ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.296
Committed: Sun Aug 26 03:17:35 2018 UTC (5 years, 8 months ago) by root
Branch: MAIN
Changes since 1.295: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.295 our $VERSION = 4.6;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
291 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
292     IO::AIO::mprotect $scalar, $offset, $length, $protect
293 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
294 root 1.175 IO::AIO::munlockall
295    
296 root 1.219 =head2 API NOTES
297 root 1.1
298 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
299     with the same name (sans C<aio_>). The arguments are similar or identical,
300 root 1.14 and they all accept an additional (and optional) C<$callback> argument
301 root 1.212 which must be a code reference. This code reference will be called after
302     the syscall has been executed in an asynchronous fashion. The results
303     of the request will be passed as arguments to the callback (and, if an
304     error occured, in C<$!>) - for most requests the syscall return code (e.g.
305     most syscalls return C<-1> on error, unlike perl, which usually delivers
306     "false").
307    
308     Some requests (such as C<aio_readdir>) pass the actual results and
309     communicate failures by passing C<undef>.
310 root 1.1
311 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
312     internally until the request has finished.
313 root 1.1
314 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
315     further manipulation of those requests while they are in-flight.
316 root 1.52
317 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
318     reason for this is that at the time the request is being executed, the
319 root 1.212 current working directory could have changed. Alternatively, you can
320     make sure that you never change the current working directory anywhere
321     in the program and then use relative paths. You can also take advantage
322     of IO::AIOs working directory abstraction, that lets you specify paths
323     relative to some previously-opened "working directory object" - see the
324     description of the C<IO::AIO::WD> class later in this document.
325 root 1.28
326 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
327     in filenames you got from outside (command line, readdir etc.) without
328 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
329     module and encode your pathnames to the locale (or other) encoding in
330     effect in the user environment, d) use Glib::filename_from_unicode on
331     unicode filenames or e) use something else to ensure your scalar has the
332     correct contents.
333 root 1.87
334     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
335 root 1.136 handles correctly whether it is set or not.
336 root 1.1
337 root 1.219 =head2 AIO REQUEST FUNCTIONS
338    
339 root 1.5 =over 4
340 root 1.1
341 root 1.80 =item $prev_pri = aioreq_pri [$pri]
342 root 1.68
343 root 1.80 Returns the priority value that would be used for the next request and, if
344     C<$pri> is given, sets the priority for the next aio request.
345 root 1.68
346 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
347     and C<4>, respectively. Requests with higher priority will be serviced
348     first.
349    
350     The priority will be reset to C<0> after each call to one of the C<aio_*>
351 root 1.68 functions.
352    
353 root 1.69 Example: open a file with low priority, then read something from it with
354     higher priority so the read request is serviced before other low priority
355     open requests (potentially spamming the cache):
356    
357     aioreq_pri -3;
358     aio_open ..., sub {
359     return unless $_[0];
360    
361     aioreq_pri -2;
362     aio_read $_[0], ..., sub {
363     ...
364     };
365     };
366    
367 root 1.106
368 root 1.69 =item aioreq_nice $pri_adjust
369    
370     Similar to C<aioreq_pri>, but subtracts the given value from the current
371 root 1.87 priority, so the effect is cumulative.
372 root 1.69
373 root 1.106
374 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
375 root 1.1
376 root 1.2 Asynchronously open or create a file and call the callback with a newly
377 root 1.233 created filehandle for the file (or C<undef> in case of an error).
378 root 1.1
379     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
380     for an explanation.
381    
382 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
383     list. They are the same as used by C<sysopen>.
384    
385     Likewise, C<$mode> specifies the mode of the newly created file, if it
386     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
387     except that it is mandatory (i.e. use C<0> if you don't create new files,
388 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
389     by the umask in effect then the request is being executed, so better never
390     change the umask.
391 root 1.1
392     Example:
393    
394 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
395 root 1.2 if ($_[0]) {
396     print "open successful, fh is $_[0]\n";
397 root 1.1 ...
398     } else {
399     die "open failed: $!\n";
400     }
401     };
402    
403 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
404     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
405     following POSIX and non-POSIX constants are available (missing ones on
406     your system are, as usual, C<0>):
407    
408     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
409     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
410 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
411 root 1.194
412 root 1.106
413 root 1.40 =item aio_close $fh, $callback->($status)
414 root 1.1
415 root 1.2 Asynchronously close a file and call the callback with the result
416 root 1.116 code.
417    
418 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
419 root 1.121 closing the file descriptor associated with the filehandle itself.
420 root 1.117
421 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
422     use dup2 to overwrite the file descriptor with the write-end of a pipe
423     (the pipe fd will be created on demand and will be cached).
424 root 1.117
425 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
426     free for reuse until the perl filehandle is closed.
427 root 1.117
428     =cut
429    
430 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
431    
432 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
433 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
434     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
435     C<IO::AIO::SEEK_END>).
436    
437     The resulting absolute offset will be passed to the callback, or C<-1> in
438     case of an error.
439    
440     In theory, the C<$whence> constants could be different than the
441     corresponding values from L<Fcntl>, but perl guarantees they are the same,
442     so don't panic.
443    
444 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
445     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
446     could be found. No guarantees about suitability for use in C<aio_seek> or
447     Perl's C<sysseek> can be made though, although I would naively assume they
448     "just work".
449    
450 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
453 root 1.1
454 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
455 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
456     calls the callback with the actual number of bytes transferred (or -1 on
457 root 1.145 error, just like the syscall).
458 root 1.109
459 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
460     offset plus the actual number of bytes read.
461    
462 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
463     be used (and updated), otherwise the file descriptor offset will not be
464     changed by these calls.
465 root 1.109
466 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
467     C<$data>.
468 root 1.109
469     If C<$dataoffset> is less than zero, it will be counted from the end of
470     C<$data>.
471 root 1.1
472 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
473 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
474     the necessary/optional hardware is installed).
475 root 1.31
476 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
477 root 1.1 offset C<0> within the scalar:
478    
479     aio_read $fh, 7, 15, $buffer, 0, sub {
480 root 1.9 $_[0] > 0 or die "read error: $!";
481     print "read $_[0] bytes: <$buffer>\n";
482 root 1.1 };
483    
484 root 1.106
485 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
486 root 1.35
487     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
488     reading at byte offset C<$in_offset>, and starts writing at the current
489     file offset of C<$out_fh>. Because of that, it is not safe to issue more
490     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
491 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
492     move or use the file offset of C<$in_fh>.
493 root 1.35
494 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
495 root 1.196 are written, and there is no way to find out how many more bytes have been
496     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
497     number of bytes written to C<$out_fh>. Only if the result value equals
498     C<$length> one can assume that C<$length> bytes have been read.
499 root 1.185
500     Unlike with other C<aio_> functions, it makes a lot of sense to use
501     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
502     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
503 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
504     into a trap where C<aio_sendfile> reads some data with readahead, then
505     fails to write all data, and when the socket is ready the next time, the
506     data in the cache is already lost, forcing C<aio_sendfile> to again hit
507     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
508     resource usage.
509    
510     This call tries to make use of a native C<sendfile>-like syscall to
511     provide zero-copy operation. For this to work, C<$out_fh> should refer to
512     a socket, and C<$in_fh> should refer to an mmap'able file.
513 root 1.35
514 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
515 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
516     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
517     type of filehandle regardless of the limitations of the operating system.
518    
519     As native sendfile syscalls (as practically any non-POSIX interface hacked
520     together in a hurry to improve benchmark numbers) tend to be rather buggy
521     on many systems, this implementation tries to work around some known bugs
522     in Linux and FreeBSD kernels (probably others, too), but that might fail,
523     so you really really should check the return value of C<aio_sendfile> -
524 root 1.262 fewer bytes than expected might have been transferred.
525 root 1.35
526 root 1.106
527 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
528 root 1.1
529 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
530 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
531     argument specifies the starting point from which data is to be read and
532     C<$length> specifies the number of bytes to be read. I/O is performed in
533     whole pages, so that offset is effectively rounded down to a page boundary
534     and bytes are read up to the next page boundary greater than or equal to
535 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
536 root 1.1 file. The current file offset of the file is left unchanged.
537    
538 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
539     be emulated by simply reading the data, which would have a similar effect.
540 root 1.26
541 root 1.106
542 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
543 root 1.1
544 root 1.40 =item aio_lstat $fh, $callback->($status)
545 root 1.1
546 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
547     callback will be called after the stat and the results will be available
548     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
549     and C<-T>).
550 root 1.1
551     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
552     for an explanation.
553    
554     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
555     error when stat'ing a large file, the results will be silently truncated
556     unless perl itself is compiled with large file support.
557    
558 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
559     following constants and functions (if not implemented, the constants will
560     be C<0> and the functions will either C<croak> or fall back on traditional
561     behaviour).
