higher priority so the read request is serviced before other low priority
355     open requests (potentially spamming the cache):
356    
357     aioreq_pri -3;
358     aio_open ..., sub {
359     return unless $_[0];
360    
361     aioreq_pri -2;
362     aio_read $_[0], ..., sub {
363     ...
364     };
365     };
366    
367 root 1.106
368 root 1.69 =item aioreq_nice $pri_adjust
369    
370     Similar to C<aioreq_pri>, but subtracts the given value from the current
371 root 1.87 priority, so the effect is cumulative.
372 root 1.69
373 root 1.106
374 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
375 root 1.1
376 root 1.2 Asynchronously open or create a file and call the callback with a newly
377 root 1.233 created filehandle for the file (or C<undef> in case of an error).
378 root 1.1
379     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
380     for an explanation.
381    
382 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
383     list. They are the same as used by C<sysopen>.
384    
385     Likewise, C<$mode> specifies the mode of the newly created file, if it
386     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
387     except that it is mandatory (i.e. use C<0> if you don't create new files,
388 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
389     by the umask in effect then the request is being executed, so better never
390     change the umask.
391 root 1.1
392     Example:
393    
394 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
395 root 1.2 if ($_[0]) {
396     print "open successful, fh is $_[0]\n";
397 root 1.1 ...
398     } else {
399     die "open failed: $!\n";
400     }
401     };
402    
403 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
404     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
405     following POSIX and non-POSIX constants are available (missing ones on
406     your system are, as usual, C<0>):
407    
408     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
409     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
410 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
411 root 1.194
412 root 1.106
413 root 1.40 =item aio_close $fh, $callback->($status)
414 root 1.1
415 root 1.2 Asynchronously close a file and call the callback with the result
416 root 1.116 code.
417    
418 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
419 root 1.121 closing the file descriptor associated with the filehandle itself.
420 root 1.117
421 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
422     use dup2 to overwrite the file descriptor with the write-end of a pipe
423     (the pipe fd will be created on demand and will be cached).
424 root 1.117
425 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
426     free for reuse until the perl filehandle is closed.
427 root 1.117
428     =cut
429    
430 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
431    
432 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
433 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
434     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
435     C<IO::AIO::SEEK_END>).
436    
437     The resulting absolute offset will be passed to the callback, or C<-1> in
438     case of an error.
439    
440     In theory, the C<$whence> constants could be different than the
441     corresponding values from L<Fcntl>, but perl guarantees they are the same,
442     so don't panic.
443    
444 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
445     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
446     could be found. No guarantees about suitability for use in C<aio_seek> or
447     Perl's C<sysseek> can be made though, although I would naively assume they
448     "just work".
449    
450 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
453 root 1.1
454 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
455 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
456     calls the callback with the actual number of bytes transferred (or -1 on
457 root 1.145 error, just like the syscall).
458 root 1.109
459 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
460     offset plus the actual number of bytes read.
461    
462 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
463     be used (and updated), otherwise the file descriptor offset will not be
464     changed by these calls.
465 root 1.109
466 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
467     C<$data>.
468 root 1.109
469     If C<$dataoffset> is less than zero, it will be counted from the end of
470     C<$data>.
471 root 1.1
472 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
473 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
474     the necessary/optional hardware is installed).
475 root 1.31
476 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
477 root 1.1 offset C<0> within the scalar:
478    
479     aio_read $fh, 7, 15, $buffer, 0, sub {
480 root 1.9 $_[0] > 0 or die "read error: $!";
481     print "read $_[0] bytes: <$buffer>\n";
482 root 1.1 };
483    
484 root 1.106
485 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
486 root 1.35
487     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
488     reading at byte offset C<$in_offset>, and starts writing at the current
489     file offset of C<$out_fh>. Because of that, it is not safe to issue more
490     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
491 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
492     move or use the file offset of C<$in_fh>.
493 root 1.35
494 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
495 root 1.196 are written, and there is no way to find out how many more bytes have been
496     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
497     number of bytes written to C<$out_fh>. Only if the result value equals
498     C<$length> one can assume that C<$length> bytes have been read.
499 root 1.185
500     Unlike with other C<aio_> functions, it makes a lot of sense to use
501     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
502     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
503 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
504     into a trap where C<aio_sendfile> reads some data with readahead, then
505     fails to write all data, and when the socket is ready the next time, the
506     data in the cache is already lost, forcing C<aio_sendfile> to again hit
507     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
508     resource usage.
509    
510     This call tries to make use of a native C<sendfile>-like syscall to
511     provide zero-copy operation. For this to work, C<$out_fh> should refer to
512     a socket, and C<$in_fh> should refer to an mmap'able file.
513 root 1.35
514 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
515 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
516     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
517     type of filehandle regardless of the limitations of the operating system.
518    
519     As native sendfile syscalls (as practically any non-POSIX interface hacked
520     together in a hurry to improve benchmark numbers) tend to be rather buggy
521     on many systems, this implementation tries to work around some known bugs
522     in Linux and FreeBSD kernels (probably others, too), but that might fail,
523     so you really really should check the return value of C<aio_sendfile> -
524 root 1.262 fewer bytes than expected might have been transferred.
525 root 1.35
526 root 1.106
527 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
528 root 1.1
529 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
530 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
531     argument specifies the starting point from which data is to be read and
532     C<$length> specifies the number of bytes to be read. I/O is performed in
533     whole pages, so that offset is effectively rounded down to a page boundary
534     and bytes are read up to the next page boundary greater than or equal to
535 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
536 root 1.1 file. The current file offset of the file is left unchanged.
537    
538 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
539     be emulated by simply reading the data, which would have a similar effect.
540 root 1.26
541 root 1.106
542 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
543 root 1.1
544 root 1.40 =item aio_lstat $fh, $callback->($status)
545 root 1.1
546     Works like perl's C<stat> or C<lstat> in void context. The callback will
547     be called after the stat and the results will be available using C<stat _>
548     or C<-s _> etc...
549    
550     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
551     for an explanation.
552    
553     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
554     error when stat'ing a large file, the results will be silently truncated
555     unless perl itself is compiled with large file support.
556    
557 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
558     following constants and functions (if not implemented, the constants will
559     be C<0> and the functions will either C<croak> or fall back on traditional
560     behaviour).
561    
562     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
563     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
564     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
565    
566 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
567     ACCESS>.
568    
569 root 1.1 Example: Print the length of F</etc/passwd>:
570    
571     aio_stat "/etc/passwd", sub {
572     $_[0] and die "stat failed: $!";
573     print "size is ", -s _, "\n";
574     };
575    
576 root 1.106
577 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
578 root 1.172
579     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
580     whether a file handle or path was passed.
581    
582     On success, the callback is passed a hash reference with the following
583     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
584     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
585     is passed.
586    
587     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
588     C<ST_NOSUID>.
589    
590     The following non-POSIX IO::AIO::ST_* flag masks are defined to
591     their correct value when available, or to C<0> on systems that do
592     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
593     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
594     C<ST_NODIRATIME> and C<ST_RELATIME>.
595    
596     Example: stat C</wd> and dump out the data if successful.
597    
598     aio_statvfs "/wd", sub {
599     my $f = $_[0]
600     or die "statvfs: $!";
601    
602     use Data::Dumper;
603     say Dumper $f;
604     };
605    
606     # result:
607     {
608     bsize => 1024,
609     bfree => 4333064312,
610     blocks => 10253828096,
611     files => 2050765568,
612     flag => 4096,
613     favail => 2042092649,
614     bavail => 4333064312,
615     ffree => 2042092649,
616     namemax => 255,
617     frsize => 1024,
618     fsid => 1810
619     }
620    
621 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
622    
623     Works like perl's C<utime> function (including the special case of $atime
624     and $mtime being undef). Fractional times are supported if the underlying
625     syscalls support them.
626    
627     When called with a pathname, uses utimes(2) if available, otherwise
628     utime(2). If called on a file descriptor, uses futimes(2) if available,
629     otherwise returns ENOSYS, so this is not portable.
630    
631     Examples:
632    
633 root 1.107 # set atime and mtime to current time (basically touch(1)):
634 root 1.106 aio_utime "path", undef, undef;
635     # set atime to current time and mtime to beginning of the epoch:
636     aio_utime "path", time, undef; # undef==0
637    
638    
639     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
640    
641     Works like perl's C<chown> function, except that C<undef> for either $uid
642     or $gid is being interpreted as "do not change" (but -1 can also be used).