562    
563     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
564     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
565     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
566    
567 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
568     ACCESS>.
569    
570 root 1.1 Example: Print the length of F</etc/passwd>:
571    
572     aio_stat "/etc/passwd", sub {
573     $_[0] and die "stat failed: $!";
574     print "size is ", -s _, "\n";
575     };
576    
577 root 1.106
578 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
579 root 1.172
580     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
581     whether a file handle or path was passed.
582    
583     On success, the callback is passed a hash reference with the following
584     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
585     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
586     is passed.
587    
588     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
589     C<ST_NOSUID>.
590    
591     The following non-POSIX IO::AIO::ST_* flag masks are defined to
592     their correct value when available, or to C<0> on systems that do
593     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
594     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
595     C<ST_NODIRATIME> and C<ST_RELATIME>.
596    
597     Example: stat C</wd> and dump out the data if successful.
598    
599     aio_statvfs "/wd", sub {
600     my $f = $_[0]
601     or die "statvfs: $!";
602    
603     use Data::Dumper;
604     say Dumper $f;
605     };
606    
607     # result:
608     {
609     bsize => 1024,
610     bfree => 4333064312,
611     blocks => 10253828096,
612     files => 2050765568,
613     flag => 4096,
614     favail => 2042092649,
615     bavail => 4333064312,
616     ffree => 2042092649,
617     namemax => 255,
618     frsize => 1024,
619     fsid => 1810
620     }
621    
622 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
623    
624     Works like perl's C<utime> function (including the special case of $atime
625     and $mtime being undef). Fractional times are supported if the underlying
626     syscalls support them.
627    
628 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
629     otherwise utime(2). If called on a file descriptor, uses futimens(2)
630     or futimes(2) if available, otherwise returns ENOSYS, so this is not
631     portable.
632 root 1.106
633     Examples:
634    
635 root 1.107 # set atime and mtime to current time (basically touch(1)):
636 root 1.106 aio_utime "path", undef, undef;
637     # set atime to current time and mtime to beginning of the epoch:
638     aio_utime "path", time, undef; # undef==0
639    
640    
641     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
642    
643     Works like perl's C<chown> function, except that C<undef> for either $uid
644     or $gid is being interpreted as "do not change" (but -1 can also be used).
645    
646     Examples:
647    
648     # same as "chown root path" in the shell:
649     aio_chown "path", 0, -1;
650     # same as above:
651     aio_chown "path", 0, undef;
652    
653    
654 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
655    
656     Works like truncate(2) or ftruncate(2).
657    
658    
659 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
660    
661 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
662     linux C<fallocate> documentation for details.
663 root 1.229
664 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
665     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
666     to deallocate a file range.
667    
668     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
669 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
670     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
671     to unshare shared blocks (see your L<fallocate(2)> manpage).
672 root 1.229
673     The file system block size used by C<fallocate> is presumably the
674 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
675     can dictate other limitations.
676 root 1.229
677     If C<fallocate> isn't available or cannot be emulated (currently no
678     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
679    
680    
681 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
682    
683     Works like perl's C<chmod> function.
684    
685    
686 root 1.40 =item aio_unlink $pathname, $callback->($status)
687 root 1.1
688     Asynchronously unlink (delete) a file and call the callback with the
689     result code.
690    
691 root 1.106
692 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
693 root 1.82
694 root 1.86 [EXPERIMENTAL]
695    
696 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
697    
698 root 1.86 The only (POSIX-) portable way of calling this function is:
699 root 1.83
700 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
701 root 1.82
702 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
703     and functions.
704 root 1.106
705 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
706    
707     Asynchronously create a new link to the existing object at C<$srcpath> at
708     the path C<$dstpath> and call the callback with the result code.
709    
710 root 1.106
711 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
712    
713     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
714     the path C<$dstpath> and call the callback with the result code.
715    
716 root 1.106
717 root 1.209 =item aio_readlink $pathname, $callback->($link)
718 root 1.90
719     Asynchronously read the symlink specified by C<$path> and pass it to
720     the callback. If an error occurs, nothing or undef gets passed to the
721     callback.
722    
723 root 1.106
724 root 1.209 =item aio_realpath $pathname, $callback->($path)
725 root 1.201
726     Asynchronously make the path absolute and resolve any symlinks in
727 root 1.239 C<$path>. The resulting path only consists of directories (same as
728 root 1.202 L<Cwd::realpath>).
729 root 1.201
730     This request can be used to get the absolute path of the current working
731     directory by passing it a path of F<.> (a single dot).
732    
733    
734 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
735    
736     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
737     rename(2) and call the callback with the result code.
738    
739 root 1.241 On systems that support the AIO::WD working directory abstraction
740     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
741     of failing, C<rename> is called on the absolute path of C<$wd>.
742    
743 root 1.106
744 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
745    
746     Basically a version of C<aio_rename> with an additional C<$flags>
747     argument. Calling this with C<$flags=0> is the same as calling
748     C<aio_rename>.
749    
750     Non-zero flags are currently only supported on GNU/Linux systems that
751     support renameat2. Other systems fail with C<ENOSYS> in this case.
752    
753     The following constants are available (missing ones are, as usual C<0>),
754     see renameat2(2) for details:
755    
756     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
757     and C<IO::AIO::RENAME_WHITEOUT>.
758    
759    
760 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
761    
762     Asynchronously mkdir (create) a directory and call the callback with
763     the result code. C<$mode> will be modified by the umask at the time the
764     request is executed, so do not change your umask.
765    
766 root 1.106
767 root 1.40 =item aio_rmdir $pathname, $callback->($status)
768 root 1.27
769     Asynchronously rmdir (delete) a directory and call the callback with the
770     result code.
771    
772 root 1.241 On systems that support the AIO::WD working directory abstraction
773     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
774     C<rmdir> is called on the absolute path of C<$wd>.
775    
776 root 1.106
777 root 1.46 =item aio_readdir $pathname, $callback->($entries)
778 root 1.37
779     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
780     directory (i.e. opendir + readdir + closedir). The entries will not be
781     sorted, and will B<NOT> include the C<.> and C<..> entries.
782    
783 root 1.148 The callback is passed a single argument which is either C<undef> or an
784     array-ref with the filenames.
785    
786    
787     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
788    
789 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
790     tune behaviour and output format. In case of an error, C<$entries> will be
791 root 1.148 C<undef>.
792    
793     The flags are a combination of the following constants, ORed together (the
794     flags will also be passed to the callback, possibly modified):
795    
796     =over 4
797    
798 root 1.150 =item IO::AIO::READDIR_DENTS
799 root 1.148
800 root 1.284 Normally the callback gets an arrayref consisting of names only (as
801     with C<aio_readdir>). If this flag is set, then the callback gets an
802     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
803     single directory entry in more detail:
804 root 1.148
805     C<$name> is the name of the entry.
806    
807 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
808 root 1.148
809 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
810     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
811     C<IO::AIO::DT_WHT>.
812 root 1.148
813 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
814     to know, you have to run stat yourself. Also, for speed/memory reasons,
815     the C<$type> scalars are read-only: you must not modify them.
816 root 1.148
817 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
818 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
819     systems that do not deliver the inode information.
820 root 1.150
821     =item IO::AIO::READDIR_DIRS_FIRST
822 root 1.148
823     When this flag is set, then the names will be returned in an order where
824 root 1.193 likely directories come first, in optimal stat order. This is useful when
825     you need to quickly find directories, or you want to find all directories
826     while avoiding to stat() each entry.
827 root 1.148
828 root 1.149 If the system returns type information in readdir, then this is used
829 root 1.193 to find directories directly. Otherwise, likely directories are names
830     beginning with ".", or otherwise names with no dots, of which names with
831 root 1.149 short names are tried first.
832    
833 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
834 root 1.148
835     When this flag is set, then the names will be returned in an order
836 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
837     all files in the given directory, then the returned order will likely be
838     faster.
839    
840     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
841     then the likely dirs come first, resulting in a less optimal stat order
842     for stat'ing all entries, but likely a more optimal order for finding
843     subdirectories.
844 root 1.148
845 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
846 root 1.148
847     This flag should not be set when calling C<aio_readdirx>. Instead, it
848     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
849 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
850 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
851    
852     =back
853 root 1.37
854 root 1.106
855 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
856    
857     Opens, reads and closes the given file. The data is put into C<$data>,
858     which is resized as required.
859    
860     If C<$offset> is negative, then it is counted from the end of the file.
861    
862     If C<$length> is zero, then the remaining length of the file is
863     used. Also, in this case, the same limitations to modifying C<$data> apply
864     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
865     with C<substr>. If the size of the file is known, specifying a non-zero
866     C<$length> results in a performance advantage.
867    
868     This request is similar to the older C<aio_load> request, but since it is
869     a single request, it might be more efficient to use.
870    
871     Example: load F</etc/passwd> into C<$passwd>.
872    
873     my $passwd;
874     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
875     $_[0] >= 0
876     or die "/etc/passwd: $!\n";
877    
878     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
879     print $passwd;
880     };
881     IO::AIO::flush;
882    
883    
884 root 1.209 =item aio_load $pathname, $data, $callback->($status)
885 root 1.98
886     This is a composite request that tries to fully load the given file into
887     memory. Status is the same as with aio_read.
888    
889 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
890    
891 root 1.98 =cut
892    
893     sub aio_load($$;$) {
894 root 1.123 my ($path, undef, $cb) = @_;
895     my $data = \$_[1];
896 root 1.98
897 root 1.123 my $pri = aioreq_pri;
898     my $grp = aio_group $cb;
899    
900     aioreq_pri $pri;
901     add $grp aio_open $path, O_RDONLY, 0, sub {
902     my $fh = shift
903     or return $grp->result (-1);
904 root 1.98
905     aioreq_pri $pri;
906 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
907     $grp->result ($_[0]);
908 root 1.98 };
909 root 1.123 };
910 root 1.98
911 root 1.123 $grp
912 root 1.98 }
913    
914 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
915    
916     Try to copy the I<file> (directories not supported as either source or
917     destination) from C<$srcpath> to C<$dstpath> and call the callback with
918 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
919 root 1.82
920 root 1.275 Existing destination files will be truncated.
921    
922 root 1.134 This is a composite request that creates the destination file with
923 root 1.82 mode 0200 and copies the contents of the source file into it using
924     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
925     uid/gid, in that order.
926    
927     If an error occurs, the partial destination file will be unlinked, if
928     possible, except when setting atime, mtime, access mode and uid/gid, where
929     errors are being ignored.
930    
931     =cut
932    
933     sub aio_copy($$;$) {
934 root 1.123 my ($src, $dst, $cb) = @_;
935 root 1.82
936 root 1.123 my $pri = aioreq_pri;
937     my $grp = aio_group $cb;
938 root 1.82
939 root 1.123 aioreq_pri $pri;
940     add $grp aio_open $src, O_RDONLY, 0, sub {
941     if (my $src_fh = $_[0]) {
942 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
943 root 1.95
944 root 1.123 aioreq_pri $pri;
945     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
946     if (my $dst_fh = $_[0]) {
947     aioreq_pri $pri;
948     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
949     if ($_[0] == $stat[7]) {
950     $grp->result (0);
951     close $src_fh;
952    
953 root 1.147 my $ch = sub {
954     aioreq_pri $pri;
955     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
956     aioreq_pri $pri;
957     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
958     aioreq_pri $pri;
959     add $grp aio_close $dst_fh;
960     }
961     };
962     };
963 root 1.123
964     aioreq_pri $pri;
965 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
966     if ($_[0] < 0 && $! == ENOSYS) {
967     aioreq_pri $pri;
968     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
969     } else {
970     $ch->();
971     }
972     };
973 root 1.123 } else {
974     $grp->result (-1);
975     close $src_fh;
976     close $dst_fh;
977    
978     aioreq $pri;
979     add $grp aio_unlink $dst;
980     }
981     };
982     } else {
983     $grp->result (-1);
984     }
985     },
986 root 1.82
987 root 1.123 } else {
988     $grp->result (-1);
989     }
990     };
991 root 1.82
992 root 1.123 $grp
993 root 1.82 }
994    
995     =item aio_move $srcpath, $dstpath, $callback->($status)
996    
997     Try to move the I<file> (directories not supported as either source or
998     destination) from C<$srcpath> to C<$dstpath> and call the callback with
999 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1000 root 1.82
1001 root 1.137 This is a composite request that tries to rename(2) the file first; if
1002     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1003     that is successful, unlinks the C<$srcpath>.
1004 root 1.82
1005     =cut
1006    
1007     sub aio_move($$;$) {
1008 root 1.123 my ($src, $dst, $cb) = @_;
1009 root 1.82
1010 root 1.123 my $pri = aioreq_pri;
1011     my $grp = aio_group $cb;
1012 root 1.82
1013 root 1.123 aioreq_pri $pri;
1014     add $grp aio_rename $src, $dst, sub {
1015     if ($_[0] && $! == EXDEV) {
1016     aioreq_pri $pri;
1017     add $grp aio_copy $src, $dst, sub {
1018     $grp->result ($_[0]);
1019 root 1.95
1020 root 1.196 unless ($_[0]) {
1021 root 1.123 aioreq_pri $pri;
1022     add $grp aio_unlink $src;
1023     }
1024     };
1025     } else {
1026     $grp->result ($_[0]);
1027     }
1028     };
1029 root 1.82
1030 root 1.123 $grp
1031 root 1.82 }
1032    
1033 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1034 root 1.40
1035 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1036 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1037     names, directories you can recurse into (directories), and ones you cannot
1038     recurse into (everything else, including symlinks to directories).
1039 root 1.52
1040 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1041 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1042     this function generates. If it is C<< <= 0 >>, then a suitable default
1043 root 1.81 will be chosen (currently 4).
1044 root 1.40
1045     On error, the callback is called without arguments, otherwise it receives
1046     two array-refs with path-relative entry names.
1047    
1048     Example:
1049    
1050     aio_scandir $dir, 0, sub {
1051     my ($dirs, $nondirs) = @_;
1052     print "real directories: @$dirs\n";
1053     print "everything else: @$nondirs\n";
1054     };
1055    
1056     Implementation notes.
1057    
1058     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1059    
1060 root 1.149 If readdir returns file type information, then this is used directly to
1061     find directories.
1062    
1063     Otherwise, after reading the directory, the modification time, size etc.
1064     of the directory before and after the readdir is checked, and if they
1065     match (and isn't the current time), the link count will be used to decide
1066     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1067     number of subdirectories will be assumed.
1068    
1069     Then entries will be sorted into likely directories a non-initial dot
1070     currently) and likely non-directories (see C<aio_readdirx>). Then every
1071     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1072     in order of their inode numbers. If that succeeds, it assumes that the
1073     entry is a directory or a symlink to directory (which will be checked
1074 root 1.207 separately). This is often faster than stat'ing the entry itself because
1075 root 1.52 filesystems might detect the type of the entry without reading the inode
1076 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1077     the filetype information on readdir.
1078 root 1.52
1079     If the known number of directories (link count - 2) has been reached, the
1080     rest of the entries is assumed to be non-directories.
1081    
1082     This only works with certainty on POSIX (= UNIX) filesystems, which
1083     fortunately are the vast majority of filesystems around.
1084    
1085     It will also likely work on non-POSIX filesystems with reduced efficiency
1086     as those tend to return 0 or 1 as link counts, which disables the
1087     directory counting heuristic.
1088 root 1.40
1089     =cut
1090    
1091 root 1.100 sub aio_scandir($$;$) {
1092 root 1.123 my ($path, $maxreq, $cb) = @_;
1093    
1094     my $pri = aioreq_pri;
1095 root 1.40
1096 root 1.123 my $grp = aio_group $cb;
1097 root 1.80
1098 root 1.123 $maxreq = 4 if $maxreq <= 0;
1099 root 1.55
1100 root 1.210 # get a wd object
1101 root 1.123 aioreq_pri $pri;
1102 root 1.210 add $grp aio_wd $path, sub {
1103 root 1.212 $_[0]
1104     or return $grp->result ();
1105    
1106 root 1.210 my $wd = [shift, "."];
1107 root 1.40
1108 root 1.210 # stat once
1109 root 1.80 aioreq_pri $pri;
1110 root 1.210 add $grp aio_stat $wd, sub {
1111     return $grp->result () if $_[0];
1112     my $now = time;
1113     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1114 root 1.40
1115 root 1.210 # read the directory entries
1116 root 1.80 aioreq_pri $pri;
1117 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1118     my $entries = shift
1119     or return $grp->result ();
1120    
1121     # stat the dir another time
1122     aioreq_pri $pri;
1123     add $grp aio_stat $wd, sub {
1124     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1125 root 1.95
1126 root 1.210 my $ndirs;
1127 root 1.95
1128 root 1.210 # take the slow route if anything looks fishy
1129     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1130     $ndirs = -1;
1131     } else {
1132     # if nlink == 2, we are finished
1133     # for non-posix-fs's, we rely on nlink < 2
1134     $ndirs = (stat _)[3] - 2
1135     or return $grp->result ([], $entries);
1136     }
1137 root 1.123
1138 root 1.210 my (@dirs, @nondirs);
1139 root 1.40
1140 root 1.210 my $statgrp = add $grp aio_group sub {
1141     $grp->result (\@dirs, \@nondirs);
1142     };
1143 root 1.40
1144 root 1.210 limit $statgrp $maxreq;
1145     feed $statgrp sub {
1146     return unless @$entries;
1147     my $entry = shift @$entries;
1148    
1149     aioreq_pri $pri;
1150     $wd->[1] = "$entry/.";
1151     add $statgrp aio_stat $wd, sub {
1152     if ($_[0] < 0) {
1153     push @nondirs, $entry;
1154     } else {
1155     # need to check for real directory
1156     aioreq_pri $pri;
1157     $wd->[1] = $entry;
1158     add $statgrp aio_lstat $wd, sub {
1159     if (-d _) {
1160     push @dirs, $entry;
1161    
1162     unless (--$ndirs) {
1163     push @nondirs, @$entries;
1164     feed $statgrp;
1165     }
1166     } else {
1167     push @nondirs, $entry;
1168 root 1.74 }
1169 root 1.40 }
1170     }
1171 root 1.210 };
1172 root 1.74 };
1173 root 1.40 };
1174     };
1175     };
1176 root 1.123 };
1177 root 1.55
1178 root 1.123 $grp
1179 root 1.40 }
1180    
1181 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1182 root 1.99
1183 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1184 root 1.239 status of the final C<rmdir> only. This is a composite request that
1185 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1186     everything else.