643    
644     Examples:
645    
646     # same as "chown root path" in the shell:
647     aio_chown "path", 0, -1;
648     # same as above:
649     aio_chown "path", 0, undef;
650    
651    
652 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
653    
654     Works like truncate(2) or ftruncate(2).
655    
656    
657 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
658    
659 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
660     linux C<fallocate> documentation for details.
661 root 1.229
662 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
663     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
664     to deallocate a file range.
665    
666     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
667 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
668     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
669     to unshare shared blocks (see your L<fallocate(2)> manpage).
670 root 1.229
671     The file system block size used by C<fallocate> is presumably the
672 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
673     can dictate other limitations.
674 root 1.229
675     If C<fallocate> isn't available or cannot be emulated (currently no
676     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
677    
678    
679 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
680    
681     Works like perl's C<chmod> function.
682    
683    
684 root 1.40 =item aio_unlink $pathname, $callback->($status)
685 root 1.1
686     Asynchronously unlink (delete) a file and call the callback with the
687     result code.
688    
689 root 1.106
690 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
691 root 1.82
692 root 1.86 [EXPERIMENTAL]
693    
694 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
695    
696 root 1.86 The only (POSIX-) portable way of calling this function is:
697 root 1.83
698 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
699 root 1.82
700 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
701     and functions.
702 root 1.106
703 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
704    
705     Asynchronously create a new link to the existing object at C<$srcpath> at
706     the path C<$dstpath> and call the callback with the result code.
707    
708 root 1.106
709 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
710    
711     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
712     the path C<$dstpath> and call the callback with the result code.
713    
714 root 1.106
715 root 1.209 =item aio_readlink $pathname, $callback->($link)
716 root 1.90
717     Asynchronously read the symlink specified by C<$path> and pass it to
718     the callback. If an error occurs, nothing or undef gets passed to the
719     callback.
720    
721 root 1.106
722 root 1.209 =item aio_realpath $pathname, $callback->($path)
723 root 1.201
724     Asynchronously make the path absolute and resolve any symlinks in
725 root 1.239 C<$path>. The resulting path only consists of directories (same as
726 root 1.202 L<Cwd::realpath>).
727 root 1.201
728     This request can be used to get the absolute path of the current working
729     directory by passing it a path of F<.> (a single dot).
730    
731    
732 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
733    
734     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
735     rename(2) and call the callback with the result code.
736    
737 root 1.241 On systems that support the AIO::WD working directory abstraction
738     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
739     of failing, C<rename> is called on the absolute path of C<$wd>.
740    
741 root 1.106
742 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
743    
744     Basically a version of C<aio_rename> with an additional C<$flags>
745     argument. Calling this with C<$flags=0> is the same as calling
746     C<aio_rename>.
747    
748     Non-zero flags are currently only supported on GNU/Linux systems that
749     support renameat2. Other systems fail with C<ENOSYS> in this case.
750    
751     The following constants are available (missing ones are, as usual C<0>),
752     see renameat2(2) for details:
753    
754     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
755     and C<IO::AIO::RENAME_WHITEOUT>.
756    
757    
758 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
759    
760     Asynchronously mkdir (create) a directory and call the callback with
761     the result code. C<$mode> will be modified by the umask at the time the
762     request is executed, so do not change your umask.
763    
764 root 1.106
765 root 1.40 =item aio_rmdir $pathname, $callback->($status)
766 root 1.27
767     Asynchronously rmdir (delete) a directory and call the callback with the
768     result code.
769    
770 root 1.241 On systems that support the AIO::WD working directory abstraction
771     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
772     C<rmdir> is called on the absolute path of C<$wd>.
773    
774 root 1.106
775 root 1.46 =item aio_readdir $pathname, $callback->($entries)
776 root 1.37
777     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
778     directory (i.e. opendir + readdir + closedir). The entries will not be
779     sorted, and will B<NOT> include the C<.> and C<..> entries.
780    
781 root 1.148 The callback is passed a single argument which is either C<undef> or an
782     array-ref with the filenames.
783    
784    
785     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
786    
787 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
788     tune behaviour and output format. In case of an error, C<$entries> will be
789 root 1.148 C<undef>.
790    
791     The flags are a combination of the following constants, ORed together (the
792     flags will also be passed to the callback, possibly modified):
793    
794     =over 4
795    
796 root 1.150 =item IO::AIO::READDIR_DENTS
797 root 1.148
798 root 1.284 Normally the callback gets an arrayref consisting of names only (as
799     with C<aio_readdir>). If this flag is set, then the callback gets an
800     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
801     single directory entry in more detail:
802 root 1.148
803     C<$name> is the name of the entry.
804    
805 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
806 root 1.148
807 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
808     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
809     C<IO::AIO::DT_WHT>.
810 root 1.148
811 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
812     to know, you have to run stat yourself. Also, for speed/memory reasons,
813     the C<$type> scalars are read-only: you must not modify them.
814 root 1.148
815 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
816 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
817     systems that do not deliver the inode information.
818 root 1.150
819     =item IO::AIO::READDIR_DIRS_FIRST
820 root 1.148
821     When this flag is set, then the names will be returned in an order where
822 root 1.193 likely directories come first, in optimal stat order. This is useful when
823     you need to quickly find directories, or you want to find all directories
824     while avoiding to stat() each entry.
825 root 1.148
826 root 1.149 If the system returns type information in readdir, then this is used
827 root 1.193 to find directories directly. Otherwise, likely directories are names
828     beginning with ".", or otherwise names with no dots, of which names with
829 root 1.149 short names are tried first.
830    
831 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
832 root 1.148
833     When this flag is set, then the names will be returned in an order
834 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
835     all files in the given directory, then the returned order will likely be
836     faster.
837    
838     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
839     then the likely dirs come first, resulting in a less optimal stat order
840     for stat'ing all entries, but likely a more optimal order for finding
841     subdirectories.
842 root 1.148
843 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
844 root 1.148
845     This flag should not be set when calling C<aio_readdirx>. Instead, it
846     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
847 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
848 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
849    
850     =back
851 root 1.37
852 root 1.106
853 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
854    
855     Opens, reads and closes the given file. The data is put into C<$data>,
856     which is resized as required.
857    
858     If C<$offset> is negative, then it is counted from the end of the file.
859    
860     If C<$length> is zero, then the remaining length of the file is
861     used. Also, in this case, the same limitations to modifying C<$data> apply
862     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
863     with C<substr>. If the size of the file is known, specifying a non-zero
864     C<$length> results in a performance advantage.
865    
866     This request is similar to the older C<aio_load> request, but since it is
867     a single request, it might be more efficient to use.
868    
869     Example: load F</etc/passwd> into C<$passwd>.
870    
871     my $passwd;
872     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
873     $_[0] >= 0
874     or die "/etc/passwd: $!\n";
875    
876     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
877     print $passwd;
878     };
879     IO::AIO::flush;
880    
881    
882 root 1.209 =item aio_load $pathname, $data, $callback->($status)
883 root 1.98
884     This is a composite request that tries to fully load the given file into
885     memory. Status is the same as with aio_read.
886    
887 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
888    
889 root 1.98 =cut
890    
891     sub aio_load($$;$) {
892 root 1.123 my ($path, undef, $cb) = @_;
893     my $data = \$_[1];
894 root 1.98
895 root 1.123 my $pri = aioreq_pri;
896     my $grp = aio_group $cb;
897    
898     aioreq_pri $pri;
899     add $grp aio_open $path, O_RDONLY, 0, sub {
900     my $fh = shift
901     or return $grp->result (-1);
902 root 1.98
903     aioreq_pri $pri;
904 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
905     $grp->result ($_[0]);
906 root 1.98 };
907 root 1.123 };
908 root 1.98
909 root 1.123 $grp
910 root 1.98 }
911    
912 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
913    
914     Try to copy the I<file> (directories not supported as either source or
915     destination) from C<$srcpath> to C<$dstpath> and call the callback with
916 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
917 root 1.82
918 root 1.275 Existing destination files will be truncated.
919    
920 root 1.134 This is a composite request that creates the destination file with
921 root 1.82 mode 0200 and copies the contents of the source file into it using
922     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
923     uid/gid, in that order.
924    
925     If an error occurs, the partial destination file will be unlinked, if
926     possible, except when setting atime, mtime, access mode and uid/gid, where
927     errors are being ignored.