1187 root 1.99
1188     =cut
1189    
1190     sub aio_rmtree;
1191 root 1.100 sub aio_rmtree($;$) {
1192 root 1.123 my ($path, $cb) = @_;
1193 root 1.99
1194 root 1.123 my $pri = aioreq_pri;
1195     my $grp = aio_group $cb;
1196 root 1.99
1197 root 1.123 aioreq_pri $pri;
1198     add $grp aio_scandir $path, 0, sub {
1199     my ($dirs, $nondirs) = @_;
1200 root 1.99
1201 root 1.123 my $dirgrp = aio_group sub {
1202     add $grp aio_rmdir $path, sub {
1203     $grp->result ($_[0]);
1204 root 1.99 };
1205 root 1.123 };
1206 root 1.99
1207 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1208     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1209 root 1.99
1210 root 1.123 add $grp $dirgrp;
1211     };
1212 root 1.99
1213 root 1.123 $grp
1214 root 1.99 }
1215    
1216 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1217    
1218     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1219    
1220     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1221     they execute asynchronously and pass the return value to the callback.
1222    
1223     Both calls can be used for a lot of things, some of which make more sense
1224     to run asynchronously in their own thread, while some others make less
1225     sense. For example, calls that block waiting for external events, such
1226     as locking, will also lock down an I/O thread while it is waiting, which
1227     can deadlock the whole I/O system. At the same time, there might be no
1228     alternative to using a thread to wait.
1229    
1230     So in general, you should only use these calls for things that do
1231     (filesystem) I/O, not for things that wait for other events (network,
1232     other processes), although if you are careful and know what you are doing,
1233     you still can.
1234    
1235 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1236    
1237 root 1.271 C<F_DUPFD_CLOEXEC>,
1238    
1239     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1240    
1241 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1242    
1243     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1244     C<FS_IOC_FIEMAP>.
1245    
1246     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1247     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1248    
1249     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1250     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1251     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1252     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1253     C<FS_FL_USER_MODIFIABLE>.
1254    
1255     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1256     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1257     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1258     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1259    
1260 root 1.119 =item aio_sync $callback->($status)
1261    
1262     Asynchronously call sync and call the callback when finished.
1263    
1264 root 1.40 =item aio_fsync $fh, $callback->($status)
1265 root 1.1
1266     Asynchronously call fsync on the given filehandle and call the callback
1267     with the fsync result code.
1268    
1269 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1270 root 1.1
1271     Asynchronously call fdatasync on the given filehandle and call the
1272 root 1.26 callback with the fdatasync result code.
1273    
1274     If this call isn't available because your OS lacks it or it couldn't be
1275     detected, it will be emulated by calling C<fsync> instead.
1276 root 1.1
1277 root 1.206 =item aio_syncfs $fh, $callback->($status)
1278    
1279     Asynchronously call the syncfs syscall to sync the filesystem associated
1280     to the given filehandle and call the callback with the syncfs result
1281     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1282     errno to C<ENOSYS> nevertheless.
1283    
1284 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1285    
1286     Sync the data portion of the file specified by C<$offset> and C<$length>
1287     to disk (but NOT the metadata), by calling the Linux-specific
1288     sync_file_range call. If sync_file_range is not available or it returns
1289     ENOSYS, then fdatasync or fsync is being substituted.
1290    
1291     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1292     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1293     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1294     manpage for details.
1295    
1296 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1297 root 1.120
1298     This request tries to open, fsync and close the given path. This is a
1299 root 1.135 composite request intended to sync directories after directory operations
1300 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1301     specific effect, but usually it makes sure that directory changes get
1302     written to disc. It works for anything that can be opened for read-only,
1303     not just directories.
1304    
1305 root 1.162 Future versions of this function might fall back to other methods when
1306     C<fsync> on the directory fails (such as calling C<sync>).
1307    
1308 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1309    
1310     =cut
1311    
1312     sub aio_pathsync($;$) {
1313 root 1.123 my ($path, $cb) = @_;
1314    
1315     my $pri = aioreq_pri;
1316     my $grp = aio_group $cb;
1317 root 1.120
1318 root 1.123 aioreq_pri $pri;
1319     add $grp aio_open $path, O_RDONLY, 0, sub {
1320     my ($fh) = @_;
1321     if ($fh) {
1322     aioreq_pri $pri;
1323     add $grp aio_fsync $fh, sub {
1324     $grp->result ($_[0]);
1325 root 1.120
1326     aioreq_pri $pri;
1327 root 1.123 add $grp aio_close $fh;
1328     };
1329     } else {
1330     $grp->result (-1);
1331     }
1332     };
1333 root 1.120
1334 root 1.123 $grp
1335 root 1.120 }
1336    
1337 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1338 root 1.170
1339     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1340 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1341     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1342     scalar must only be modified in-place while an aio operation is pending on
1343     it).
1344 root 1.170
1345     It calls the C<msync> function of your OS, if available, with the memory
1346     area starting at C<$offset> in the string and ending C<$length> bytes
1347     later. If C<$length> is negative, counts from the end, and if C<$length>
1348     is C<undef>, then it goes till the end of the string. The flags can be
1349 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1350     C<IO::AIO::MS_INVALIDATE>.
1351 root 1.170
1352     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1353    
1354     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1355     scalars.
1356    
1357     It touches (reads or writes) all memory pages in the specified
1358 root 1.239 range inside the scalar. All caveats and parameters are the same
1359 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1360     C<0> (which reads all pages and ensures they are instantiated) or
1361 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1362 root 1.170 writing an octet from it, which dirties the page).
1363    
1364 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1365    
1366     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1367     scalars.
1368    
1369     It reads in all the pages of the underlying storage into memory (if any)
1370     and locks them, so they are not getting swapped/paged out or removed.
1371    
1372     If C<$length> is undefined, then the scalar will be locked till the end.
1373    
1374     On systems that do not implement C<mlock>, this function returns C<-1>
1375     and sets errno to C<ENOSYS>.
1376    
1377     Note that the corresponding C<munlock> is synchronous and is
1378     documented under L<MISCELLANEOUS FUNCTIONS>.
1379    
1380 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1381     C<$data> gets destroyed.
1382    
1383     open my $fh, "<", $path or die "$path: $!";
1384     my $data;
1385     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1386     aio_mlock $data; # mlock in background
1387    
1388 root 1.182 =item aio_mlockall $flags, $callback->($status)
1389    
1390     Calls the C<mlockall> function with the given C<$flags> (a combination of
1391     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1392    
1393     On systems that do not implement C<mlockall>, this function returns C<-1>
1394     and sets errno to C<ENOSYS>.
1395    
1396     Note that the corresponding C<munlockall> is synchronous and is
1397     documented under L<MISCELLANEOUS FUNCTIONS>.
1398    
1399 root 1.183 Example: asynchronously lock all current and future pages into memory.
1400    
1401     aio_mlockall IO::AIO::MCL_FUTURE;
1402    
1403 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1404    
1405 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1406     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1407     the ioctl is not available on your OS, then this request will fail with
1408 root 1.223 C<ENOSYS>.
1409    
1410     C<$start> is the starting offset to query extents for, C<$length> is the
1411     size of the range to query - if it is C<undef>, then the whole file will
1412     be queried.
1413    
1414     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1415     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1416     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1417     the data portion.
1418    
1419     C<$count> is the maximum number of extent records to return. If it is
1420 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1421 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1422 root 1.232 instead of the extents themselves (which is unreliable, see below).
1423 root 1.223
1424     If an error occurs, the callback receives no arguments. The special
1425     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1426    
1427     Otherwise, the callback receives an array reference with extent
1428     structures. Each extent structure is an array reference itself, with the
1429     following members:
1430    
1431     [$logical, $physical, $length, $flags]
1432    
1433     Flags is any combination of the following flag values (typically either C<0>
1434 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1435 root 1.223
1436     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1437     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1438     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1439     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1440     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1441     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1442    
1443 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1444 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1445 root 1.278 it to return all extents of a range for files with a large number of
1446     extents. The code (only) works around all these issues if C<$count> is
1447     C<undef>.
1448 root 1.232
1449 root 1.58 =item aio_group $callback->(...)
1450 root 1.54
1451 root 1.55 This is a very special aio request: Instead of doing something, it is a
1452     container for other aio requests, which is useful if you want to bundle
1453 root 1.71 many requests into a single, composite, request with a definite callback
1454     and the ability to cancel the whole request with its subrequests.
1455 root 1.55
1456     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1457     for more info.
1458    
1459     Example:
1460    
1461     my $grp = aio_group sub {
1462     print "all stats done\n";
1463     };
1464    
1465     add $grp
1466     (aio_stat ...),
1467     (aio_stat ...),
1468     ...;
1469    
1470 root 1.63 =item aio_nop $callback->()
1471    
1472     This is a special request - it does nothing in itself and is only used for
1473     side effects, such as when you want to add a dummy request to a group so
1474     that finishing the requests in the group depends on executing the given
1475     code.
1476    
1477 root 1.64 While this request does nothing, it still goes through the execution
1478     phase and still requires a worker thread. Thus, the callback will not
1479     be executed immediately but only after other requests in the queue have
1480     entered their execution phase. This can be used to measure request
1481     latency.
1482    
1483 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1484 root 1.54
1485     Mainly used for debugging and benchmarking, this aio request puts one of
1486     the request workers to sleep for the given time.
1487    
1488 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1489 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1490     immense (it blocks a thread for a long time) so do not use this function
1491     except to put your application under artificial I/O pressure.
1492 root 1.56
1493 root 1.5 =back
1494    
1495 root 1.209
1496     =head2 IO::AIO::WD - multiple working directories
1497    
1498     Your process only has one current working directory, which is used by all
1499     threads. This makes it hard to use relative paths (some other component
1500     could call C<chdir> at any time, and it is hard to control when the path
1501     will be used by IO::AIO).
1502    
1503     One solution for this is to always use absolute paths. This usually works,
1504     but can be quite slow (the kernel has to walk the whole path on every
1505     access), and can also be a hassle to implement.
1506    
1507     Newer POSIX systems have a number of functions (openat, fdopendir,
1508     futimensat and so on) that make it possible to specify working directories
1509     per operation.
1510    
1511     For portability, and because the clowns who "designed", or shall I write,
1512     perpetrated this new interface were obviously half-drunk, this abstraction
1513     cannot be perfect, though.
1514    
1515     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1516     object. This object stores the canonicalised, absolute version of the
1517     path, and on systems that allow it, also a directory file descriptor.
1518    
1519     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1520     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1521 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1522     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1523 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1524 root 1.209 to that IO::AIO::WD object.
1525    
1526     For example, to get a wd object for F</etc> and then stat F<passwd>
1527     inside, you would write:
1528    
1529     aio_wd "/etc", sub {
1530     my $etcdir = shift;
1531    
1532     # although $etcdir can be undef on error, there is generally no reason
1533     # to check for errors here, as aio_stat will fail with ENOENT
1534     # when $etcdir is undef.
1535    
1536     aio_stat [$etcdir, "passwd"], sub {
1537     # yay
1538     };
1539     };
1540    
1541 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1542     creating an IO::AIO::WD object is itself a potentially blocking operation,
1543     which is why it is done asynchronously.
1544 root 1.214
1545     To stat the directory obtained with C<aio_wd> above, one could write
1546     either of the following three request calls:
1547    
1548     aio_lstat "/etc" , sub { ... # pathname as normal string
1549     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1550     aio_lstat $wd , sub { ... # shorthand for the previous
1551 root 1.209
1552     As with normal pathnames, IO::AIO keeps a copy of the working directory
1553     object and the pathname string, so you could write the following without
1554     causing any issues due to C<$path> getting reused:
1555    
1556     my $path = [$wd, undef];
1557    
1558     for my $name (qw(abc def ghi)) {
1559     $path->[1] = $name;
1560     aio_stat $path, sub {
1561     # ...
1562     };
1563     }
1564    
1565     There are some caveats: when directories get renamed (or deleted), the
1566     pathname string doesn't change, so will point to the new directory (or
1567     nowhere at all), while the directory fd, if available on the system,
1568     will still point to the original directory. Most functions accepting a
1569     pathname will use the directory fd on newer systems, and the string on
1570 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1571     the string form of the pathname.
1572 root 1.209
1573 root 1.239 So this functionality is mainly useful to get some protection against
1574 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1575     reference, and to speed up doing many operations in the same directory
1576     (e.g. when stat'ing all files in a directory).
1577    
1578     The following functions implement this working directory abstraction:
1579    
1580     =over 4
1581    
1582     =item aio_wd $pathname, $callback->($wd)
1583    
1584     Asynchonously canonicalise the given pathname and convert it to an
1585     IO::AIO::WD object representing it. If possible and supported on the
1586     system, also open a directory fd to speed up pathname resolution relative
1587     to this working directory.
1588    
1589     If something goes wrong, then C<undef> is passwd to the callback instead
1590     of a working directory object and C<$!> is set appropriately. Since
1591     passing C<undef> as working directory component of a pathname fails the
1592     request with C<ENOENT>, there is often no need for error checking in the
1593     C<aio_wd> callback, as future requests using the value will fail in the
1594     expected way.
1595    
1596     =item IO::AIO::CWD
1597    
1598     This is a compiletime constant (object) that represents the process
1599     current working directory.
1600    
1601 root 1.239 Specifying this object as working directory object for a pathname is as if
1602     the pathname would be specified directly, without a directory object. For
1603     example, these calls are functionally identical:
1604 root 1.209
1605     aio_stat "somefile", sub { ... };
1606     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1607    
1608     =back
1609    
1610 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1611     C<aio_realpath>:
1612    
1613     aio_realpath $wd, sub {
1614     warn "path is $_[0]\n";
1615     };
1616    
1617 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1618     sometimes, fall back to using an absolue path.
1619 root 1.209
1620 root 1.53 =head2 IO::AIO::REQ CLASS
1621 root 1.52
1622     All non-aggregate C<aio_*> functions return an object of this class when
1623     called in non-void context.
1624    
1625     =over 4
1626    
1627 root 1.65 =item cancel $req
1628 root 1.52
1629     Cancels the request, if possible. Has the effect of skipping execution
1630     when entering the B<execute> state and skipping calling the callback when
1631     entering the the B<result> state, but will leave the request otherwise
1632 root 1.151 untouched (with the exception of readdir). That means that requests that
1633     currently execute will not be stopped and resources held by the request
1634     will not be freed prematurely.
1635 root 1.52
1636 root 1.65 =item cb $req $callback->(...)
1637    
1638     Replace (or simply set) the callback registered to the request.
1639    
1640 root 1.52 =back
1641    
1642 root 1.55 =head2 IO::AIO::GRP CLASS
1643    
1644     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1645     objects of this class, too.
1646    
1647     A IO::AIO::GRP object is a special request that can contain multiple other
1648     aio requests.
1649    
1650     You create one by calling the C<aio_group> constructing function with a
1651     callback that will be called when all contained requests have entered the
1652     C<done> state:
1653    
1654     my $grp = aio_group sub {
1655     print "all requests are done\n";
1656     };
1657    
1658     You add requests by calling the C<add> method with one or more
1659     C<IO::AIO::REQ> objects:
1660    
1661     $grp->add (aio_unlink "...");
1662    
1663 root 1.58 add $grp aio_stat "...", sub {
1664     $_[0] or return $grp->result ("error");
1665    
1666     # add another request dynamically, if first succeeded
1667     add $grp aio_open "...", sub {
1668     $grp->result ("ok");
1669     };
1670     };
1671 root 1.55
1672     This makes it very easy to create composite requests (see the source of
1673     C<aio_move> for an application) that work and feel like simple requests.
1674    
1675 root 1.62 =over 4
1676    
1677     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1678 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1679    
1680 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1681 root 1.59 only the request itself, but also all requests it contains.
1682 root 1.55
1683 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1684 root 1.55
1685 root 1.62 =item * You must not add requests to a group from within the group callback (or
1686 root 1.60 any later time).
1687    
1688 root 1.62 =back
1689    
1690 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1691     will finish very quickly. If they contain only requests that are in the
1692     C<done> state, they will also finish. Otherwise they will continue to
1693     exist.
1694    
1695 root 1.133 That means after creating a group you have some time to add requests
1696     (precisely before the callback has been invoked, which is only done within
1697     the C<poll_cb>). And in the callbacks of those requests, you can add
1698     further requests to the group. And only when all those requests have
1699     finished will the the group itself finish.
1700 root 1.57
1701 root 1.55 =over 4
1702    
1703 root 1.65 =item add $grp ...
1704    
1705 root 1.55 =item $grp->add (...)
1706    
1707 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1708     be added, including other groups, as long as you do not create circular
1709     dependencies.
1710    
1711     Returns all its arguments.
1712 root 1.55
1713 root 1.74 =item $grp->cancel_subs
1714    
1715     Cancel all subrequests and clears any feeder, but not the group request
1716     itself. Useful when you queued a lot of events but got a result early.
1717    
1718 root 1.168 The group request will finish normally (you cannot add requests to the
1719     group).
1720    
1721 root 1.58 =item $grp->result (...)
1722    
1723     Set the result value(s) that will be passed to the group callback when all
1724 root 1.120 subrequests have finished and set the groups errno to the current value
1725 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1726     no argument will be passed and errno is zero.