928    
929     =cut
930    
931     sub aio_copy($$;$) {
932 root 1.123 my ($src, $dst, $cb) = @_;
933 root 1.82
934 root 1.123 my $pri = aioreq_pri;
935     my $grp = aio_group $cb;
936 root 1.82
937 root 1.123 aioreq_pri $pri;
938     add $grp aio_open $src, O_RDONLY, 0, sub {
939     if (my $src_fh = $_[0]) {
940 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
941 root 1.95
942 root 1.123 aioreq_pri $pri;
943     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
944     if (my $dst_fh = $_[0]) {
945     aioreq_pri $pri;
946     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
947     if ($_[0] == $stat[7]) {
948     $grp->result (0);
949     close $src_fh;
950    
951 root 1.147 my $ch = sub {
952     aioreq_pri $pri;
953     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
954     aioreq_pri $pri;
955     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
956     aioreq_pri $pri;
957     add $grp aio_close $dst_fh;
958     }
959     };
960     };
961 root 1.123
962     aioreq_pri $pri;
963 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
964     if ($_[0] < 0 && $! == ENOSYS) {
965     aioreq_pri $pri;
966     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
967     } else {
968     $ch->();
969     }
970     };
971 root 1.123 } else {
972     $grp->result (-1);
973     close $src_fh;
974     close $dst_fh;
975    
976     aioreq $pri;
977     add $grp aio_unlink $dst;
978     }
979     };
980     } else {
981     $grp->result (-1);
982     }
983     },
984 root 1.82
985 root 1.123 } else {
986     $grp->result (-1);
987     }
988     };
989 root 1.82
990 root 1.123 $grp
991 root 1.82 }
992    
993     =item aio_move $srcpath, $dstpath, $callback->($status)
994    
995     Try to move the I<file> (directories not supported as either source or
996     destination) from C<$srcpath> to C<$dstpath> and call the callback with
997 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
998 root 1.82
999 root 1.137 This is a composite request that tries to rename(2) the file first; if
1000     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1001     that is successful, unlinks the C<$srcpath>.
1002 root 1.82
1003     =cut
1004    
1005     sub aio_move($$;$) {
1006 root 1.123 my ($src, $dst, $cb) = @_;
1007 root 1.82
1008 root 1.123 my $pri = aioreq_pri;
1009     my $grp = aio_group $cb;
1010 root 1.82
1011 root 1.123 aioreq_pri $pri;
1012     add $grp aio_rename $src, $dst, sub {
1013     if ($_[0] && $! == EXDEV) {
1014     aioreq_pri $pri;
1015     add $grp aio_copy $src, $dst, sub {
1016     $grp->result ($_[0]);
1017 root 1.95
1018 root 1.196 unless ($_[0]) {
1019 root 1.123 aioreq_pri $pri;
1020     add $grp aio_unlink $src;
1021     }
1022     };
1023     } else {
1024     $grp->result ($_[0]);
1025     }
1026     };
1027 root 1.82
1028 root 1.123 $grp
1029 root 1.82 }
1030    
1031 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1032 root 1.40
1033 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1034 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1035     names, directories you can recurse into (directories), and ones you cannot
1036     recurse into (everything else, including symlinks to directories).
1037 root 1.52
1038 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1039 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1040     this function generates. If it is C<< <= 0 >>, then a suitable default
1041 root 1.81 will be chosen (currently 4).
1042 root 1.40
1043     On error, the callback is called without arguments, otherwise it receives
1044     two array-refs with path-relative entry names.
1045    
1046     Example:
1047    
1048     aio_scandir $dir, 0, sub {
1049     my ($dirs, $nondirs) = @_;
1050     print "real directories: @$dirs\n";
1051     print "everything else: @$nondirs\n";
1052     };
1053    
1054     Implementation notes.
1055    
1056     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1057    
1058 root 1.149 If readdir returns file type information, then this is used directly to
1059     find directories.
1060    
1061     Otherwise, after reading the directory, the modification time, size etc.
1062     of the directory before and after the readdir is checked, and if they
1063     match (and isn't the current time), the link count will be used to decide
1064     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1065     number of subdirectories will be assumed.
1066    
1067     Then entries will be sorted into likely directories a non-initial dot
1068     currently) and likely non-directories (see C<aio_readdirx>). Then every
1069     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1070     in order of their inode numbers. If that succeeds, it assumes that the
1071     entry is a directory or a symlink to directory (which will be checked
1072 root 1.207 separately). This is often faster than stat'ing the entry itself because
1073 root 1.52 filesystems might detect the type of the entry without reading the inode
1074 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1075     the filetype information on readdir.
1076 root 1.52
1077     If the known number of directories (link count - 2) has been reached, the
1078     rest of the entries is assumed to be non-directories.
1079    
1080     This only works with certainty on POSIX (= UNIX) filesystems, which
1081     fortunately are the vast majority of filesystems around.
1082    
1083     It will also likely work on non-POSIX filesystems with reduced efficiency
1084     as those tend to return 0 or 1 as link counts, which disables the
1085     directory counting heuristic.
1086 root 1.40
1087     =cut
1088    
1089 root 1.100 sub aio_scandir($$;$) {
1090 root 1.123 my ($path, $maxreq, $cb) = @_;
1091    
1092     my $pri = aioreq_pri;
1093 root 1.40
1094 root 1.123 my $grp = aio_group $cb;
1095 root 1.80
1096 root 1.123 $maxreq = 4 if $maxreq <= 0;
1097 root 1.55
1098 root 1.210 # get a wd object
1099 root 1.123 aioreq_pri $pri;
1100 root 1.210 add $grp aio_wd $path, sub {
1101 root 1.212 $_[0]
1102     or return $grp->result ();
1103    
1104 root 1.210 my $wd = [shift, "."];
1105 root 1.40
1106 root 1.210 # stat once
1107 root 1.80 aioreq_pri $pri;
1108 root 1.210 add $grp aio_stat $wd, sub {
1109     return $grp->result () if $_[0];
1110     my $now = time;
1111     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1112 root 1.40
1113 root 1.210 # read the directory entries
1114 root 1.80 aioreq_pri $pri;
1115 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1116     my $entries = shift
1117     or return $grp->result ();
1118    
1119     # stat the dir another time
1120     aioreq_pri $pri;
1121     add $grp aio_stat $wd, sub {
1122     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1123 root 1.95
1124 root 1.210 my $ndirs;
1125 root 1.95
1126 root 1.210 # take the slow route if anything looks fishy
1127     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1128     $ndirs = -1;
1129     } else {
1130     # if nlink == 2, we are finished
1131     # for non-posix-fs's, we rely on nlink < 2
1132     $ndirs = (stat _)[3] - 2
1133     or return $grp->result ([], $entries);
1134     }
1135 root 1.123
1136 root 1.210 my (@dirs, @nondirs);
1137 root 1.40
1138 root 1.210 my $statgrp = add $grp aio_group sub {
1139     $grp->result (\@dirs, \@nondirs);
1140     };
1141 root 1.40
1142 root 1.210 limit $statgrp $maxreq;
1143     feed $statgrp sub {
1144     return unless @$entries;
1145     my $entry = shift @$entries;
1146    
1147     aioreq_pri $pri;
1148     $wd->[1] = "$entry/.";
1149     add $statgrp aio_stat $wd, sub {
1150     if ($_[0] < 0) {
1151     push @nondirs, $entry;
1152     } else {
1153     # need to check for real directory
1154     aioreq_pri $pri;
1155     $wd->[1] = $entry;
1156     add $statgrp aio_lstat $wd, sub {
1157     if (-d _) {
1158     push @dirs, $entry;
1159    
1160     unless (--$ndirs) {
1161     push @nondirs, @$entries;
1162     feed $statgrp;
1163     }
1164     } else {
1165     push @nondirs, $entry;
1166 root 1.74 }
1167 root 1.40 }
1168     }
1169 root 1.210 };
1170 root 1.74 };
1171 root 1.40 };
1172     };
1173     };
1174 root 1.123 };
1175 root 1.55
1176 root 1.123 $grp
1177 root 1.40 }
1178    
1179 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1180 root 1.99
1181 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1182 root 1.239 status of the final C<rmdir> only. This is a composite request that
1183 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1184     everything else.
1185 root 1.99
1186     =cut
1187    
1188     sub aio_rmtree;
1189 root 1.100 sub aio_rmtree($;$) {
1190 root 1.123 my ($path, $cb) = @_;
1191 root 1.99
1192 root 1.123 my $pri = aioreq_pri;
1193     my $grp = aio_group $cb;
1194 root 1.99
1195 root 1.123 aioreq_pri $pri;
1196     add $grp aio_scandir $path, 0, sub {
1197     my ($dirs, $nondirs) = @_;
1198 root 1.99
1199 root 1.123 my $dirgrp = aio_group sub {
1200     add $grp aio_rmdir $path, sub {
1201     $grp->result ($_[0]);
1202 root 1.99 };
1203 root 1.123 };
1204 root 1.99
1205 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1206     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1207 root 1.99
1208 root 1.123 add $grp $dirgrp;
1209     };
1210 root 1.99
1211 root 1.123 $grp
1212 root 1.99 }
1213    
1214 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1215    
1216     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1217    
1218     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1219     they execute asynchronously and pass the return value to the callback.
1220    
1221     Both calls can be used for a lot of things, some of which make more sense
1222     to run asynchronously in their own thread, while some others make less
1223     sense. For example, calls that block waiting for external events, such
1224     as locking, will also lock down an I/O thread while it is waiting, which
1225     can deadlock the whole I/O system. At the same time, there might be no
1226     alternative to using a thread to wait.
1227    
1228     So in general, you should only use these calls for things that do
1229     (filesystem) I/O, not for things that wait for other events (network,
1230     other processes), although if you are careful and know what you are doing,
1231     you still can.
1232    
1233 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1234    
1235 root 1.271 C<F_DUPFD_CLOEXEC>,
1236    
1237     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1238    
1239 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1240    
1241     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1242     C<FS_IOC_FIEMAP>.
1243    
1244     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1245     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1246    
1247     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1248     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1249     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1250     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1251     C<FS_FL_USER_MODIFIABLE>.
1252    
1253     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1254     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1255     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1256     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1257    
1258 root 1.119 =item aio_sync $callback->($status)
1259    
1260     Asynchronously call sync and call the callback when finished.
1261    
1262 root 1.40 =item aio_fsync $fh, $callback->($status)
1263 root 1.1
1264     Asynchronously call fsync on the given filehandle and call the callback
1265     with the fsync result code.
1266    
1267 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1268 root 1.1
1269     Asynchronously call fdatasync on the given filehandle and call the
1270 root 1.26 callback with the fdatasync result code.
1271    
1272     If this call isn't available because your OS lacks it or it couldn't be
1273     detected, it will be emulated by calling C<fsync> instead.
1274 root 1.1
1275 root 1.206 =item aio_syncfs $fh, $callback->($status)
1276    
1277     Asynchronously call the syncfs syscall to sync the filesystem associated
1278     to the given filehandle and call the callback with the syncfs result
1279     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1280     errno to C<ENOSYS> nevertheless.
1281    
1282 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1283    
1284     Sync the data portion of the file specified by C<$offset> and C<$length>
1285     to disk (but NOT the metadata), by calling the Linux-specific
1286     sync_file_range call. If sync_file_range is not available or it returns
1287     ENOSYS, then fdatasync or fsync is being substituted.
1288    
1289     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1290     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1291     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1292     manpage for details.
1293    
1294 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1295 root 1.120
1296     This request tries to open, fsync and close the given path. This is a
1297 root 1.135 composite request intended to sync directories after directory operations
1298 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1299     specific effect, but usually it makes sure that directory changes get
1300     written to disc. It works for anything that can be opened for read-only,
1301     not just directories.
1302    
1303 root 1.162 Future versions of this function might fall back to other methods when
1304     C<fsync> on the directory fails (such as calling C<sync>).
1305    
1306 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1307    
1308     =cut
1309    
1310     sub aio_pathsync($;$) {
1311 root 1.123 my ($path, $cb) = @_;
1312    
1313     my $pri = aioreq_pri;
1314     my $grp = aio_group $cb;
1315 root 1.120
1316 root 1.123 aioreq_pri $pri;
1317     add $grp aio_open $path, O_RDONLY, 0, sub {
1318     my ($fh) = @_;
1319     if ($fh) {
1320     aioreq_pri $pri;
1321     add $grp aio_fsync $fh, sub {
1322     $grp->result ($_[0]);
1323 root 1.120
1324     aioreq_pri $pri;
1325 root 1.123 add $grp aio_close $fh;
1326     };
1327     } else {
1328     $grp->result (-1);
1329     }
1330     };
1331 root 1.120
1332 root 1.123 $grp
1333 root 1.120 }
1334    
1335 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1336 root 1.170
1337     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1338 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1339     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1340     scalar must only be modified in-place while an aio operation is pending on
1341     it).
1342 root 1.170
1343     It calls the C<msync> function of your OS, if available, with the memory
1344     area starting at C<$offset> in the string and ending C<$length> bytes
1345     later. If C<$length> is negative, counts from the end, and if C<$length>
1346     is C<undef>, then it goes till the end of the string. The flags can be
1347 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1348     C<IO::AIO::MS_INVALIDATE>.
1349 root 1.170
1350     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1351    
1352     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1353     scalars.
1354    
1355     It touches (reads or writes) all memory pages in the specified
1356 root 1.239 range inside the scalar. All caveats and parameters are the same
1357 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1358     C<0> (which reads all pages and ensures they are instantiated) or
1359 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1360 root 1.170 writing an octet from it, which dirties the page).
1361    
1362 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1363    
1364     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1365     scalars.
1366    
1367     It reads in all the pages of the underlying storage into memory (if any)
1368     and locks them, so they are not getting swapped/paged out or removed.
1369    
1370     If C<$length> is undefined, then the scalar will be locked till the end.
1371    
1372     On systems that do not implement C<mlock>, this function returns C<-1>
1373     and sets errno to C<ENOSYS>.
1374    
1375     Note that the corresponding C<munlock> is synchronous and is
1376     documented under L<MISCELLANEOUS FUNCTIONS>.
1377    
1378 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1379     C<$data> gets destroyed.
1380    
1381     open my $fh, "<", $path or die "$path: $!";
1382     my $data;
1383     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1384     aio_mlock $data; # mlock in background
1385    
1386 root 1.182 =item aio_mlockall $flags, $callback->($status)
1387    
1388     Calls the C<mlockall> function with the given C<$flags> (a combination of
1389     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1390    
1391     On systems that do not implement C<mlockall>, this function returns C<-1>
1392     and sets errno to C<ENOSYS>.
1393    
1394     Note that the corresponding C<munlockall> is synchronous and is
1395     documented under L<MISCELLANEOUS FUNCTIONS>.
1396    
1397 root 1.183 Example: asynchronously lock all current and future pages into memory.
1398    
1399     aio_mlockall IO::AIO::MCL_FUTURE;
1400    
1401 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1402    
1403 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1404     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1405     the ioctl is not available on your OS, then this request will fail with
1406 root 1.223 C<ENOSYS>.
1407    
1408     C<$start> is the starting offset to query extents for, C<$length> is the
1409     size of the range to query - if it is C<undef>, then the whole file will
1410     be queried.
1411    
1412     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1413     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1414     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1415     the data portion.
1416    
1417     C<$count> is the maximum number of extent records to return. If it is
1418 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1419 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1420 root 1.232 instead of the extents themselves (which is unreliable, see below).
1421 root 1.223
1422     If an error occurs, the callback receives no arguments. The special
1423     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1424    
1425     Otherwise, the callback receives an array reference with extent
1426     structures. Each extent structure is an array reference itself, with the
1427     following members:
1428    
1429     [$logical, $physical, $length, $flags]
1430    
1431     Flags is any combination of the following flag values (typically either C<0>
1432 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1433 root 1.223
1434     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1435     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1436     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1437     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1438     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1439     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1440    
1441 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1442 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1443 root 1.278 it to return all extents of a range for files with a large number of
1444     extents. The code (only) works around all these issues if C<$count> is
1445     C<undef>.
1446 root 1.232
1447 root 1.58 =item aio_group $callback->(...)
1448 root 1.54
1449 root 1.55 This is a very special aio request: Instead of doing something, it is a
1450     container for other aio requests, which is useful if you want to bundle
1451 root 1.71 many requests into a single, composite, request with a definite callback
1452     and the ability to cancel the whole request with its subrequests.
1453 root 1.55
1454     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1455     for more info.
1456    
1457     Example:
1458    
1459     my $grp = aio_group sub {
1460     print "all stats done\n";
1461     };
1462    
1463     add $grp
1464     (aio_stat ...),
1465     (aio_stat ...),
1466     ...;
1467    
1468 root 1.63 =item aio_nop $callback->()
1469    
1470     This is a special request - it does nothing in itself and is only used for
1471     side effects, such as when you want to add a dummy request to a group so
1472     that finishing the requests in the group depends on executing the given
1473     code.