1727    
1728     =item $grp->errno ([$errno])
1729    
1730     Sets the group errno value to C<$errno>, or the current value of errno
1731     when the argument is missing.
1732    
1733     Every aio request has an associated errno value that is restored when
1734     the callback is invoked. This method lets you change this value from its
1735     default (0).
1736    
1737     Calling C<result> will also set errno, so make sure you either set C<$!>
1738     before the call to C<result>, or call c<errno> after it.
1739 root 1.58
1740 root 1.65 =item feed $grp $callback->($grp)
1741 root 1.60
1742     Sets a feeder/generator on this group: every group can have an attached
1743     generator that generates requests if idle. The idea behind this is that,
1744     although you could just queue as many requests as you want in a group,
1745 root 1.139 this might starve other requests for a potentially long time. For example,
1746 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1747     requests, delaying any later requests for a long time.
1748 root 1.60
1749     To avoid this, and allow incremental generation of requests, you can
1750     instead a group and set a feeder on it that generates those requests. The
1751 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1752 root 1.60 below) requests active in the group itself and is expected to queue more
1753     requests.
1754    
1755 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1756     not impose any limits).
1757 root 1.60
1758 root 1.65 If the feed does not queue more requests when called, it will be
1759 root 1.60 automatically removed from the group.
1760    
1761 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1762     C<2> automatically.
1763 root 1.60
1764     Example:
1765    
1766     # stat all files in @files, but only ever use four aio requests concurrently:
1767    
1768     my $grp = aio_group sub { print "finished\n" };
1769 root 1.68 limit $grp 4;
1770 root 1.65 feed $grp sub {
1771 root 1.60 my $file = pop @files
1772     or return;
1773    
1774     add $grp aio_stat $file, sub { ... };
1775 root 1.65 };
1776 root 1.60
1777 root 1.68 =item limit $grp $num
1778 root 1.60
1779     Sets the feeder limit for the group: The feeder will be called whenever
1780     the group contains less than this many requests.
1781    
1782     Setting the limit to C<0> will pause the feeding process.
1783    
1784 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1785     automatically bumps it up to C<2>.
1786    
1787 root 1.55 =back
1788    
1789 root 1.294
1790 root 1.5 =head2 SUPPORT FUNCTIONS
1791    
1792 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1793    
1794 root 1.5 =over 4
1795    
1796     =item $fileno = IO::AIO::poll_fileno
1797    
1798 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1799 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1800     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1801     you have to call C<poll_cb> to check the results.
1802 root 1.5
1803     See C<poll_cb> for an example.
1804    
1805     =item IO::AIO::poll_cb
1806    
1807 root 1.240 Process some requests that have reached the result phase (i.e. they have
1808     been executed but the results are not yet reported). You have to call
1809     this "regularly" to finish outstanding requests.
1810    
1811     Returns C<0> if all events could be processed (or there were no
1812     events to process), or C<-1> if it returned earlier for whatever
1813     reason. Returns immediately when no events are outstanding. The amount
1814     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1815     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1816    
1817     If not all requests were processed for whatever reason, the poll file
1818     descriptor will still be ready when C<poll_cb> returns, so normally you
1819     don't have to do anything special to have it called later.
1820 root 1.78
1821 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1822     ready, it can be beneficial to call this function from loops which submit
1823     a lot of requests, to make sure the results get processed when they become
1824     available and not just when the loop is finished and the event loop takes
1825     over again. This function returns very fast when there are no outstanding
1826     requests.
1827    
1828 root 1.20 Example: Install an Event watcher that automatically calls
1829 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1830     SYNOPSIS section, at the top of this document):
1831 root 1.5
1832     Event->io (fd => IO::AIO::poll_fileno,
1833     poll => 'r', async => 1,
1834     cb => \&IO::AIO::poll_cb);
1835    
1836 root 1.175 =item IO::AIO::poll_wait
1837    
1838 root 1.240 Wait until either at least one request is in the result phase or no
1839     requests are outstanding anymore.
1840    
1841     This is useful if you want to synchronously wait for some requests to
1842     become ready, without actually handling them.
1843 root 1.175
1844     See C<nreqs> for an example.
1845    
1846     =item IO::AIO::poll
1847    
1848     Waits until some requests have been handled.
1849    
1850     Returns the number of requests processed, but is otherwise strictly
1851     equivalent to:
1852    
1853     IO::AIO::poll_wait, IO::AIO::poll_cb
1854    
1855     =item IO::AIO::flush
1856    
1857     Wait till all outstanding AIO requests have been handled.
1858    
1859     Strictly equivalent to:
1860    
1861     IO::AIO::poll_wait, IO::AIO::poll_cb
1862     while IO::AIO::nreqs;
1863    
1864 root 1.294 This function can be useful at program aborts, to make sure outstanding
1865     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1866     this function on normal exits), or when you are merely using C<IO::AIO>
1867     for its more advanced functions, rather than for async I/O, e.g.:
1868    
1869     my ($dirs, $nondirs);
1870     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1871     IO::AIO::flush;
1872     # $dirs, $nondirs are now set
1873    
1874 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1875    
1876     =item IO::AIO::max_poll_time $seconds
1877    
1878     These set the maximum number of requests (default C<0>, meaning infinity)
1879     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1880     the maximum amount of time (default C<0>, meaning infinity) spent in
1881     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1882     of time C<poll_cb> is allowed to use).
1883 root 1.78
1884 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1885     syscall per request processed, which is not normally a problem unless your
1886     callbacks are really really fast or your OS is really really slow (I am
1887     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1888    
1889 root 1.86 Setting these is useful if you want to ensure some level of
1890     interactiveness when perl is not fast enough to process all requests in
1891     time.
1892 root 1.78
1893 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1894 root 1.78
1895     Example: Install an Event watcher that automatically calls
1896 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1897 root 1.78 program get the CPU sometimes even under high AIO load.
1898    
1899 root 1.86 # try not to spend much more than 0.1s in poll_cb
1900     IO::AIO::max_poll_time 0.1;
1901    
1902     # use a low priority so other tasks have priority
1903 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1904     poll => 'r', nice => 1,
1905 root 1.86 cb => &IO::AIO::poll_cb);
1906 root 1.78
1907 root 1.104 =back
1908    
1909 root 1.294
1910 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1911 root 1.13
1912 root 1.105 =over
1913    
1914 root 1.5 =item IO::AIO::min_parallel $nthreads
1915    
1916 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1917     default is C<8>, which means eight asynchronous operations can execute
1918     concurrently at any one time (the number of outstanding requests,
1919     however, is unlimited).
1920 root 1.5
1921 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1922 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1923     create demand for a hundred threads, even if it turns out that everything
1924     is in the cache and could have been processed faster by a single thread.
1925 root 1.34
1926 root 1.61 It is recommended to keep the number of threads relatively low, as some
1927     Linux kernel versions will scale negatively with the number of threads
1928     (higher parallelity => MUCH higher latency). With current Linux 2.6
1929     versions, 4-32 threads should be fine.
1930 root 1.5
1931 root 1.34 Under most circumstances you don't need to call this function, as the
1932     module selects a default that is suitable for low to moderate load.
1933 root 1.5
1934     =item IO::AIO::max_parallel $nthreads
1935    
1936 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1937     specified number of threads are currently running, this function kills
1938     them. This function blocks until the limit is reached.
1939    
1940     While C<$nthreads> are zero, aio requests get queued but not executed
1941     until the number of threads has been increased again.
1942 root 1.5
1943     This module automatically runs C<max_parallel 0> at program end, to ensure
1944     that all threads are killed and that there are no outstanding requests.
1945    
1946     Under normal circumstances you don't need to call this function.
1947    
1948 root 1.86 =item IO::AIO::max_idle $nthreads
1949    
1950 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1951     (i.e., threads that did not get a request to process within the idle
1952     timeout (default: 10 seconds). That means if a thread becomes idle while
1953     C<$nthreads> other threads are also idle, it will free its resources and
1954     exit.
1955 root 1.86
1956     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1957     to allow for extremely high load situations, but want to free resources
1958     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1959    
1960     The default is probably ok in most situations, especially if thread
1961     creation is fast. If thread creation is very slow on your system you might
1962     want to use larger values.
1963    
1964 root 1.188 =item IO::AIO::idle_timeout $seconds
1965    
1966     Sets the minimum idle timeout (default 10) after which worker threads are
1967     allowed to exit. SEe C<IO::AIO::max_idle>.
1968    
1969 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1970 root 1.5
1971 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1972     you do queue up more than this number of requests, the next call to
1973     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1974     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1975     longer exceeded.
1976    
1977     In other words, this setting does not enforce a queue limit, but can be
1978     used to make poll functions block if the limit is exceeded.
1979    
1980 root 1.79 This is a very bad function to use in interactive programs because it
1981     blocks, and a bad way to reduce concurrency because it is inexact: Better
1982     use an C<aio_group> together with a feed callback.
1983    
1984 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1985 root 1.274 a lot of files, you can write something like this:
1986 root 1.195
1987     IO::AIO::max_outstanding 32;
1988    
1989     for my $path (...) {
1990     aio_stat $path , ...;
1991     IO::AIO::poll_cb;
1992     }
1993    
1994     IO::AIO::flush;
1995    
1996     The call to C<poll_cb> inside the loop will normally return instantly, but
1997     as soon as more thna C<32> reqeusts are in-flight, it will block until
1998     some requests have been handled. This keeps the loop from pushing a large
1999     number of C<aio_stat> requests onto the queue.
2000    
2001     The default value for C<max_outstanding> is very large, so there is no
2002     practical limit on the number of outstanding requests.
2003 root 1.5
2004 root 1.104 =back
2005    
2006 root 1.294
2007 root 1.86 =head3 STATISTICAL INFORMATION
2008    
2009 root 1.104 =over
2010    
2011 root 1.86 =item IO::AIO::nreqs
2012    
2013     Returns the number of requests currently in the ready, execute or pending
2014     states (i.e. for which their callback has not been invoked yet).
2015    
2016     Example: wait till there are no outstanding requests anymore:
2017    
2018     IO::AIO::poll_wait, IO::AIO::poll_cb
2019     while IO::AIO::nreqs;
2020    
2021     =item IO::AIO::nready
2022    
2023     Returns the number of requests currently in the ready state (not yet
2024     executed).
2025    
2026     =item IO::AIO::npending
2027    
2028     Returns the number of requests currently in the pending state (executed,
2029     but not yet processed by poll_cb).
2030    
2031 root 1.5 =back
2032    
2033 root 1.294
2034 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2035    
2036     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2037     generally find access/modification and change times with subsecond time
2038     accuracy of the system supports it, but perl's built-in functions only
2039     return the integer part.
2040    
2041     The following functions return the timestamps of the most recent
2042     stat with subsecond precision on most systems and work both after
2043     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2044     value is only meaningful after a successful C<stat>/C<lstat> call, or
2045     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2046    
2047     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2048     full resolution without rounding and work with standard perl C<stat>,
2049     alleviating the need to call the special C<Time::HiRes> functions, which
2050     do not act like their perl counterparts.
2051    
2052     On operating systems or file systems where subsecond time resolution is
2053     not supported or could not be detected, a fractional part of C<0> is
2054     returned, so it is always safe to call these functions.
2055    
2056     =over 4
2057    
2058 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2059 root 1.289
2060 root 1.294 Return the access, modication, change or birth time, respectively,
2061     including fractional part. Due to the limited precision of floating point,
2062     the accuracy on most platforms is only a bit better than milliseconds
2063     for times around now - see the I<nsec> function family, below, for full
2064 root 1.289 accuracy.
2065    
2066 root 1.294 File birth time is only available when the OS and perl support it (on
2067     FreeBSD and NetBSD at the time of this writing, although support is
2068     adaptive, so if your OS/perl gains support, IO::AIO can take avdantage of
2069     it). On systems where it isn't available, C<0> is currently returned, but
2070     this might change to C<undef> in a future version.
2071 root 1.289
2072 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2073 root 1.289
2074 root 1.294 Returns access, modification, change and birth time all in one go, and
2075     maybe more times in the future version.
2076 root 1.289
2077 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2078    
2079     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2080 root 1.289 as an integer in the range C<0> to C<999999999>.
2081    
2082 root 1.294 Note that no accessors are provided for access, modification and
2083     change times - you need to get those from C<stat _> if required (C<int
2084     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2085     value).
2086    
2087     =item $seconds = IO::AIO::st_btimesec
2088    
2089     The (integral) seconds part of the file birth time, if available.
2090    
2091     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2092 root 1.290
2093 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2094 root 1.290 more in future versions).
2095    
2096 root 1.294 =item $counter = IO::AIO::st_gen
2097    
2098 root 1.296 Returns the generation counter (in practice this is just a random number)
2099     of the file. This is only available on platforms which have this member in
2100     their C<struct stat> (most BSDs at the time of this writing) and generally
2101     only to the root usert. If unsupported, C<0> is returned, but this might
2102     change to C<undef> in a future version.
2103 root 1.294
2104 root 1.289 =back
2105    
2106     Example: print the high resolution modification time of F</etc>, using
2107     C<stat>, and C<IO::AIO::aio_stat>.
2108    
2109     if (stat "/etc") {
2110 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2111 root 1.289 }
2112    
2113     IO::AIO::aio_stat "/etc", sub {
2114     $_[0]
2115     and return;
2116    
2117 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2118 root 1.289 };
2119    
2120     IO::AIO::flush;
2121    
2122     Output of the awbove on my system, showing reduced and full accuracy:
2123    
2124     stat(/etc) mtime: 1534043702.020808
2125     aio_stat(/etc) mtime: 1534043702.020807792
2126    
2127 root 1.294
2128 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2129    
2130 root 1.248 IO::AIO implements some functions that are useful when you want to use
2131     some "Advanced I/O" function not available to in Perl, without going the
2132     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2133     counterpart.
2134 root 1.157
2135     =over 4
2136    
2137 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2138    
2139 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2140    
2141 root 1.275 Tries to find the current file descriptor limit and returns it, or
2142     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2143     the highest valid file descriptor number.
2144    
2145     =item IO::AIO::min_fdlimit [$numfd]
2146    
2147 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2148    
2149 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2150     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2151     is missing, it will try to set a very high limit, although this is not
2152     recommended when you know the actual minimum that you require.
2153    
2154     If the limit cannot be raised enough, the function makes a best-effort
2155     attempt to increase the limit as much as possible, using various
2156     tricks, while still failing. You can query the resulting limit using
2157     C<IO::AIO::get_fdlimit>.
2158    
2159 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2160     true.
2161 root 1.275
2162 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2163    
2164     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2165     but is blocking (this makes most sense if you know the input data is
2166     likely cached already and the output filehandle is set to non-blocking
2167     operations).
2168    
2169     Returns the number of bytes copied, or C<-1> on error.
2170    
2171     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2172    
2173 root 1.184 Simply calls the C<posix_fadvise> function (see its
2174 root 1.157 manpage for details). The following advice constants are
2175 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2176 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2177     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2178    
2179     On systems that do not implement C<posix_fadvise>, this function returns
2180     ENOSYS, otherwise the return value of C<posix_fadvise>.
2181    
2182 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2183    
2184     Simply calls the C<posix_madvise> function (see its
2185     manpage for details). The following advice constants are
2186 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2187 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2188     C<IO::AIO::MADV_DONTNEED>.
2189 root 1.184
2190 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2191     the remaining length of the C<$scalar> is used. If possible, C<$length>
2192     will be reduced to fit into the C<$scalar>.
2193    
2194 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2195     ENOSYS, otherwise the return value of C<posix_madvise>.
2196    
2197     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2198    
2199     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2200     $scalar (see its manpage for details). The following protect
2201 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2202 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2203    
2204 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2205     the remaining length of the C<$scalar> is used. If possible, C<$length>
2206     will be reduced to fit into the C<$scalar>.
2207    
2208 root 1.184 On systems that do not implement C<mprotect>, this function returns
2209     ENOSYS, otherwise the return value of C<mprotect>.
2210    
2211 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2212    
2213     Memory-maps a file (or anonymous memory range) and attaches it to the
2214 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2215     success, and false otherwise.
2216 root 1.176
2217 root 1.268 The scalar must exist, but its contents do not matter - this means you
2218     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2219     the scalar first.
2220    
2221     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2222     which don't change the string length, and most read-only operations such
2223     as copying it or searching it with regexes and so on.
2224 root 1.176
2225     Anything else is unsafe and will, at best, result in memory leaks.
2226    
2227     The memory map associated with the C<$scalar> is automatically removed
2228 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2229     or C<IO::AIO::munmap> functions are called on it.
2230 root 1.176
2231     This calls the C<mmap>(2) function internally. See your system's manual
2232     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2233    
2234     The C<$length> must be larger than zero and smaller than the actual
2235     filesize.
2236    
2237     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2238     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2239    
2240 root 1.256 C<$flags> can be a combination of
2241     C<IO::AIO::MAP_SHARED> or
2242     C<IO::AIO::MAP_PRIVATE>,
2243     or a number of system-specific flags (when not available, the are C<0>):
2244     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2245     C<IO::AIO::MAP_LOCKED>,
2246     C<IO::AIO::MAP_NORESERVE>,
2247     C<IO::AIO::MAP_POPULATE>,
2248     C<IO::AIO::MAP_NONBLOCK>,
2249     C<IO::AIO::MAP_FIXED>,
2250     C<IO::AIO::MAP_GROWSDOWN>,
2251     C<IO::AIO::MAP_32BIT>,
2252     C<IO::AIO::MAP_HUGETLB> or
2253     C<IO::AIO::MAP_STACK>.
2254 root 1.176
2255     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2256    
2257 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2258     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2259    
2260 root 1.177 Example:
2261    
2262     use Digest::MD5;
2263     use IO::AIO;
2264    
2265     open my $fh, "<verybigfile"
2266     or die "$!";
2267    
2268     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2269     or die "verybigfile: $!";
2270    
2271     my $fast_md5 = md5 $data;
2272    
2273 root 1.176 =item IO::AIO::munmap $scalar
2274    
2275     Removes a previous mmap and undefines the C<$scalar>.
2276    
2277 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2278 root 1.285
2279     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2280     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2281     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2282    
2283     Returns true if successful, and false otherwise. If the underlying mmapped
2284     region has changed address, then the true value has the numerical value
2285     C<1>, otherwise it has the numerical value C<0>:
2286    
2287     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2288     or die "mremap: $!";
2289    
2290     if ($success*1) {
2291     warn "scalar has chanegd address in memory\n";
2292     }
2293    
2294     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2295     implemented, but not supported and might go away in a future version.