1474    
1475 root 1.64 While this request does nothing, it still goes through the execution
1476     phase and still requires a worker thread. Thus, the callback will not
1477     be executed immediately but only after other requests in the queue have
1478     entered their execution phase. This can be used to measure request
1479     latency.
1480    
1481 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1482 root 1.54
1483     Mainly used for debugging and benchmarking, this aio request puts one of
1484     the request workers to sleep for the given time.
1485    
1486 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1487 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1488     immense (it blocks a thread for a long time) so do not use this function
1489     except to put your application under artificial I/O pressure.
1490 root 1.56
1491 root 1.5 =back
1492    
1493 root 1.209
1494     =head2 IO::AIO::WD - multiple working directories
1495    
1496     Your process only has one current working directory, which is used by all
1497     threads. This makes it hard to use relative paths (some other component
1498     could call C<chdir> at any time, and it is hard to control when the path
1499     will be used by IO::AIO).
1500    
1501     One solution for this is to always use absolute paths. This usually works,
1502     but can be quite slow (the kernel has to walk the whole path on every
1503     access), and can also be a hassle to implement.
1504    
1505     Newer POSIX systems have a number of functions (openat, fdopendir,
1506     futimensat and so on) that make it possible to specify working directories
1507     per operation.
1508    
1509     For portability, and because the clowns who "designed", or shall I write,
1510     perpetrated this new interface were obviously half-drunk, this abstraction
1511     cannot be perfect, though.
1512    
1513     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1514     object. This object stores the canonicalised, absolute version of the
1515     path, and on systems that allow it, also a directory file descriptor.
1516    
1517     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1518     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1519 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1520     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1521 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1522 root 1.209 to that IO::AIO::WD object.
1523    
1524     For example, to get a wd object for F</etc> and then stat F<passwd>
1525     inside, you would write:
1526    
1527     aio_wd "/etc", sub {
1528     my $etcdir = shift;
1529    
1530     # although $etcdir can be undef on error, there is generally no reason
1531     # to check for errors here, as aio_stat will fail with ENOENT
1532     # when $etcdir is undef.
1533    
1534     aio_stat [$etcdir, "passwd"], sub {
1535     # yay
1536     };
1537     };
1538    
1539 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1540     creating an IO::AIO::WD object is itself a potentially blocking operation,
1541     which is why it is done asynchronously.
1542 root 1.214
1543     To stat the directory obtained with C<aio_wd> above, one could write
1544     either of the following three request calls:
1545    
1546     aio_lstat "/etc" , sub { ... # pathname as normal string
1547     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1548     aio_lstat $wd , sub { ... # shorthand for the previous
1549 root 1.209
1550     As with normal pathnames, IO::AIO keeps a copy of the working directory
1551     object and the pathname string, so you could write the following without
1552     causing any issues due to C<$path> getting reused:
1553    
1554     my $path = [$wd, undef];
1555    
1556     for my $name (qw(abc def ghi)) {
1557     $path->[1] = $name;
1558     aio_stat $path, sub {
1559     # ...
1560     };
1561     }
1562    
1563     There are some caveats: when directories get renamed (or deleted), the
1564     pathname string doesn't change, so will point to the new directory (or
1565     nowhere at all), while the directory fd, if available on the system,
1566     will still point to the original directory. Most functions accepting a
1567     pathname will use the directory fd on newer systems, and the string on
1568 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1569     the string form of the pathname.
1570 root 1.209
1571 root 1.239 So this functionality is mainly useful to get some protection against
1572 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1573     reference, and to speed up doing many operations in the same directory
1574     (e.g. when stat'ing all files in a directory).
1575    
1576     The following functions implement this working directory abstraction:
1577    
1578     =over 4
1579    
1580     =item aio_wd $pathname, $callback->($wd)
1581    
1582     Asynchonously canonicalise the given pathname and convert it to an
1583     IO::AIO::WD object representing it. If possible and supported on the
1584     system, also open a directory fd to speed up pathname resolution relative
1585     to this working directory.
1586    
1587     If something goes wrong, then C<undef> is passwd to the callback instead
1588     of a working directory object and C<$!> is set appropriately. Since
1589     passing C<undef> as working directory component of a pathname fails the
1590     request with C<ENOENT>, there is often no need for error checking in the
1591     C<aio_wd> callback, as future requests using the value will fail in the
1592     expected way.
1593    
1594     =item IO::AIO::CWD
1595    
1596     This is a compiletime constant (object) that represents the process
1597     current working directory.
1598    
1599 root 1.239 Specifying this object as working directory object for a pathname is as if
1600     the pathname would be specified directly, without a directory object. For
1601     example, these calls are functionally identical:
1602 root 1.209
1603     aio_stat "somefile", sub { ... };
1604     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1605    
1606     =back
1607    
1608 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1609     C<aio_realpath>:
1610    
1611     aio_realpath $wd, sub {
1612     warn "path is $_[0]\n";
1613     };
1614    
1615 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1616     sometimes, fall back to using an absolue path.
1617 root 1.209
1618 root 1.53 =head2 IO::AIO::REQ CLASS
1619 root 1.52
1620     All non-aggregate C<aio_*> functions return an object of this class when
1621     called in non-void context.
1622    
1623     =over 4
1624    
1625 root 1.65 =item cancel $req
1626 root 1.52
1627     Cancels the request, if possible. Has the effect of skipping execution
1628     when entering the B<execute> state and skipping calling the callback when
1629     entering the the B<result> state, but will leave the request otherwise
1630 root 1.151 untouched (with the exception of readdir). That means that requests that
1631     currently execute will not be stopped and resources held by the request
1632     will not be freed prematurely.
1633 root 1.52
1634 root 1.65 =item cb $req $callback->(...)
1635    
1636     Replace (or simply set) the callback registered to the request.
1637    
1638 root 1.52 =back
1639    
1640 root 1.55 =head2 IO::AIO::GRP CLASS
1641    
1642     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1643     objects of this class, too.
1644    
1645     A IO::AIO::GRP object is a special request that can contain multiple other
1646     aio requests.
1647    
1648     You create one by calling the C<aio_group> constructing function with a
1649     callback that will be called when all contained requests have entered the
1650     C<done> state:
1651    
1652     my $grp = aio_group sub {
1653     print "all requests are done\n";
1654     };
1655    
1656     You add requests by calling the C<add> method with one or more
1657     C<IO::AIO::REQ> objects:
1658    
1659     $grp->add (aio_unlink "...");
1660    
1661 root 1.58 add $grp aio_stat "...", sub {
1662     $_[0] or return $grp->result ("error");
1663    
1664     # add another request dynamically, if first succeeded
1665     add $grp aio_open "...", sub {
1666     $grp->result ("ok");
1667     };
1668     };
1669 root 1.55
1670     This makes it very easy to create composite requests (see the source of
1671     C<aio_move> for an application) that work and feel like simple requests.
1672    
1673 root 1.62 =over 4
1674    
1675     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1676 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1677    
1678 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1679 root 1.59 only the request itself, but also all requests it contains.
1680 root 1.55
1681 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1682 root 1.55
1683 root 1.62 =item * You must not add requests to a group from within the group callback (or
1684 root 1.60 any later time).
1685    
1686 root 1.62 =back
1687    
1688 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1689     will finish very quickly. If they contain only requests that are in the
1690     C<done> state, they will also finish. Otherwise they will continue to
1691     exist.
1692    
1693 root 1.133 That means after creating a group you have some time to add requests
1694     (precisely before the callback has been invoked, which is only done within
1695     the C<poll_cb>). And in the callbacks of those requests, you can add
1696     further requests to the group. And only when all those requests have
1697     finished will the the group itself finish.
1698 root 1.57
1699 root 1.55 =over 4
1700    
1701 root 1.65 =item add $grp ...
1702    
1703 root 1.55 =item $grp->add (...)
1704    
1705 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1706     be added, including other groups, as long as you do not create circular
1707     dependencies.
1708    
1709     Returns all its arguments.
1710 root 1.55
1711 root 1.74 =item $grp->cancel_subs
1712    
1713     Cancel all subrequests and clears any feeder, but not the group request
1714     itself. Useful when you queued a lot of events but got a result early.
1715    
1716 root 1.168 The group request will finish normally (you cannot add requests to the
1717     group).
1718    
1719 root 1.58 =item $grp->result (...)
1720    
1721     Set the result value(s) that will be passed to the group callback when all
1722 root 1.120 subrequests have finished and set the groups errno to the current value
1723 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1724     no argument will be passed and errno is zero.
1725    
1726     =item $grp->errno ([$errno])
1727    
1728     Sets the group errno value to C<$errno>, or the current value of errno
1729     when the argument is missing.