2296    
2297     On systems where this call is not supported or is not emulated, this call
2298     returns falls and sets C<$!> to C<ENOSYS>.
2299    
2300 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2301 root 1.174
2302 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2303     C<aio_mlock> call (see its description for details).
2304 root 1.174
2305     =item IO::AIO::munlockall
2306    
2307     Calls the C<munlockall> function.
2308    
2309     On systems that do not implement C<munlockall>, this function returns
2310     ENOSYS, otherwise the return value of C<munlockall>.
2311    
2312 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2313    
2314     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2315     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2316     should be the file offset.
2317    
2318 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2319     silently corrupt the data in this case.
2320    
2321 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2322     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2323     C<IO::AIO::SPLICE_F_GIFT>.
2324    
2325     See the C<splice(2)> manpage for details.
2326    
2327     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2328    
2329 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2330 root 1.225 description for C<IO::AIO::splice> above for details.
2331    
2332 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2333    
2334     Attempts to query or change the pipe buffer size. Obviously works only
2335     on pipes, and currently works only on GNU/Linux systems, and fails with
2336     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2337     size on other systems, drop me a note.
2338    
2339 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2340    
2341     This is a direct interface to the Linux L<pipe2(2)> system call. If
2342     C<$flags> is missing or C<0>, then this should be the same as a call to
2343 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2344     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2345     (..., 4096, O_BINARY)>.
2346 root 1.253
2347     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2348     the given flags (Linux 2.6.27, glibc 2.9).
2349    
2350     On success, the read and write file handles are returned.
2351    
2352     On error, nothing will be returned. If the pipe2 syscall is missing and
2353     C<$flags> is non-zero, fails with C<ENOSYS>.
2354    
2355     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2356     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2357     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2358    
2359 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2360    
2361     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2362     or die "pipe2: $!\n";
2363    
2364 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2365 root 1.281
2366     This is a direct interface to the Linux L<eventfd(2)> system call. The
2367     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2368    
2369     On success, the new eventfd filehandle is returned, otherwise returns
2370     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2371    
2372     Please refer to L<eventfd(2)> for more info on this call.
2373    
2374     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2375     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2376    
2377 root 1.282 Example: create a new eventfd filehandle:
2378    
2379     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2380     or die "eventfd: $!\n";
2381    
2382     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2383    
2384     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2385     (unhelpful) default for C<$flags> is C<0>.
2386    
2387     On success, the new timerfd filehandle is returned, otherwise returns
2388     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2389    
2390     Please refer to L<timerfd_create(2)> for more info on this call.
2391    
2392     The following C<$clockid> values are
2393     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2394     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2395     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2396     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2397    
2398     The following C<$flags> values are available (Linux
2399     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2400    
2401     Example: create a new timerfd and set it to one-second repeated alarms,
2402     then wait for two alarms:
2403    
2404     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2405     or die "timerfd_create: $!\n";
2406    
2407     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2408     or die "timerfd_settime: $!\n";
2409    
2410     for (1..2) {
2411     8 == sysread $fh, my $buf, 8
2412     or die "timerfd read failure\n";
2413    
2414     printf "number of expirations (likely 1): %d\n",
2415     unpack "Q", $buf;
2416     }
2417    
2418     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2419    
2420     This is a direct interface to the Linux L<timerfd_settime(2)> system
2421     call. Please refer to its manpage for more info on this call.
2422    
2423     The new itimerspec is specified using two (possibly fractional) second
2424     values, C<$new_interval> and C<$new_value>).
2425    
2426     On success, the current interval and value are returned (as per
2427     C<timerfd_gettime>). On failure, the empty list is returned.
2428    
2429     The following C<$flags> values are
2430     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2431     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2432    
2433     See C<IO::AIO::timerfd_create> for a full example.
2434    
2435     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2436    
2437     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2438     call. Please refer to its manpage for more info on this call.
2439    
2440     On success, returns the current values of interval and value for the given
2441     timerfd (as potentially fractional second values). On failure, the empty
2442     list is returned.
2443    
2444 root 1.157 =back
2445    
2446 root 1.1 =cut
2447    
2448 root 1.61 min_parallel 8;
2449 root 1.1
2450 root 1.95 END { flush }
2451 root 1.82
2452 root 1.1 1;
2453    
2454 root 1.175 =head1 EVENT LOOP INTEGRATION
2455    
2456     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2457     automatically into many event loops:
2458    
2459     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2460     use AnyEvent::AIO;
2461    
2462     You can also integrate IO::AIO manually into many event loops, here are
2463     some examples of how to do this:
2464    
2465     # EV integration
2466     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2467    
2468     # Event integration
2469     Event->io (fd => IO::AIO::poll_fileno,
2470     poll => 'r',
2471     cb => \&IO::AIO::poll_cb);
2472    
2473     # Glib/Gtk2 integration
2474     add_watch Glib::IO IO::AIO::poll_fileno,
2475     in => sub { IO::AIO::poll_cb; 1 };
2476    
2477     # Tk integration
2478     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2479     readable => \&IO::AIO::poll_cb);
2480    
2481     # Danga::Socket integration
2482     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2483     \&IO::AIO::poll_cb);
2484    
2485 root 1.27 =head2 FORK BEHAVIOUR
2486    
2487 root 1.197 Usage of pthreads in a program changes the semantics of fork
2488     considerably. Specifically, only async-safe functions can be called after
2489     fork. Perl doesn't know about this, so in general, you cannot call fork
2490 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2491     pthreads, so this applies, but many other extensions and (for inexplicable
2492     reasons) perl itself often is linked against pthreads, so this limitation
2493     applies to quite a lot of perls.
2494    
2495     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2496     only works in the process that loaded it. Forking is fully supported, but
2497     using IO::AIO in the child is not.
2498    
2499     You might get around by not I<using> IO::AIO before (or after)
2500     forking. You could also try to call the L<IO::AIO::reinit> function in the
2501     child:
2502    
2503     =over 4
2504    
2505     =item IO::AIO::reinit
2506    
2507 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2508     data structures. This is not an operation supported by any standards, but
2509 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2510    
2511     The only reasonable use for this function is to call it after forking, if
2512     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2513     the process will result in undefined behaviour. Calling it at any time
2514     will also result in any undefined (by POSIX) behaviour.
2515    
2516     =back
2517 root 1.52
2518 root 1.282 =head2 LINUX-SPECIFIC CALLS
2519    
2520     When a call is documented as "linux-specific" then this means it
2521     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2522     availability and compatibility of such calls regardless of the platform
2523     it is compiled on, so platforms such as FreeBSD which often implement
2524     these calls will work. When in doubt, call them and see if they fail wth
2525     C<ENOSYS>.
2526    
2527 root 1.60 =head2 MEMORY USAGE
2528    
2529 root 1.72 Per-request usage:
2530    
2531     Each aio request uses - depending on your architecture - around 100-200
2532     bytes of memory. In addition, stat requests need a stat buffer (possibly
2533     a few hundred bytes), readdir requires a result buffer and so on. Perl
2534     scalars and other data passed into aio requests will also be locked and
2535     will consume memory till the request has entered the done state.
2536 root 1.60
2537 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2538 root 1.60 problem.
2539    
2540 root 1.72 Per-thread usage:
2541    
2542     In the execution phase, some aio requests require more memory for
2543     temporary buffers, and each thread requires a stack and other data
2544     structures (usually around 16k-128k, depending on the OS).
2545    
2546     =head1 KNOWN BUGS
2547    
2548 root 1.283 Known bugs will be fixed in the next release :)
2549    
2550     =head1 KNOWN ISSUES
2551    
2552     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2553     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2554     non-created hash slots or other scalars I didn't think of. It's best to
2555     avoid such and either use scalar variables or making sure that the scalar
2556     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2557    
2558     I am not sure anything can be done about this, so this is considered a
2559     known issue, rather than a bug.
2560 root 1.60
2561 root 1.1 =head1 SEE ALSO
2562    
2563 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2564     more natural syntax.
2565 root 1.1
2566     =head1 AUTHOR
2567    
2568     Marc Lehmann <schmorp@schmorp.de>
2569     http://home.schmorp.de/
2570    
2571     =cut
2572