1730    
1731     Every aio request has an associated errno value that is restored when
1732     the callback is invoked. This method lets you change this value from its
1733     default (0).
1734    
1735     Calling C<result> will also set errno, so make sure you either set C<$!>
1736     before the call to C<result>, or call c<errno> after it.
1737 root 1.58
1738 root 1.65 =item feed $grp $callback->($grp)
1739 root 1.60
1740     Sets a feeder/generator on this group: every group can have an attached
1741     generator that generates requests if idle. The idea behind this is that,
1742     although you could just queue as many requests as you want in a group,
1743 root 1.139 this might starve other requests for a potentially long time. For example,
1744 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1745     requests, delaying any later requests for a long time.
1746 root 1.60
1747     To avoid this, and allow incremental generation of requests, you can
1748     instead a group and set a feeder on it that generates those requests. The
1749 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1750 root 1.60 below) requests active in the group itself and is expected to queue more
1751     requests.
1752    
1753 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1754     not impose any limits).
1755 root 1.60
1756 root 1.65 If the feed does not queue more requests when called, it will be
1757 root 1.60 automatically removed from the group.
1758    
1759 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1760     C<2> automatically.
1761 root 1.60
1762     Example:
1763    
1764     # stat all files in @files, but only ever use four aio requests concurrently:
1765    
1766     my $grp = aio_group sub { print "finished\n" };
1767 root 1.68 limit $grp 4;
1768 root 1.65 feed $grp sub {
1769 root 1.60 my $file = pop @files
1770     or return;
1771    
1772     add $grp aio_stat $file, sub { ... };
1773 root 1.65 };
1774 root 1.60
1775 root 1.68 =item limit $grp $num
1776 root 1.60
1777     Sets the feeder limit for the group: The feeder will be called whenever
1778     the group contains less than this many requests.
1779    
1780     Setting the limit to C<0> will pause the feeding process.
1781    
1782 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1783     automatically bumps it up to C<2>.
1784    
1785 root 1.55 =back
1786    
1787 root 1.5 =head2 SUPPORT FUNCTIONS
1788    
1789 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1790    
1791 root 1.5 =over 4
1792    
1793     =item $fileno = IO::AIO::poll_fileno
1794    
1795 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1796 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1797     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1798     you have to call C<poll_cb> to check the results.
1799 root 1.5
1800     See C<poll_cb> for an example.
1801    
1802     =item IO::AIO::poll_cb
1803    
1804 root 1.240 Process some requests that have reached the result phase (i.e. they have
1805     been executed but the results are not yet reported). You have to call
1806     this "regularly" to finish outstanding requests.
1807    
1808     Returns C<0> if all events could be processed (or there were no
1809     events to process), or C<-1> if it returned earlier for whatever
1810     reason. Returns immediately when no events are outstanding. The amount
1811     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1812     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1813    
1814     If not all requests were processed for whatever reason, the poll file
1815     descriptor will still be ready when C<poll_cb> returns, so normally you
1816     don't have to do anything special to have it called later.
1817 root 1.78
1818 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1819     ready, it can be beneficial to call this function from loops which submit
1820     a lot of requests, to make sure the results get processed when they become
1821     available and not just when the loop is finished and the event loop takes
1822     over again. This function returns very fast when there are no outstanding
1823     requests.
1824    
1825 root 1.20 Example: Install an Event watcher that automatically calls
1826 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1827     SYNOPSIS section, at the top of this document):
1828 root 1.5
1829     Event->io (fd => IO::AIO::poll_fileno,
1830     poll => 'r', async => 1,
1831     cb => \&IO::AIO::poll_cb);
1832    
1833 root 1.175 =item IO::AIO::poll_wait
1834    
1835 root 1.240 Wait until either at least one request is in the result phase or no
1836     requests are outstanding anymore.
1837    
1838     This is useful if you want to synchronously wait for some requests to
1839     become ready, without actually handling them.
1840 root 1.175
1841     See C<nreqs> for an example.
1842    
1843     =item IO::AIO::poll
1844    
1845     Waits until some requests have been handled.
1846    
1847     Returns the number of requests processed, but is otherwise strictly
1848     equivalent to:
1849    
1850     IO::AIO::poll_wait, IO::AIO::poll_cb
1851    
1852     =item IO::AIO::flush
1853    
1854     Wait till all outstanding AIO requests have been handled.
1855    
1856     Strictly equivalent to:
1857    
1858     IO::AIO::poll_wait, IO::AIO::poll_cb
1859     while IO::AIO::nreqs;
1860    
1861 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1862    
1863     =item IO::AIO::max_poll_time $seconds
1864    
1865     These set the maximum number of requests (default C<0>, meaning infinity)
1866     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1867     the maximum amount of time (default C<0>, meaning infinity) spent in
1868     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1869     of time C<poll_cb> is allowed to use).
1870 root 1.78
1871 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1872     syscall per request processed, which is not normally a problem unless your
1873     callbacks are really really fast or your OS is really really slow (I am
1874     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1875    
1876 root 1.86 Setting these is useful if you want to ensure some level of
1877     interactiveness when perl is not fast enough to process all requests in
1878     time.
1879 root 1.78
1880 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1881 root 1.78
1882     Example: Install an Event watcher that automatically calls
1883 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1884 root 1.78 program get the CPU sometimes even under high AIO load.
1885    
1886 root 1.86 # try not to spend much more than 0.1s in poll_cb
1887     IO::AIO::max_poll_time 0.1;
1888    
1889     # use a low priority so other tasks have priority
1890 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1891     poll => 'r', nice => 1,
1892 root 1.86 cb => &IO::AIO::poll_cb);
1893 root 1.78
1894 root 1.104 =back
1895    
1896 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1897 root 1.13
1898 root 1.105 =over
1899    
1900 root 1.5 =item IO::AIO::min_parallel $nthreads
1901    
1902 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1903     default is C<8>, which means eight asynchronous operations can execute
1904     concurrently at any one time (the number of outstanding requests,
1905     however, is unlimited).
1906 root 1.5
1907 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1908 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1909     create demand for a hundred threads, even if it turns out that everything
1910     is in the cache and could have been processed faster by a single thread.
1911 root 1.34
1912 root 1.61 It is recommended to keep the number of threads relatively low, as some
1913     Linux kernel versions will scale negatively with the number of threads
1914     (higher parallelity => MUCH higher latency). With current Linux 2.6
1915     versions, 4-32 threads should be fine.
1916 root 1.5
1917 root 1.34 Under most circumstances you don't need to call this function, as the
1918     module selects a default that is suitable for low to moderate load.
1919 root 1.5
1920     =item IO::AIO::max_parallel $nthreads
1921    
1922 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1923     specified number of threads are currently running, this function kills
1924     them. This function blocks until the limit is reached.
1925    
1926     While C<$nthreads> are zero, aio requests get queued but not executed
1927     until the number of threads has been increased again.
1928 root 1.5
1929     This module automatically runs C<max_parallel 0> at program end, to ensure
1930     that all threads are killed and that there are no outstanding requests.
1931    
1932     Under normal circumstances you don't need to call this function.
1933    
1934 root 1.86 =item IO::AIO::max_idle $nthreads
1935    
1936 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1937     (i.e., threads that did not get a request to process within the idle
1938     timeout (default: 10 seconds). That means if a thread becomes idle while
1939     C<$nthreads> other threads are also idle, it will free its resources and
1940     exit.
1941 root 1.86
1942     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1943     to allow for extremely high load situations, but want to free resources
1944     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1945    
1946     The default is probably ok in most situations, especially if thread
1947     creation is fast. If thread creation is very slow on your system you might
1948     want to use larger values.
1949    
1950 root 1.188 =item IO::AIO::idle_timeout $seconds
1951    
1952     Sets the minimum idle timeout (default 10) after which worker threads are
1953     allowed to exit. SEe C<IO::AIO::max_idle>.
1954    
1955 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1956 root 1.5
1957 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1958     you do queue up more than this number of requests, the next call to
1959     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1960     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1961     longer exceeded.
1962    
1963     In other words, this setting does not enforce a queue limit, but can be
1964     used to make poll functions block if the limit is exceeded.
1965    
1966 root 1.79 This is a very bad function to use in interactive programs because it
1967     blocks, and a bad way to reduce concurrency because it is inexact: Better
1968     use an C<aio_group> together with a feed callback.
1969    
1970 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1971 root 1.274 a lot of files, you can write something like this:
1972 root 1.195
1973     IO::AIO::max_outstanding 32;
1974    
1975     for my $path (...) {
1976     aio_stat $path , ...;
1977     IO::AIO::poll_cb;
1978     }
1979    
1980     IO::AIO::flush;
1981    
1982     The call to C<poll_cb> inside the loop will normally return instantly, but
1983     as soon as more thna C<32> reqeusts are in-flight, it will block until
1984     some requests have been handled. This keeps the loop from pushing a large
1985     number of C<aio_stat> requests onto the queue.
1986    
1987     The default value for C<max_outstanding> is very large, so there is no
1988     practical limit on the number of outstanding requests.
1989 root 1.5
1990 root 1.104 =back
1991    
1992 root 1.86 =head3 STATISTICAL INFORMATION
1993    
1994 root 1.104 =over
1995    
1996 root 1.86 =item IO::AIO::nreqs
1997    
1998     Returns the number of requests currently in the ready, execute or pending
1999     states (i.e. for which their callback has not been invoked yet).
2000    
2001     Example: wait till there are no outstanding requests anymore:
2002    
2003     IO::AIO::poll_wait, IO::AIO::poll_cb
2004     while IO::AIO::nreqs;
2005    
2006     =item IO::AIO::nready
2007    
2008     Returns the number of requests currently in the ready state (not yet
2009     executed).
2010    
2011     =item IO::AIO::npending
2012    
2013     Returns the number of requests currently in the pending state (executed,
2014     but not yet processed by poll_cb).
2015    
2016 root 1.5 =back
2017    
2018 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2019    
2020     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2021     generally find access/modification and change times with subsecond time
2022     accuracy of the system supports it, but perl's built-in functions only
2023     return the integer part.
2024    
2025     The following functions return the timestamps of the most recent
2026     stat with subsecond precision on most systems and work both after
2027     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2028     value is only meaningful after a successful C<stat>/C<lstat> call, or
2029     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2030    
2031     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2032     full resolution without rounding and work with standard perl C<stat>,
2033     alleviating the need to call the special C<Time::HiRes> functions, which
2034     do not act like their perl counterparts.
2035    
2036     On operating systems or file systems where subsecond time resolution is
2037     not supported or could not be detected, a fractional part of C<0> is
2038     returned, so it is always safe to call these functions.
2039    
2040     =over 4
2041    
2042 root 1.290 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime
2043 root 1.289
2044     Return the access, modication or change time, respectively, including
2045     fractional part. Due to the limited precision of floating point, the
2046     accuracy on most platforms is only a bit better than milliseconds for
2047     times around now - see the I<nsec> function family, below, for full
2048     accuracy.
2049    
2050 root 1.290 =item ($atime, $mtime, $ctime, ...) = IO::AIO::st_xtime
2051 root 1.289
2052     Returns access, modification and change time all in one go, and maybe more
2053     times in the future version.
2054    
2055 root 1.290 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec
2056 root 1.289
2057     Return the fractional access, modifcation or change time, in nanoseconds,
2058     as an integer in the range C<0> to C<999999999>.
2059    
2060 root 1.290 =item ($atime, $mtime, $ctime, ...) = IO::AIO::st_xtimensec
2061    
2062     Like the functions above, but returns all three times in one go (and maybe
2063     more in future versions).
2064    
2065 root 1.289 =back
2066    
2067     Example: print the high resolution modification time of F</etc>, using
2068     C<stat>, and C<IO::AIO::aio_stat>.
2069    
2070     if (stat "/etc") {
2071 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2072 root 1.289 }
2073    
2074     IO::AIO::aio_stat "/etc", sub {
2075     $_[0]
2076     and return;
2077    
2078 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2079 root 1.289 };
2080    
2081     IO::AIO::flush;
2082    
2083     Output of the awbove on my system, showing reduced and full accuracy:
2084    
2085     stat(/etc) mtime: 1534043702.020808
2086     aio_stat(/etc) mtime: 1534043702.020807792
2087    
2088 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2089    
2090 root 1.248 IO::AIO implements some functions that are useful when you want to use
2091     some "Advanced I/O" function not available to in Perl, without going the
2092     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2093     counterpart.
2094 root 1.157
2095     =over 4
2096    
2097 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2098    
2099 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2100    
2101 root 1.275 Tries to find the current file descriptor limit and returns it, or
2102     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2103     the highest valid file descriptor number.
2104    
2105     =item IO::AIO::min_fdlimit [$numfd]
2106    
2107 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2108    
2109 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2110     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2111     is missing, it will try to set a very high limit, although this is not
2112     recommended when you know the actual minimum that you require.
2113    
2114     If the limit cannot be raised enough, the function makes a best-effort
2115     attempt to increase the limit as much as possible, using various
2116     tricks, while still failing. You can query the resulting limit using
2117     C<IO::AIO::get_fdlimit>.
2118    
2119 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2120     true.
2121 root 1.275
2122 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2123    
2124     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2125     but is blocking (this makes most sense if you know the input data is
2126     likely cached already and the output filehandle is set to non-blocking
2127     operations).
2128    
2129     Returns the number of bytes copied, or C<-1> on error.
2130    
2131     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2132    
2133 root 1.184 Simply calls the C<posix_fadvise> function (see its
2134 root 1.157 manpage for details). The following advice constants are
2135 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2136 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2137     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2138    
2139     On systems that do not implement C<posix_fadvise>, this function returns
2140     ENOSYS, otherwise the return value of C<posix_fadvise>.
2141    
2142 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2143    
2144     Simply calls the C<posix_madvise> function (see its
2145     manpage for details). The following advice constants are
2146 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2147 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2148     C<IO::AIO::MADV_DONTNEED>.
2149 root 1.184
2150 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2151     the remaining length of the C<$scalar> is used. If possible, C<$length>
2152     will be reduced to fit into the C<$scalar>.
2153    
2154 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2155     ENOSYS, otherwise the return value of C<posix_madvise>.
2156    
2157     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2158    
2159     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2160     $scalar (see its manpage for details). The following protect
2161 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2162 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2163    
2164 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2165     the remaining length of the C<$scalar> is used. If possible, C<$length>
2166     will be reduced to fit into the C<$scalar>.
2167    
2168 root 1.184 On systems that do not implement C<mprotect>, this function returns
2169     ENOSYS, otherwise the return value of C<mprotect>.
2170    
2171 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2172    
2173     Memory-maps a file (or anonymous memory range) and attaches it to the
2174 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2175     success, and false otherwise.
2176 root 1.176
2177 root 1.268 The scalar must exist, but its contents do not matter - this means you
2178     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2179     the scalar first.
2180    
2181     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2182     which don't change the string length, and most read-only operations such
2183     as copying it or searching it with regexes and so on.
2184 root 1.176
2185     Anything else is unsafe and will, at best, result in memory leaks.
2186    
2187     The memory map associated with the C<$scalar> is automatically removed
2188 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2189     or C<IO::AIO::munmap> functions are called on it.
2190 root 1.176
2191     This calls the C<mmap>(2) function internally. See your system's manual
2192     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2193    
2194     The C<$length> must be larger than zero and smaller than the actual
2195     filesize.
2196    
2197     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2198     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2199    
2200 root 1.256 C<$flags> can be a combination of
2201     C<IO::AIO::MAP_SHARED> or
2202     C<IO::AIO::MAP_PRIVATE>,
2203     or a number of system-specific flags (when not available, the are C<0>):
2204     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2205     C<IO::AIO::MAP_LOCKED>,
2206     C<IO::AIO::MAP_NORESERVE>,
2207     C<IO::AIO::MAP_POPULATE>,
2208     C<IO::AIO::MAP_NONBLOCK>,
2209     C<IO::AIO::MAP_FIXED>,
2210     C<IO::AIO::MAP_GROWSDOWN>,
2211     C<IO::AIO::MAP_32BIT>,
2212     C<IO::AIO::MAP_HUGETLB> or
2213     C<IO::AIO::MAP_STACK>.
2214 root 1.176
2215     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2216    
2217 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2218     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2219    
2220 root 1.177 Example:
2221    
2222     use Digest::MD5;
2223     use IO::AIO;
2224    
2225     open my $fh, "<verybigfile"
2226     or die "$!";
2227    
2228     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2229     or die "verybigfile: $!";
2230    
2231     my $fast_md5 = md5 $data;
2232    
2233 root 1.176 =item IO::AIO::munmap $scalar
2234    
2235     Removes a previous mmap and undefines the C<$scalar>.
2236    
2237 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2238 root 1.285
2239     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2240     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2241     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2242    
2243     Returns true if successful, and false otherwise. If the underlying mmapped
2244     region has changed address, then the true value has the numerical value
2245     C<1>, otherwise it has the numerical value C<0>:
2246    
2247     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2248     or die "mremap: $!";
2249    
2250     if ($success*1) {
2251     warn "scalar has chanegd address in memory\n";
2252     }
2253    
2254     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2255     implemented, but not supported and might go away in a future version.
2256    
2257     On systems where this call is not supported or is not emulated, this call
2258     returns falls and sets C<$!> to C<ENOSYS>.
2259    
2260 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2261 root 1.174
2262 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2263     C<aio_mlock> call (see its description for details).
2264 root 1.174
2265     =item IO::AIO::munlockall
2266    
2267     Calls the C<munlockall> function.
2268    
2269     On systems that do not implement C<munlockall>, this function returns
2270     ENOSYS, otherwise the return value of C<munlockall>.
2271    
2272 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2273    
2274     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2275     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2276     should be the file offset.
2277    
2278 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2279     silently corrupt the data in this case.
2280    
2281 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2282     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2283     C<IO::AIO::SPLICE_F_GIFT>.
2284    
2285     See the C<splice(2)> manpage for details.
2286    
2287     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2288    
2289 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2290 root 1.225 description for C<IO::AIO::splice> above for details.
2291    
2292 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2293    
2294     Attempts to query or change the pipe buffer size. Obviously works only
2295     on pipes, and currently works only on GNU/Linux systems, and fails with
2296     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2297     size on other systems, drop me a note.
2298    
2299 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2300    
2301     This is a direct interface to the Linux L<pipe2(2)> system call. If
2302     C<$flags> is missing or C<0>, then this should be the same as a call to
2303 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2304     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2305     (..., 4096, O_BINARY)>.
2306 root 1.253
2307     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2308     the given flags (Linux 2.6.27, glibc 2.9).
2309    
2310     On success, the read and write file handles are returned.
2311    
2312     On error, nothing will be returned. If the pipe2 syscall is missing and
2313     C<$flags> is non-zero, fails with C<ENOSYS>.
2314    
2315     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2316     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2317     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2318    
2319 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2320    
2321     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2322     or die "pipe2: $!\n";
2323    
2324 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2325 root 1.281
2326     This is a direct interface to the Linux L<eventfd(2)> system call. The
2327     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2328    
2329     On success, the new eventfd filehandle is returned, otherwise returns
2330     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2331    
2332     Please refer to L<eventfd(2)> for more info on this call.
2333    
2334     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2335     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2336    
2337 root 1.282 Example: create a new eventfd filehandle:
2338    
2339     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2340     or die "eventfd: $!\n";
2341    
2342     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2343    
2344     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2345     (unhelpful) default for C<$flags> is C<0>.
2346    
2347     On success, the new timerfd filehandle is returned, otherwise returns
2348     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2349    
2350     Please refer to L<timerfd_create(2)> for more info on this call.
2351    
2352     The following C<$clockid> values are
2353     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2354     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2355     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2356     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2357    
2358     The following C<$flags> values are available (Linux
2359     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2360    
2361     Example: create a new timerfd and set it to one-second repeated alarms,
2362     then wait for two alarms:
2363    
2364     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2365     or die "timerfd_create: $!\n";
2366    
2367     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2368     or die "timerfd_settime: $!\n";
2369    
2370     for (1..2) {
2371     8 == sysread $fh, my $buf, 8
2372     or die "timerfd read failure\n";
2373    
2374     printf "number of expirations (likely 1): %d\n",
2375     unpack "Q", $buf;
2376     }
2377    
2378     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2379    
2380     This is a direct interface to the Linux L<timerfd_settime(2)> system
2381     call. Please refer to its manpage for more info on this call.
2382    
2383     The new itimerspec is specified using two (possibly fractional) second
2384     values, C<$new_interval> and C<$new_value>).
2385    
2386     On success, the current interval and value are returned (as per
2387     C<timerfd_gettime>). On failure, the empty list is returned.
2388    
2389     The following C<$flags> values are
2390     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2391     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2392    
2393     See C<IO::AIO::timerfd_create> for a full example.
2394    
2395     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2396    
2397     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2398     call. Please refer to its manpage for more info on this call.
2399    
2400     On success, returns the current values of interval and value for the given
2401     timerfd (as potentially fractional second values). On failure, the empty
2402     list is returned.
2403    
2404 root 1.157 =back
2405    
2406 root 1.1 =cut
2407    
2408 root 1.61 min_parallel 8;
2409 root 1.1
2410 root 1.95 END { flush }
2411 root 1.82
2412 root 1.1 1;
2413    
2414 root 1.175 =head1 EVENT LOOP INTEGRATION
2415    
2416     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2417     automatically into many event loops:
2418    
2419     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2420     use AnyEvent::AIO;
2421    
2422     You can also integrate IO::AIO manually into many event loops, here are
2423     some examples of how to do this:
2424    
2425     # EV integration
2426     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2427    
2428     # Event integration
2429     Event->io (fd => IO::AIO::poll_fileno,
2430     poll => 'r',
2431     cb => \&IO::AIO::poll_cb);
2432    
2433     # Glib/Gtk2 integration
2434     add_watch Glib::IO IO::AIO::poll_fileno,
2435     in => sub { IO::AIO::poll_cb; 1 };
2436    
2437     # Tk integration
2438     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2439     readable => \&IO::AIO::poll_cb);
2440    
2441     # Danga::Socket integration
2442     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2443     \&IO::AIO::poll_cb);
2444    
2445 root 1.27 =head2 FORK BEHAVIOUR
2446    
2447 root 1.197 Usage of pthreads in a program changes the semantics of fork
2448     considerably. Specifically, only async-safe functions can be called after
2449     fork. Perl doesn't know about this, so in general, you cannot call fork
2450 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2451     pthreads, so this applies, but many other extensions and (for inexplicable
2452     reasons) perl itself often is linked against pthreads, so this limitation
2453     applies to quite a lot of perls.
2454    
2455     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2456     only works in the process that loaded it. Forking is fully supported, but
2457     using IO::AIO in the child is not.
2458    
2459     You might get around by not I<using> IO::AIO before (or after)
2460     forking. You could also try to call the L<IO::AIO::reinit> function in the
2461     child:
2462    
2463     =over 4
2464    
2465     =item IO::AIO::reinit
2466    
2467 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2468     data structures. This is not an operation supported by any standards, but
2469 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2470    
2471     The only reasonable use for this function is to call it after forking, if
2472     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2473     the process will result in undefined behaviour. Calling it at any time
2474     will also result in any undefined (by POSIX) behaviour.
2475    
2476     =back
2477 root 1.52
2478 root 1.282 =head2 LINUX-SPECIFIC CALLS
2479    
2480     When a call is documented as "linux-specific" then this means it
2481     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2482     availability and compatibility of such calls regardless of the platform
2483     it is compiled on, so platforms such as FreeBSD which often implement
2484     these calls will work. When in doubt, call them and see if they fail wth
2485     C<ENOSYS>.
2486    
2487 root 1.60 =head2 MEMORY USAGE
2488    
2489 root 1.72 Per-request usage:
2490    
2491     Each aio request uses - depending on your architecture - around 100-200
2492     bytes of memory. In addition, stat requests need a stat buffer (possibly
2493     a few hundred bytes), readdir requires a result buffer and so on. Perl
2494     scalars and other data passed into aio requests will also be locked and
2495     will consume memory till the request has entered the done state.
2496 root 1.60
2497 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2498 root 1.60 problem.
2499    
2500 root 1.72 Per-thread usage:
2501    
2502     In the execution phase, some aio requests require more memory for
2503     temporary buffers, and each thread requires a stack and other data
2504     structures (usually around 16k-128k, depending on the OS).
2505    
2506     =head1 KNOWN BUGS
2507    
2508 root 1.283 Known bugs will be fixed in the next release :)
2509    
2510     =head1 KNOWN ISSUES
2511    
2512     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2513     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2514     non-created hash slots or other scalars I didn't think of. It's best to
2515     avoid such and either use scalar variables or making sure that the scalar
2516     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2517    
2518     I am not sure anything can be done about this, so this is considered a
2519     known issue, rather than a bug.
2520 root 1.60
2521 root 1.1 =head1 SEE ALSO
2522    
2523 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2524     more natural syntax.
2525 root 1.1
2526     =head1 AUTHOR
2527    
2528     Marc Lehmann <schmorp@schmorp.de>
2529     http://home.schmorp.de/
2530    
2531     =cut
2532